Course Syllabus
ATM 445/645 Atmospheric Dynamics I (3 Credits)
Department of Atmospheric Sciences, CNSM
University of Alaska Fairbanks
Fall 2010 (Sept-Dec 2010)

Instructor: U. Bhatt (474-2662, bhatt@gi.alaska.edu), IARC 307
When: T-W-Th 10:00-11:00AM, IARC Room 407
Office Hours: T, Th—1:00-2:00PM and by appointment (send email)
Course Web page: http://www.gi.alaska.edu/~bhatt/Teaching/ATM645.fall2008/atm645.fall08.html
Registration information: ATM445 CRN: 77185 or ATM645 CRN: 77186
Course Pre-/co-requisites: ATM 401/601 or permission of the instructor.

Course Description:
This course covers the basics of atmospheric dynamics including conservation laws, development of the equations of motion, thermal wind, circulation and vorticity, geostrophy, quasi-geostrophic motions, waves, and instabilities. We will cover the topics from Chapters 1-5 of the Vallis textbook (see below), plus some additional topics. A detailed schedule of topics is available on the course web page under ‘Course Calendar’ and will likely evolve during the course of the semester.

Materials Needed:
Useful Additional Texts:

Other Tools:
• Access to Matlab to run scripts in Holton book (UAF has site license)
• Your favorite math books.
• Books on reference in Mather Library (see below)

Course Goals:
Students will gain a fundamental knowledge of Atmospheric Dynamics and be prepared to take additional more advanced Atmospheric Dynamics courses.

Student Learning Outcomes:
Students who take this class, participate, do the homework, and attend regularly are expected to have the following skills:
- Understand and apply scale analysis to atmospheric motion equations
- Understand basic concepts in atmospheric dynamics such as: consequences of non-inertial reference frames, thermal wind, circulation, vorticity, quasi-geostrophic motions, waves, and baroclinic instability.
- Follow the derivation and be able to provide a physical interpretation of terms in the equations of motion
- Apply concepts from this class to their research
- Pass the Atmospheric Dynamics Comprehensive Exam (if applicable).

Instructional methods: This course is based on lectures, which will cover the major topics, emphasizing and discussing the important points. They are not sessions to regurgitate material already written in the text (though they sometimes may be!). The main text book is a general atmosphere-ocean fluids book but specific examples from Holton and Lynch and Cassano will be used to provide atmospheric specific examples. Your personal participation is important, and it is will help you learn more efficiently to read the assigned material to reinforce the lectures. Matlab scripts from various sources may be used to reinforce the material. This will depend on the availability of the university site license and student expertise in Matlab.

Course Policies:

Homework: There will be approximately one homework assignment each 1-2 weeks. The problems will be handed out in class. You are highly encouraged to work with others on the homework, but please make sure that you understand the problems that you hand in. I will randomly ask students to present the homework on the board and the board presentation of the problems will be the major part of your homework grade. You will hand in your homework papers after the problems have been discussed in class on the due date. Due to time constraints, we will not discuss all the homework problems in class, but solutions will be available in a folder box outside my office. **Late problem sets will have grade lowered by 10% per day late.**

Exams: Exams will be in class exams, with the first part closed book and the second part open book. **Exam 1 is on 30 Sep 2010, Exam 2 is on 2 Nov 2010, and Exam 3 is on 2 Dec 2010.** Missed exams will be given a 0 grade and make up exams will be given only under extenuating circumstances.

Class Project: The class project will entail reading/understanding a mutually agreed upon dynamics paper (probably a classic type) and giving a 15-minute presentation to the class which summarizes the key points of the paper and presents some critiques. Details, including suggested papers, will be provided separately.

Complaints and Concerns: You are always welcome to talk to me to express complaints and concerns about the class. I will listen, though I do not guarantee that I will change the way I am doing things.

Plagiarism etc: Plagiarism and cheating are matters of serious concern for students and academic institutions. This is true in this class as well. The UAF Honor Code (or Student Code of Conduct) defines academic standards expected at the
University of Alaska Fairbanks, which will be followed in this class. (Taken from the UAF plagiarism web site, which has many links with good information about this topic).

Evaluation: The course grade will consist of the following components. Final letter grades will be based on a standard scale: A=90 to 100%, B=80% to 89%, C=70% to 79%, D=50% to 69%, and F≤50%. As of Fall 2006, UAF has instituted a +/- scale to the grades, so the bottom and top 3 percentage points will fall within the ‘-’ and ‘+’ ranges, respectively. For example: 90-92% will be an A-, 93-96% will be an A, and above 97% will be an A+. Note that tests will be graded on a curve, so the above scale may be modified.

<table>
<thead>
<tr>
<th></th>
<th>ATM645</th>
<th>ATM445</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Project</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Homework</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10% oral & 15% written)</td>
<td>20%</td>
</tr>
<tr>
<td>Exam1</td>
<td>20%</td>
<td>25%</td>
</tr>
<tr>
<td>Exam 2</td>
<td>20%</td>
<td>25%</td>
</tr>
<tr>
<td>Exam 3</td>
<td>30%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Additional References: To see the same topics explained differently, try the following:

Basic Atmospheric Dynamics Texts (Overviews)

Advanced Dynamics Texts (& Special Topics)

Mathematics References

Books on Reserve in Mather Library
Scientific, xx pp.

General Advice: Atmospheric Dynamics is not something you read and memorize, rather it is something you learn how to do. Try the following study procedure:

1. Read the material either prior or just after the lecture, so that you will know what it’s about.
2. Listen carefully to the lecture and take notes, ask questions and participate. This is 5% of your grade and could mean the difference between a letter grade in the end. Also, this is a good opportunity for you to practice how science is done.
3. There is a two step process in learning this material well. First you must solve the math and then second, think about the physical interpretation of the results. I will at times leave out steps in the derivations (but describe how to get from point a to b). I recommend that you work out the missing steps to help your understanding of the where the equations come from.
4. This is crucial: *Do not go back and read and re-read* the chapter until you "understand it." Rather, start working the problems and then go back through the chapter to clarify points as they come up. Sometimes it is helpful to read relevant sections in other texts to see alternate ways of presenting the material. Atmospheric science is a relatively young subject so there are not always standard explanations for phenomena, as in more mature scientific disciplines.

Disabilities Services:
The Office of Disability Services implements the Americans with Disabilities Act (ADA), and insures that UAF students have equal access to the campus and course materials. We will work with the Office of Disabilities Services (203 WHIT, 474-7043) to provide reasonable accommodation to students with disabilities.