How it Works:

Home

History

Types of Stirling Engines

How it Works

Troubles

Works Cited


                                                      Stirling Cycle: As stated before, there are several types of Stirling engines, but they all use the Stirling Cycle.  The Stirling Cycle                                             has four stages: compression, expansion, heat added, heat removed.  The cycle goes as such:

                                                       Isothermal compression:  In the cold end the gas transfers it's heat to it's surroundings to keep the same temperature during                                                                                                             compression from the piston.

                                                       Constant-Volume Heat Addition:  The compressed air is heated and thus pressure on the piston increases.

                                                       Isothermal Expansion:  The gas expands as heat is added in order to maintain temperature.

                                                       Constant-Volume Heated Rejected:  The air has expanded as far as the piston can move back, volume can no longer increase so the                                                                                                               air must now lose heat.[1]

                                              The Stirling Cycle was derived from Gay-Lussac gas law: (P1V1)/T1=(P2V2)/T2=nR where P=pressure V=volume T=temperature n=number                                       of moles of gas R=universal gas constant
                                                 





                                            Efficiency: The Stirling engine is a heat engine meaning it runs off of a fluid's expansion and contraction from heat (combustion                                                 engines(cars) and steam engines(power plants/old-time trains) are also examples of heat engines).  Thanks to French physicist, Nicolas Leonard                                                 Sadi Carnot (1796-1832), we have an equation to tell us the maximum possible efficiency a heat engine can have.  His equation shows the hotter                                            your hot end and the colder your cold end the greater your maximum possible efficiency.

                                        Carnot's equation: (1 - (Tcold/Thot)) x 100= % efficiency      T=Temperature in Kelvin 

                                  Example:   So if the temperature at your cold end was the freezing point of water (~273 kelvin) and your hot end was at the boiling point of water                                     (~373 kelvin) you would have a maximum possible efficiency of:
                                                  
                                                                                         (1-(273k/373k)) x 100 =26.8% efficiency


                                                                        prevHomenext