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Abstract

Networked infrastructures operated under highly loaded
conditions are vulnerable to catastrophic cascading fail-
ures. For example, electric power transmission systems
must be designed and operated to reduce the risk of
widespread blackouts caused by cascading failure. There
is a need for analytically tractable models to understand
and quantify the risks of cascading failure. We study a
probabilistic model of loading dependent cascading failure
by approximating the propagation of failures as a Poisson
branching process. This leads to a criticality condition for
the failure propagation. At criticality there are power tails
in the probability distribution of cascade sizes and conse-
quently considerable risks of widespread catastrophic fail-
ure. Avoiding criticality or supercriticality is a key ap-
proach to reduce this risk. This approach of minimizing the
propagation of failure after the cascade has started is com-
plementary to the usual approach of minimizing the risk of
the first few cascading failures. The analysis introduces a
saturating form of the generalized Poisson distribution so
that supercritical systems with a high probability of total
failure can be considered.

1. Introduction

Networked infrastructures such as electric power trans-
mission systems are vulnerable to widespread cascading
failures when the systems are highly loaded. Since mod-
ern society depends on large infrastructures, catastrophes in
which failures propagate to most or all of the system are of
concern. For example, blackouts of substantial portions of
the North American power system east or west of the Rocky
Mountains have a huge cost to society, as demonstrated in
2003 and 1996 respectively. There is a need for analytically
tractable models to understand and quantify the risks of cas-
cading failure so that networked systems can be designed
and operated to reduce the risk of catastrophic failure.

Analyses of 15 years of North American blackout data
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show an empirical probability distribution of blackout size
which has heavy tails and evidence of power law depen-
dence in these tails [24, 2, 11, 3, 6]. The exponent of the
power tail is roughly estimated to be in the range —2 to —1.
These data show that large blackouts are much more likely
than might be expected from a distribution of blackout size
in which the tails decay exponentially. Simulation mod-
els of cascading blackouts show similar power tails and the
power tails have been attributed to the nature of the cascad-
ing process [19,9, 7].

Because of protection and appropriate design and oper-
ational procedures, it is very rare for power transmission
components to fail in the sense of the component break-
ing. However, it is routine for these components to be tem-
porarily removed from service by protection equipment and
the outaged or tripped component is then failed in the sense
that it is temporarily not available to transmit power. More-
over there are sometimes misoperations or mistakes in pro-
tection, communication and control systems or operational
procedures or sometimes the power system is operated un-
der conditions that could not be anticipated in the original
design settings or procedures. In the context of power trans-
mission systems, the term “failure” as used in this paper
should be understood in this broad and nuanced sense.

Notable general features of power transmission systems
are the large number of components, the increased prob-
ability of component failure and interaction at high load,
and the numerous, varied and widespread interactions be-
tween components. Large blackouts typically involve long
sequences of component failures. Many of the interactions
are rare, unanticipated or unusual, not least because of en-
gineering efforts to design and operate the system so as to
avoid the most common failures and interactions. Although
we use electric power transmission system blackouts as the
motivating example in this paper, these general features ap-
pear in other networked infrastructures so that it is likely
that the ideas apply more generally.

One natural way to study cascading failure is to con-
sider the failures propagating probabilistically according to
a Galton-Watson-Bienaymé branching process [23]. For
example, simple assumptions lead to a Poisson branching



process that has the total number of components failed dis-
tributed according to the generalized Poisson distribution
[17,15].

On the other hand, the CASCADE model of probabilistic
cascading failure [20] has the following general features:

1. Multiple identical components, each of which has a
random initial load and an initial disturbance.

2. When a component overloads, it fails and transfers
some load to the other components.

Property 2 can cause cascading failure: a failure addition-
ally loads other components and some of these other com-
ponents may also fail, leading to a cascade of failure. The
components become progressively more loaded and the sys-
tem becomes weaker as the cascade proceeds.

Both the Poisson branching process and CASCADE can
exhibit criticality and power tails in the probability distribu-
tion of the number of failed components.

We begin the paper by reviewing standard results on
branching processes and the generalized Poisson distribu-
tion and then consider the implications of these results for
the risk of load-dependent cascading failure. A saturating
form of the generalized Poisson distribution is introduced to
allow study of the transition through criticality in a system
with a large but finite number of components. We review the
CASCADE model of cascading failure and then show how
CASCADE can be approximated by the saturating general-
ized Poisson distribution. Then we discuss the implications
of the approximation for analyzing CASCADE and under-
standing cascading failure in blackouts.

2. Review of branching processes

This section reviews standard material on Galton-
Watson-Bienaymé branching processes [23] and general-
ized Poisson distributions [17, 15] as expressed in terms of
cascading failures.

2.1. Generalities

We first consider an infinite number of system compo-
nents. All components are initially unfailed. Component
failures occur in stages with M; the number of failures in
stage <. We first assume an initial disturbance that causes
one failure in stage zero so that My = 1. This first failure
is considered to cause a certain number of failures M in
stage 1. M is determined according to a probability distri-
bution with generating function E[t}1] = f(¢) and mean
A. In subsequent stages, each of the M; failures in stage 4
independently causes a further number of failures in stage
i + 1 according to the same distribution f(s). That is, the

kth failure in stage 4 causes Mz(i)l failures in stage 7 + 1 and

M, = Mi(-il-)l + Mi(i)l et Mi(%i) (1)
where Mi(j—)lv Mi(j-)p e Ml(ﬁ) are independent. This in-

dependence is a plausible approximation in a system with
many components and many component interactions so that
series of failures propagating in parallel can be assumed not
to interact. The generating function of M}, is

E[tM] = f(F(f(f(0)-)) = ) )

and the mean E[M}] = A\*. If at any stage k, M}, = 0, then
zero elements fail for all subsequent stages and the cascad-
ing process terminates.

There are three cases, depending on the mean A of the
number of failures caused by each failure in the previous
stage. In the subcritical case A < 1, a finite number of
components will fail. In the supercritical case A > 1, either
a finite or infinite number of components can fail and the
number of failures in each stage tends to zero or infinity
respectively. The critical case is A = 1.

We are most interested in the distribution of the total
number of failures

M = Z M, 3)
k=0

The generating function of M is F(t) = E[t™] and it sat-
isfies the recursion F'(t) = ¢t f(F(t)).

2.2. Universality of the critical exponent

Under mild conditions on f, for the critical case A =
1, PIM = r] ~ r~2 as r — oo [26, 23]. That is, the
distribution of the total number of failures of a branching
process at criticality has a universal property of a power tail
with exponent —%. The details are in Otter’s theorem [26]:

Theorem 1 Suppose that P[M; = 0] > 0 and that there
is a point a in the interior of the circle of convergence of
f for which f'(a) = f(a)/a. (This is true, for example, if
1 < X< ooorif f(s) is entire or if f'(p) = oo, where p is
the radius of convergence of f. The point (a, f(a)) is then
the point where the graph of f, for real positive s, is tangent
to a line through the origin. Let o« = a/ f(a) and let d be
the largest integer such that P[My = r] # 0 implies that r
is a multiple of d, r = 1,2, .... If r — 1 is not divisible by d,
then P[M = r| = 0, while if r — 1 is divisible by d, then

a P _3 3
P[M:r]:d(m> a "r Z—i—O(oz T )

r— 00 4)

Notice that o > 1, the equality holding if and only if A = 1.
Also d =1 when P[My =r] #0forr=1,2,....



2.3. Branching generated by a Poisson distribution

If, in addition to the independence assumptions above,
the failures propagate in a large number of components so
that each failure has a small uniform probability of inde-
pendently causing each failure in a large number of other
components, then the distribution of failures caused by each
failure in the previous stage can be approximated as a Pois-
son distribution [17] so that

)\7",
= e om=0,1,2,.. (5

fﬂﬂ4i3= Wﬂ ml

f(t) — ek(t—l) (6)

The distribution of the total number of failures becomes

rA

PIM =] = (rA) 1S

T 0<A<L (@)

which is known as the Borel distribution.

2.4. A probabilistic initial disturbance and the gen-
eralized Poisson distribution

If we neglect the zero stage that has one failure, and con-
sider the failures starting with stage 1, then (5) gives a distri-
bution of initial failures according to a Poisson distribution
with mean .

However, we distinguish the initial failures that are
caused by some initial disturbance from the subsequent
propagation of failures internal to the system. We want to
represent the initial disturbance by its own probability dis-
tribution. This can be done by specifying a probability dis-
tribution for M), the number of failures in stage zero. If the
initial failures are Poisson distributed with mean 6 so that

P[]\/fozm]Z%e_‘9 ,m=0,1,2,... (8)
fot) = =1 ©)

then the generating function of M;, becomes fo(f*)(t) and
the distribution of the total number of failures becomes

efrAfa
PM=r]=0(r\+ 0)’“71—'
7!
,020,0<A<1 (10)

which is the generalized (or Lagrangian) Poisson distribu-
tion introduced by Consul and Jain [17, 12, 15]. The prob-
ability generating function of (10) is

E[sM] = ¢?®= where ¢ is the function of s satisfying
t = sert=1) (11)

The mean of the generalized Poisson distribution (10) is

EM] = — (12)

The generalized Poisson distribution is usually restricted to
parameters such that A < 1 to avoid the supercritical case
in which there is a finite probability of M infinite.

3. Implications for risk of load-dependent cas-
cading failure

The following sections show how a model of loading de-
pendent cascading failure can be approximated as a branch-
ing process. To motivate this topic, this section supposes
that cascading failure can be treated as a branching process
and discusses some general implications of the branching
results in Section 2 for risk analysis and mitigation of cas-
cading failure.

Suppose that the system is at criticality (A = 1) so that
the probability distribution of the total number of failures
M follows a power law with exponent —%. Since risk R is
the product of probability and cost,

R(m) = P[M =m]C[m] ~m™3C[m]  (13)

First assume in (13) that the cost C'(m) is proportional to
the total number of failures m. (This is a conservative es-
timate in applications such as blackouts; even if the direct
costs are proportional to the blackout size and the total num-
ber of failures, the indirect costs can be very high for large
blackouts [1].) Then R(m) ~ m™2m = m~z. This gives
a weak decrease in risk as the number of failures increase,
which means that the risk of cascading failure includes a
strong contribution from large cascades. Moreover, if in-
stead cost increases according to C[m] ~ m® where o > %,
then (13) implies that the risk of large cascades exceeds that
of small cascades, despite the large cascades being rarer.

Consider a general load dependence for component fail-
ure and interaction. We assume that system components are
more likely to fail and more likely to cause other component
failures when load increases. It is reasonable to assume that
at zero load \ < 1, since a system design with a significant
risk of cascading failure at zero load is unlikely to be feasi-
ble when operated at normal loads. Moreover, if the system
is operated at an absurdly high load at which all compo-
nents are at their limits, then failure of any component will
on average cause many other components to fail and then
A > 1. We may also assume that A is an increasing and
continuous function of load. Then there is a critical load for
which A = 1 and the branching process is critical and the
risk is governed by (13). The risk will be even higher for
A> 1

Thus a simple criterion for avoiding the high risk of cas-
cading failure associated with A > 1 with some margin de-
termined by a choice of A\ < 11is

design and operate system so that A < Apa <1 | (14)




Although this is a simple criterion, translating it to appli-
cable design and operational criteria is a substantial task.
Moreover, applying the criteria (14) generally requires the
system to be operated with limited throughput. For exam-
ple, in electric power transmission systems, the loading of
transmission lines and other system components would be
limited. Thus limiting the risk of cascading failure using
(14) will have an economic cost. The dynamics and diffi-
culties of managing this tradeoff should not be neglected.

One approach to limiting cascading failure is to describe
the most likely sequences of cascading failures starting
from the initiating failures and design and operate the sys-
tem to reduce their probability. This standard approach is
sensible and can reduce risk [22, 25, 10]. However, in large
interconnected and interdependent systems there is a com-
binatorial explosion of possibilities. It is often impractical
to envisage and to quantify and compute probabilities for
all but the most likely or apparent of these cascading se-
quences. A large number of rare and hard to anticipate in-
teractions may have to be neglected [27].

Criterion (14) suggests a different and complementary
approach that focusses on limiting the average propagation
of failures after a cascade is started. A is the expected num-
ber of failures consequent upon a single failure. We sug-
gest that estimation of average values of A\ may be feasible
using simulation [8] or otherwise and that the dependence
of X\ on load and system design could be determined to al-
low (14) to be implemented. Perhaps the simplifications in
this approach could allow the contributions to A from nu-
merous but rare interactions to be accounted for more read-
ily. There are a number of problems in establishing this
approach. Two of these problems are

1. Branching processes usually assume an infinite num-
ber of components so that there can be an infinite num-
ber of failures in the supercritical case. This is not re-
alistic when considering the transition from subcritical
to supercritical.

2. Can loading dependent cascading failure be well ap-
proximated as a branching process?

Section 4 addresses problem 1 with a saturating branch-
ing process and the rest of this paper addresses problem 2
by showing how the CASCADE model of load-dependent
cascading failure can be approximated by the saturating
branching process.

4. Saturation due to finite system size

In our application we have a large but finite number n of
components and we need to introduce a saturation or trun-
cation of the Poisson branching process. Let

N = min{n — 1, integer part of (n — 0)/\} (15)

Then the process evolves in the same way as the process
with an infinite number of components when the total num-
ber of failures does not exceed N. If the total number
of failures exceeds IV, then it assumed that all n com-
ponents fail and the process ends. If the parameters are
such that N < n — 1, this implies that it impossible for
N +1,N +2,...,n — 1 components to fail. The saturation
(15) is chosen so that the saturating model can be a good
approximation to CASCADE and this is justified in subsec-
tions 6.1 and 6.2.

The standard result (10) above can be modified as fol-
lows to obtain the saturating model: The generating func-
tion G(t) for the total number of failures remains valid to
order N. Write GIVI(#) for the terms up to and including
order N of G(t). Then GIN)(t) generates the probabilities
of the total number of failures r for r < N. However, the
sum of the probabilities generated by GV () is GINI(1)
and GIN](1) < 1. The probability generating function G/(¢)
for the saturating model can be obtained by making the
probability of n failures equal to 1 — GINI(1):

G(t) = GN(1) + (1 — GV (1)) (16)
N —U—=r
=> 00+ M)T‘lei—'AtT + (1 = G (1))t

A7)

The corresponding probability distribution is:

Definition: g(r,0, A\,n) is the probability that » compo-
nents fail in the saturating generalized Poisson distribution
model with initial disturbance mean failures 6, cascading
mean failures A\, and n components. For 6 < 0,

g(r,0,\,n) = 1; r=0 (18)
g(r,0,\,n) = 0; r>0 (19)
For 6 > 0,
e—rk—e
9(7’,9,)\,71) = Q(T)‘+0)T_l—|
7!
; 0<r<(n—=60)/x r<n(20)
g(r,0,A,n) =0; (n—0)/A<r<mn, r>0Q21)
n—1
g(n,0,xn) = 1= g(s,6,\,n) (22)
s=0

The saturating form of the generalized Poisson distribution
(20-22) limits the total number of failures to n even in the
supercritical case and extends the range of parameters of the
generalized Poisson distribution (10) to allow A > 1.

There are other ways of normalizing or truncating the
cascading process to avoid infinite quantities in the super-
critical case. For example, one can normalize the number of
failures M, at stage k by their mean ¥ [23] or one can con-
sider truncations motivated by not observing data in some



ranges [17, 14]. However, these methods are not suited to
our application.

The mean number of failures in the saturating general-
ized Poisson distribution is

N e 0
E[M] = ;mw + At S (- GMN(1))
(23)
5. Review of CASCADE

This section summarizes the CASCADE model of prob-
abilistic load-dependent cascading failure and the saturating
quasibinomial distribution from [20].

The CASCADE model has n identical components with
random initial loads. For each component the minimum ini-
tial load is L™ and the maximum initial load is L™&X,
For j=12,...,n, component j has initial load L; that is
a random variable uniformly distributed in [L™", [max],
Ly, Ly, ---, L, are independent.

Components fail when their load exceeds L. When a
component fails, a fixed amount of load P is transferred to
each of the components.

To start the cascade, we assume an initial disturbance
that loads each component by an additional amount D.
Other components may then fail depending on their initial
loads L; and the failure of any of these components will
distribute an additional load P > 0 that can cause further
failures in a cascade.

Now we define the normalized CASCADE model. The
normalized initial load ¢; is

Lj — [ min
gﬂ - [, max _ [ min (24)
Then /; is a random variable uniformly distributed on [0, 1].
Let
P D + [max _ Lfail

b= [ max _ Lmin’ d= [ max _ [ min

(25)

Then the normalized load increment p is the amount of load
increase on any component when one other component fails
expressed as a fraction of the load range L™2* — L™ The
normalized initial disturbance d is a shifted initial distur-
bance expressed as a fraction of the load range. Moreover,
the failure load is ¢; = 1

The saturating quasibinomial distribution is given by:

Definition: f(r,d,p,n) is the probability that » compo-
nents fail in the CASCADE model with normalized initial
disturbance d, normalized load transfer amount p, and n
components. For d < 0,

f(r,d,p,n)
f(rr7d’p7n) =

1; r=20 (26)
; r>0 27

Ford > 0,

o) = (1) dlpet-dy 0=
; 0<r<(1-d)/p, r<n (28)

f(ryd,p,n) =0; (1-d)/p<r<n,r>0 (29)
n—1

f(n7d7p7n) = 1_Zf(svdvpan) (30)
s=0

If np+d < 1,(28) and (30) reduce to the quasibinomial dis-
tribution introduced as an urn model by Consul [13]. Thus
(28-30) extend the quasibinomial distribution to parame-
ters with np +d > 1. np + d > 1 corresponds to highly
stressed systems with a significant probability of all compo-
nents failing.

The distribution (26-30) can also be expressed using a
saturation function ¢ as follows [21]:

f(r7d7p’n) =

(1) ety - =y,
T:O,l,...,n—l (31)

n—1
lef(s,d,p,n), r=mn
s=0
where
0;2<0
plx)=< z;0<z<1 (32)
l;z2>1

Note that (31) uses 0° = 1 and 0/0 = 1 when needed.

6. Approximating CASCADE as a branching
process

We first approximate the distribution of the total number
of failures in CASCADE by the distribution of total number
of failures in a saturating Poisson branching process. Then
we show how the cascading failures in CASCADE can be
approximated stage by stage by a Poisson branching pro-
cess.

6.1. Approximating the distribution of the total
number of failures

The total number of failures in the CASCADE model
is distributed according to the saturating quasibinomial dis-
tribution (26)-(30). We prove that the saturating quasibi-
nomial distribution can be approximated by the saturating
generalized Poisson distribution (18)-(22).

Letn — ocoand p — 0 and d — 0 in such a way
that A = mnp and @ = nd are fixed. Then the appendix



[17] shows that the quasibinomial distribution tends to the
generalized Poisson distribution. Hence for large n and for
0<r<(1-d)/p=(n—0)/\ (28) may be approximated
by (20). (1 — d)/p = (n — 0) /X also implies that (29) may
be replaced by (21). Then the preceding results imply that
(30) tends to (22).

6.2. Branching process obtained from CASCADE

This subsection informally shows how failures in CAS-
CADE arise in stages approximately as stages of a satu-
rating branching process. The CASCADE model produces
failures in stages ¢ = 0,1, 2, ... where M; is the number of
failures in stage ¢. The following is a normalized version of
the algorithm for CASCADE that can be derived from [20].

Algorithm for normalized CASCADE model

0. All n components are initially unfailed and have initial
loads ¢4, 45, - - - , £, determined as independent random
variables uniformly distributed in [0, 1].

1. Add the initial disturbance d to the load of component
j foreach j =1, ..., n. Initialize the stage counter ¢ to
Zero.

2. Test each unfailed component for failure: For j =
1,...,n, if component j is unfailed and its load > 1
then component j fails. Suppose that M; components
fail in this step.

3. If M; = 0, stop; the cascading process ends.

4. If M; > 0, then increment the component loads ac-
cording to the number of failures M;: Add M;p to the
load of component j for j =1, ..., n.

5. Increment the stage counter 7 and go to step 2

It is convenient throughout to restrict mgq, mq,... to non-
negative integers and to write

Si=mg+miy+...+m; (33)

Consider the end of step 2 of stage ¢ > 1 in the CAS-
CADE algorithm. The failures that have occurred are My =
mo, M1 = my,...,M; = m;, but the loads have not yet
been incremented by m;p in the following step 4. Let

m;p
Qi1 (b(l —d— Si—lp) (34)

where ¢ is the saturation function defined in (32).

Suppose that d + s;_1p < 1. Then the loads of the
n — s; unfailed components are uniformly distributed in
[d + s;—1p, 1]. This uniform distribution is conditioned on
the n — s; components not yet having failed. In the follow-
ing step 4, the probability that the load increment of m;p

causes one of the unfailed components to fail is «;; and
the probability of m;; failures in the n — s; unfailed com-
ponents is

P[Miy1 = mi1|M; = my, ..., My = mg| =
n—s; my S
( mit1 > ;i1 (1= avyg)" o0
y M4 :0,1,...,77,—81' (35)

and the generating function for (35) is
(1 + ai+1(t — 1))n75i (36)

Suppose that d 4+ s;_1p > 1. Then all the components must
have failed on a previous step and P[M; 11 = m;1|M; =
My, ..o, Mg = mg] = 1 for m;1; = 0 and vanishes oth-
erwise. In this case a;11 = 0 and (35) and (36) are again
verified.

Let nd = 6 and np = \. Then

Qi1 = ¢<7n - Si_1A> (37)

There are three cases:

(1) 8;—1 > (n—0)/A. Then ;11 = 0, (36) evaluates to
1 and P[Mi+1 = O‘Ml = my;, ...,MO = mo} =1.Case 1lis
an already saturated case corresponding to all components
failing in stage ¢« — 1 or previous stages.

2)sic1 <(n—0)/Aand s; =m; +s;—1 > (n—0)/\.
Then «;11 = 1, (36) evaluates to t" % and P[M;;1 =
n — 8;|M; = my, ..., Mg = mp] = 1. Case 2 is a saturating
case corresponding to all components failing in stage 7.

(3) s; =m; +si—1 < (n—0)/\. Then

QL 1=
i n—@—si_l)\

Let n — oo and p — 0 so that np = . Since
(14 a1 (t—1)""% = ™MD agn - 0o (38)

we approximate (36) by
[n—s;—1]
( emm(t—n) +

s <1 _ (emi}\(t_l))[nfsifﬂ (1)) (39)

That is, the approximation is

P[Mi+1 =mip1|M; =my, ..., My = mO] =

z)\ Mi+1 ]
%e*m")‘ ,miv1 =0,1,...,n—s; — 1
Mit1:
n—s;—1 (ml/\)k (40)

, N
1-— Z 1 e ™ ,Mir1 =N — 8.

k=0
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Figure 1. Average number < r > of compo-
nents failed in CASCADE as a function of np
and nd for n = 100. Lines are contours of con-
stant <r>. White indicates < 10 failures and
black indicates > 90 failures.

According to (38), for fixed r, the approximation (39) be-
comes exact as n — oo. That is, the coefficient of ¢" in (39)
tends to the coefficient of ¢" in (36) as n — oo. However,
the approximation (39) is inaccurate for the coefficient of t"
whenr = n — s; orr is close ton — s;.

Since e™A (571 = (AE=D)™ (39) or (40) is the dis-
tribution of the sum of m,; independent Poisson random
variables with rate A with saturation occurring when the to-
tal number of failures exceeds n. Thus we can consider
each failure as independently causing other failures in the
next stage according to a saturating Poisson process.

A similar approximation applies at stage zero. Suppose
that in step 2 of stage zero in the CASCADE algorithm there
are my failures due to the initial disturbance d. The proba-
bility that the load increment of d causes one of the compo-
nents to fail is ¢(d) and the probability of my failures in the
n components is given by:

( " ) Hd)™ (1 — o))" ™ (1)

mo

Let n — oo and d — 0 so that nd — 6. Then we approxi-
mate (41) by the saturating Poisson distribution

fmo
e ¥ mg =0,1,....,n—1
mo!
P[MO = mo] = n—1 emo (42)
1-— e ? , Mg =N
m0!
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Figure 2. Average number < r > of compo-
nents failed in saturating generalized Pois-
son distribution as a function of \ and 6 for
n = 100. Lines are contours of constant <r>.
White indicates < 10 failures and black indi-
cates > 90 failures.

The approximations (40) and (42) show that the num-
ber of failures in each stage are, for large » and small p
and d, governed by a saturating Poisson branching process
with mean A = np, except that on the first step the mean
is @ = nd. The approximation does not necessarily imply
that concepts natural to the branching process translate di-
rectly to the CASCADE model. For example, each failure
in CASCADE may be attributed to load increases caused
by many previous failures, whereas it is natural to attribute
each failure in a branching process to a single previous fail-
ure.

The mean number of failures in the CASCADE and the
saturating generalized Poisson distribution as a function of
6 and A are compared in Figures 1 and 2. Scans correspond-
ing to load increase with d = p and # = )\ are compared in
Figures 3 and 4. Note the closeness of the approximation
for small and moderate r and the expected inaccuracy of
the approximation near r = n.

7. Discussion

Large power system blackouts typically involve a cas-
cading series of failures or outages in which the system
becomes weaker or more stressed as the cascade proceeds.
There are many ways in which failure or outage of a compo-
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Figure 3. CASCADE probability distributions
of total number of failures on log-log plot.
n = 1000. Note that the probability of 1000
components failing is 0.003 for np = 1, and
0.798 for np = 2.

nent can adversely affect other components and make their
failure more likely. For example, outage of a line can make
more likely the failure of other components via redistribu-
tion of load, relay or control system misoperation [28], tran-
sient phenomena, or operator or planning error. Moreover,
all these interactions generally become stronger as power
system loading is increased and the significant interactions
become more numerous. High loading tends to make in-
teractions more nonlinear, harder to conceive of in advance
and much more likely to cause further failures since mar-
gins are smaller. In the terminology of Perrow [27], highly
loaded power systems are more complex and tightly cou-
pled. The diversity of components and interactions in the
power system is highly simplified in the CASCADE model
to uniform components that interact in a uniform and sim-
ple way with all the other system components. The branch-
ing process model is even further abstracted in that compo-
nent failures cause other failures by an unspecified mech-
anism. While this paper does claim to capture salient fea-
tures of cascading blackouts in both of these simple models,
it should be acknowledged that substantial work is needed
to determine the detailed similarities and differences be-
tween these models and real blackouts via statistical mea-
surements and simulations. Estimating A from a simulation
of cascading outages is considered in [8]. The consequences
of nonuniform interactions between components or interac-
tions limited to a subset of other components also needs to
be examined in future work.

The CASCADE model captures the weakening of sys-
tem as the cascade proceeds and reproduces some qualita-
tive features of blackout size probability distributions ob-
served in blackout data and simulations [19, 9, 7]. Since
this paper shows that CASCADE is well approximated by

probability
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number of failed components

Figure 4. Saturating generalized Poisson
probability distributions of total number of
failures on log-log plot. » = 1000. Note that
the probability of 1000 components failing is
0.025 for A = 1, and 0.797 for \ = 2.

a branching process and the saturating generalized Poisson
distribution, the saturating generalized Poisson distribution
also reproduces the same qualitative features of blackout
size probabilities.

The approximation of CASCADE by the branching pro-
cess allows the parameters of the two models to be related.
Thus

A=np 43)
nP

= Lex — puin “
Recall that in CASCADE, p is the normalized load transfer
amount and n is the number of components. (43) can be
used to reinterpret p = A/n in the branching process as the
probability that a component failure causes the failure of a
specific other component. This is an important interpreta-
tion in contexts in which there is a cascading dependency
between components that is not naturally expressed as an

increment in loading.

The criterion (14) for minimizing cascading failure can
be reexpressed using (43) as np < Apax. Then even if
p is very small, large n can cause cascading failure. This
suggests that numerous rare interactions can be equally in-
fluential in causing cascading failure as a smaller number of
likely interactions. More generally, one can speculate that
a design change that introduced a large number of unlikely
failure interactions (plausibly similar to large n) could make
cascading failure more likely, despite high reliability (low
p). It is conceivable that coupling infrastructures together
such as controlling the power system over an internet or cer-
tain types of global control schemes could make the system
more vulnerable to cascading failure in this fashion. It is
also interesting to note that many traditional power system
controls are designed to reduce interactions by deliberate



separation in distance, frequency, and time scale.
The criterion (14) for minimizing cascading failure can
be reexpressed using (44) as

nP

A=
Lmax _ Lmln

< Amax (45)
There are several ways to represent system load increase
in CASCADE [20]. One of these ways increases average
component load by increasing L,;,,. Then (45) shows how
this form of load increase affects the criterion limiting the
risk of cascading failure. The relation (45) between A and
L i is nonlinear.

8. Conclusion

We introduce a saturating form of the generalized
Poisson distribution and show that it approximates the
distribution of total number of failures in the CASCADE
model of load-dependent cascading failure. Moreover,
successive failures in stages of CASCADE can be approx-
imated by corresponding stages of a saturating Poisson
branching process. The approximation of CASCADE as a
branching process yields insights into the power tails and
criticality observed in CASCADE. The branching process
approximation is simpler and more analytically tractable
than CASCADE while retaining qualitative features of
load-dependent cascading failure. Moreover, at criticality
the universality of the —% power law in the probability
distribution of the total number of failures in a branching
process suggests that this is a signature for this type of
cascading failure. The —% power law is approximately
consistent with North American blackout data and blackout
simulation results.

Criticality or supercriticality in the branching process
implies a high risk of catastrophic and widespread cas-
cading failures. Maintaining sufficient subcriticality in
the branching process according to a simple criterion (14)
would limit the propagation of failures and reduce this risk.
The approximation of CASCADE as a branching process
allows the criterion to be expressed in terms of system load-
ing (45). However, implementing the criterion to reduce the
risk of catastrophic cascading failure would require limit-
ing the system throughput and this is costly. Managing the
tradeoff between the certain cost of limiting throughput and
the rare but very costly widespread catastrophic cascading
failure may be difficult. Indeed [18, 4, 5] maintain that for
large blackouts, economic, engineering and societal forces
may self-organize the system to criticality and that efforts
to mitigate the risk should take account of these broader dy-
namics [6].

Our emphasis on limiting the propagation of system fail-
ures after they are initiated is complementary to more stan-
dard methods of mitigating the risk of cascading failure by

reducing the risk of the first few likely failures caused by an
initial disturbance as for example in [10].

The branching process approximation does capture some
salient features of loading dependent cascading failure and
suggests an approach to reducing the risk of large cascad-
ing failures by limiting the average propagation of failures.
However, much work remains to establish the correspon-
dence between these simplified global models and the com-
plexities of cascading failure in real systems.
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A. Approximating quasibinomial distribution

The generalized Poisson distribution is [17, 16]

—rA—0

G(r,0,)) = 0(rA+0) 15—

il (46)

for A < 1and 8 > 0. We use Consul’s derivation [16]
that the quasibinomial distribution tends to the generalized
Poisson distribution. The quasibinomial distribution is

(’;) d(rp+d)" (1 —rp — d)"" (47)

ford+np<land0<d<1.
If d — 0,p — 0 and n increases without limit such that
nd = 6 and np = A, then (47) can be written in the form

nd(rnp + nd)" ! n!
7! (n—mr)Inr

{l_r/\%—@] B 48)
n

which can be rewritten as
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Hence the generalized Poisson distribution is the limit of
the quasibinomial distribution.

Examination of the 1 + O(n~!) factor in (49) suggests
that the approximation improves for A ~ 1 and only slowly
gets worse for larger 7. For A % 1,the 1 + O(n~!) factor
suggests that the approximation gets worse for larger 7.



