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Abstract: In Alaska the current wildfire fuel map products were generated from low spatial (30 m)
and spectral resolution (11 bands) Landsat 8 satellite imagery which resulted in map products that
not only lack the granularity but also have insufficient accuracy to be effective in fire and fuel
management at a local scale. In this study we used higher spatial and spectral resolution AVIRIS-NG
hyperspectral data (acquired as part of the NASA ABoVE project campaign) to generate boreal forest
vegetation and fire fuel maps. Based on our field plot data, random forest classified images derived
from 304 AVIRIS-NG bands at Viereck IV level (Alaska Vegetation Classification) had an 80% accuracy
compared to the 33% accuracy of the LANDFIRE’s Existing Vegetation Type (EVT) product derived
from Landsat 8. Not only did our product more accurately classify fire fuels but was also able to
identify 20 dominant vegetation classes (percent cover >1%) while the EVT product only identified 8
dominant classes within the study area. This study demonstrated that highly detailed and accurate
fire fuel maps can be created at local sites where AVIRIS-NG is available and can provide valuable
decision-support information to fire managers to combat wildfires.

Keywords: AVIRIS-NG; hyperspectral; random forest; fire fuel; boreal forest; remote sensing

1. Introduction

The boreal forest makes up 11% of the Earth’s land surface spanning over three
continents making it the largest terrestrial ecosystem in the world [1]. Boreal forest covers
half of Alaska and fire is a natural feature of the boreal ecosystem. More acres are burning as
Alaska’s fire environment is changing in response to hot and dry summers, longer growing
seasons and shifts in seasonal precipitation [2]. In the boreal forest, the ability to accurately
map spruce, hardwoods, mixedwood forests and tundra is critical for understanding
the potential and growth of a wildfire [3]. Currently in Alaska, the land and resource
management agencies (Bureau of Land Management, National Park Service, Bureau of
Indian Affairs, US Forest Service) and wildfire suppression agencies (Alaska Fire Services,
Alaska Division of Forestry, and US Forest Service) use the 2014 LANDFIRE (LF) geospatial
products for land and resource management as well as for fuel and wildfire management
LF (a U.S. government interagency program) provides geospatial layers for land resource
planning, management, and operations including management of active wildfires, wildfire
fuels, and firefighter safety. However, the LF geospatial products for Alaska, particularly
vegetation and fuel maps, lack the granularity and accuracy to be effective in wildfire
and fuel management at local scale as these products are derived from coarser spatial and
spectral resolution Landsat 8 satellite images [4].

Wildfires in Alaska pose a serious threat to critical infrastructure, private property,
subsistence resources, and human health and life [2]. In 2019 alone Alaska experienced
378 lightning-caused fires that burned 2,525,356 acres [5]. With the onset of global climate
change, the circumpolar north has experienced a temperature change 1.5 to 4.5 times
higher than the global average in the last half-century [2,6]. The intensification of global
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climate change further increases the likelihood of boreal forest fires due to the warming
summer temperatures (hot, dry and windy condition), the onset of earlier snowmelt that
lengthens the fire season, and precipitation variability. Consequently, leading to an increase
in the frequency, severity, and duration of wildfires [7–10]. In the last two decades (2001–
2020) wildfires in Alaska burned 31.4 million acres (i.e., 2.5 times more acres burned
than during the previous two decades—1981–2000: 14.1 million acres burned). Fires also
release greenhouse gases such as CO2 that contribute to a positive feedback loop affecting
climate-driven changes that affect boreal forest fires [11]. Between 1985–2015 Alaska
has experienced increasing temperature and lightning activity across the state [12]. This
increase in lightning activity is concerning considering that lightning-caused ignitions and
acres burned have been increasing since 1975 [13]. This rapidly changing fire environment
necessitates the need for more frequent monitoring efforts using remote sensing data
products that assess ecosystem changes such as changes in vegetation, fuel types, and fire
risk [2].

Hyperspectral data is one promising remote sensing resource that has been used for
mapping vegetation and its attributes with high accuracy in many different parts of the
world [14–20]. In the Florida Everglades, by combining hyperspectral with lidar data
Zhang et al. were able to map wetland vegetation with an 86% accuracy [20]. NASA’s
latest Airborne Visible/Infrared Imaging Spectrometer Next-Generation (AVIRIS-NG)
hyperspectral camera has 425 spectral bands within the wavelength range 400–2500 nm,
and higher pixel resolution 5–10 m depending on the flying height [21]. AVIRIS-NG camera
has been flown in many parts of the world to study natural vegetation, crop health, and
ecosystem processes [14,16,18,19,22]. In an agricultural setting AVIRIS-NG has been used
to quantify plant chlorophyll and identify spectral differences in crop types [19], and for
mapping crops species [18]. AVIRIS-NG has also been employed in natural settings to
generate products that evaluate forest ecosystems such as by mapping stress of mangrove
forests [16] and forest vegetation across a landscape [14]. All of the aforementioned studies
show the potential of AVIRIS-NG for mapping vegetation type and vegetation health
with higher accuracy to support effective land and resource management for a variety of
applications including wildfires. In 2018, the AVIRIS-NG camera was flown for the first
time over Alaskan boreal forest as part of NASA’s Arctic-Boreal Vulnerability Experiment
(ABoVE) project campaign. In Alaska AVIRIS-NG has been used to map vegetation recovery
following a fire [22]. However, we are not aware of any study using AVIRIS-NG data for
fuel mapping in Alaskan boreal forest.

Currently in Alaska, the best geospatial products that are available to fire managers
are the LANDFIRE program’s vegetation and fire fuel maps. A major problem with the
LF Program’s 2014 map products is that it was created using Landsat 30 m multi-spectral
imagery and not adequately field validated [23,24]. Due to the low spatial and spectral
resolutions of the Landsat imagery, the LF map products lack detail and granularity that is
required for reliable wildfire risk assessment and management at local scale (Figure 1). The
AVIRIS-NG hyperspectral data collected as part of the NASA’s ABoVE project campaign has
high spectral (425 bands) and spatial (5 m) resolutions; it offers detailed spectral signatures
for vegetation that helps discriminate vegetation types based on spectral signatures alone
(Figure 1). The image classifiers exploit the detailed spectral signatures and the fine
differences in signatures between vegetation types to identify a pixel’s vegetation class
accurately. We hypothesize that the higher spatial and spectral resolution of hyperspectral
data would allow for highly accurate and detailed maps of fire fuel. So, the goal of this
research was to use AVIRIS-NG hyperspectral imagery to create detailed and improved
vegetation and fuel type maps that are better suited for effective wildfire risk assessment
and management (at local scale) than the existing products from LF.
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Figure 1. Comparison of spectral signatures of two distinct vegetation classes extracted from hyper-
spectral AVIRIS-NG and multispectral Landsat 8 data. The AVIRIS-NG spectral signature is more
unique between different vegetation classes.

2. Materials and Methods
2.1. Study Area

Bonanza Creek Experimental Forest (BCEF) and Caribou-Poker Creeks Research
Watershed (CPCRW), were identified as the study sites because of their accessibility and
high vegetation/fuel diversity. BCEF, a site established in 1963, is located 20 km southwest
of Fairbanks and CPCRW is located 50 km north of Fairbanks; both sites are located in
the discontinuous permafrost zone (Figure 2). Also, both BCEF and CPCRW sites have
a history of scientific research focused on boreal forest ecosystem structure and function,
including ecosystem succession following forest fires. BCEF contains 4 distinct topographic
zones (upland hills and ridges, lowland toe slopes and valley bottoms, old Tanana River
terraces, and the active floodplain) and contains a wide range of forested and non-forested
vegetation. In CPCRW south facing slopes and uplands are dominated by hardwood forest
(Betula paprifera, Populus tremuloides), north facing slopes have black spruce (Picea mariana)
and alder (Alnus viridis). Dwarf shrubs (Betula nana, Salix sp., Vaccinium uliginosum) and
alder (Alnus tenuifolia) dominate the lowlands [25]. Therefore, these sites are ideal for
testing different datasets and methods for detailed mapping of boreal vegetation and other
attributes that can be used to assess fire fuel status because they include a majority of the
dominant vegetation classes found in the Alaskan boreal forest ecosystem.
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Figure 2. Map of the two study sites in relationship to the Alaskan Boreal Forest and Fairbanks.
CPCRW is located 50 km North of Fairbanks and BCEF is located 20 km Southwest of Fairbanks.

2.2. Data

AVIRIS-NG hyperspectral data collected in July 2018 as part of the NASA ABoVE
project is available for both study sites [21]. Both BCEF and CPCRW images were collected
on 23 July 2018. Also, we used the 2 m Arctic Digital Elevation Model (DEM) from
the Polar Geospatial Center (University of Minnesota, Saint Paul, MN, USA). At BCEF
we additionally used a Landsat 8 surface reflectance scene (Path: 70 Row: 15 Scene ID:
LC80700152018206LGN00) collected on 25 July 2018 (source: https://earthexplorer.usgs.
gov/). In the summer of 2019 and 2020, we surveyed vegetation at 42 plots (plot size:
10 m × 10 m) in BCEF and 36 plots in CPCRW which were collected to be used as training
data (Figure 3). At each location, we recorded the vegetation composition, the vegetation
percent cover, canopy cover, understory cover, aspect, slope, and elevation. These plots
were then classified into a Viereck level IV (Alaska Vegetation Class) and Alaska Fuel
Model Guide Task Group (2018) fuel type. In the summer of 2020 we surveyed 55 locations
in BCEF and 62 locations in CPCRW that were randomly selected hiking in the woods and
used for accuracy assessment (Figures 4 and 5). We recorded the dominant vegetation type
and canopy cover at these random locations. We used a survey grade Trimble R10 RTK unit
for geolocating all field locations. We used the 2019 field data to train the image classifiers
and the 2020 field data for classification accuracy assessment. The two study sites (BCEF
and CPCRW) are part of protected state forests. The vegetation change in these sites due to
natural succession takes places at a multi-decadal to century time scale. However, dramatic
vegetation change can occur due to wildfires or insect outbreaks. During the field survey
we did not observe any evidence of fire or insect outbreak within the study area. Also, we
are not aware of any report of forest damage or change in the study areas since 2018 (when
AVIRIS-NG image was collected). So we are confident that the use field data collected in
2019 for image classifier training and field data collected in 2020 for classification accuracy
assessment are robust and resulted in accurate and reliable map products.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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2.3. Preprocessing

The AVIRIS-NG sensor collects images in the wavelengths ranging from 380–2500 nm
at 5 nm intervals (425 bands) and ~5 m spatial resolution. Some of these bands fall outside
of the atmospheric windows and overlap with atmospheric absorption and scattering
wavelengths. We removed these undesired bands (1260–1560 nm; 1760–1960 nm;) in order
to minimize their influence on image classification [26]. Bands below 480 nm were found
to be not useful in differentiating vegetation classes so they were also removed before
further processing. Both study areas contain a number of non-vegetated land covers such
as gravel roads, turbid river water, and lakes. Since our research was exclusively focused
on vegetation classes, we removed non-vegetation land cover classes altogether in order to
optimize data processing and analysis. We achieved this by masking out non-vegetated
pixels using the Normalized Difference Vegetation Index (NDVI) calculated using the
Equation (band 97−band 54)

(band 97 + band 54) with a threshold of NDVI < 0.5 (visual assessment) (Figure 6).
We used ENVI 5.3 [27], QGIS 10.3 EnMAP-Box plugin [28], and ArcMap 10.7 [29] software
for image processing and analyses.
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2.4. Fire Fuel Mapping

Principal component analysis (PCA) is a technique used to reduce the data volume of
a data set by removing redundant data while maintaining the variance of the data set and
is often used on remotely sensed data [30]. In order to assess the significance of all bands
and reduced PC bands in boreal vegetation mapping we ran PCA on AVIRIS- NG scenes
from both study sites. We used the first five PC bands, which retained99% of the total data
variance. We classified vegetation to Viereck level IV and to a fire fuel type [31,32] using the
304 bands, the PCA bands+DEM, and a Landsat 8 image separately. We used the random
forest classifier (trees: 500, 30 rules per tree) which is a supervised classification algorithm
based on decision trees [33–37]. We selected the Random Forest classifier over other image
classifiers as it performs better when a large amount of training data is available, less prone
to overfitting, ideal for processing large volume of data, and results in higher accuracy
products [34–37]. Several studies have demonstrated the success and effectiveness of
the random forest classifier in vegetation mapping [33,37]. The 10 m × 10 m field plots
surveyed in 2019 were used for training the classifier and the random points surveyed
in 2020 for accuracy assessment. We calculated the area offset of the AVIRIS-NG scenes
using five ground control points collected at CPCRW. The average offset was 5.5 ± 3.3 m
and in order to account for this positional error we used the random points with a 5-m
buffer to carry out the accuracy assessment on classified map products. We used QGIS
10.3 EnMAP-Box plugin [28] for RF classification on the 304-bands while the rest of the
processing and analysis were done in ArcMap 10.7 [29].

3. Results
3.1. BCEF

Using the random forest classifier, we were able to map 25 different vegetation types
and 17 fire fuel types from the BCEF AVIRIS-NG data (Table 1). We compared our vege-
tation map with the LF EVT map over the BCEF study site. Our vegetation map has 20
dominant vegetation classes (i.e., a class with 1% or more coverage) compared to eight
vegetation classes in the LF EVT map (Figure 7 and Table 2). Based on Cohen’s Kappa
value all of our products had a moderate agreement (Kappa >0.40) and the AVIRIS-NG
304 bands had a strong agreement (Kappa ≥0.70). We assessed the classification accuracy
of our map products and the LF EVT map using field survey data. Of all source image
data, the vegetation type (overall accuracy: 80%) and fuel type maps (overall accuracy:
81.5%) generated from the AVIRIS-NG 304 bands had the highest accuracy, followed by
map products generated from Landsat+DEM and AVIRIS-NG PCA data (Table 3). The LF
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EVT product had an overall accuracy of 33% (i.e., 14 plots out of 44 plots correctly mapped).
In summary, our map products derived from the AVIRIS-NG 304 bands not only have an
accuracy 2.5 times better than the existing LF EVT product, but also map vegetation and
fuel types at a much higher detail.

Table 1. A list of vegetation types (fuel types) and their area percent cover mapped from AVIRIS-NG 304 band image at
BCEF.

Vegetation Type Fuel Type Cover (%)

Black Spruce Woodland with Tussocks Black Spruce Woodland w/Tussocks 3.71
Black Spruce/Tammarack Forest Black Spruce-Tamarack Forest 3.08

Bluejoint Bluejoint 0.12
Post Harvest Bluejoint Bluejoint 0.71

Bluejoint/Shrub & Bluejoint Herb Bluejoint-Shrub/Herb 2.95

Closed Black Spruce Closed Black Spruce Forest and Closed Mixed
Black Spruce-White Spruce Forest 10.33

Closed Black/White Spruce Forest Closed Black Spruce Forest and Closed Mixed
Black Spruce-White Spruce Forest 1.44

Closed Tall Alder Closed Tall Alder-Willow 10.48
Closed Tall Shrub Birch/Willow Shrub Closed Tall Birch Shrub 1.69

Closed White Spruce Closed White Spruce Forest 3.28
Open Black Spruce Open Black Spruce & Open Mixed Black Spruce 5.63

Open Tall Alder Open Tall Alder-Willow 1.28
Open Tall Shrub Birch Shrub Open Tall Shrub Birch-Willow 9.60

Open White Spruce Open White Spruce Forest 0.89
Closed Paper Birch Paper Birch-Quaking Aspen Forest 8.02

Closed Quaking Aspen Forest Paper Birch-Quaking Aspen Forest 0.54
Shrub/Bare Shrub/Bare 0.18

Closed Quaking Aspen/White Spruce Forest Spruce-Paper Birch-Aspen Forest 1.92
Closed Spruce/Paper Birch Forest Spruce-Paper Birch-Aspen Forest 0.26

Closed Spruce/Paper Birch/Aspen Forest Spruce-Paper Birch-Aspen Forest 9.33
Open Quaking Aspen/Spruce Forest Spruce-Paper Birch-Aspen Forest 0.93

Open Spruce/Paper Birch Forest Spruce-Paper Birch-Aspen Forest 2.75
Tussock Tundra Tussock Tundra 9.00

Wet Sedge Meadows Wet Sedge Meadows 5.84
Wetlands Wetlands 6.03

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 15 
 

 

 

Figure 7. Comparison of vegetation map products for LF EVT (Left) and AVIRIS-NG 304 band 

image (Right). Colors represent distinct vegetation classes. 

Table 3. Classification accuracy for vegetation and fuel type classification from different source 

data at BCEF. “-“ indicates data wasn’t available for calculation. 

Source Data 
Vegetation classification  

accuracy (%) 

Fuel type classification  

accuracy (%) 

Cohan’s 

Kappa 

LF EVT 33 - - 

Landsat + DEM 65.2 74.2 0.55 

AVIRIS-NG PCA image 

+ DEM 
64.1 71.9 0.56 

AVIRIS-NG 304 band 

image 
80 81.5 0.7 

3.2. CPCRW 

Using the random forest classifier 18 different vegetation types and 14 fire fuel types 

were mapped from the CPCRW AVIRIS-NG data. Both of the products at CPCRW had a 

fair agreement (Kappa>0.2) based on Cohen’s Kappa. The LF EVT map had a 20% accu-

racy based on our field plots. The Landsat image used in LF EVT at CPCRW was likely 

collected in the winter because vegetation was classified as snow/ice. For this site, we 

achieved the highest accuracy for the vegetation type (overall accuracy: 69%) and fuel 

types (overall accuracy: 74%) generated from the 5 PCA bands+DEM. Using the 304 bands 

AVIRIS-NG data, we achieved an overall accuracy of 56% for vegetation types and 61% 

for fuel types map products (Table 4). 

Table 4. Classification accuracy for vegetation and fuel type classification from different source 

data at CPCWR. “-“ indicates data wasn’t available for calculation. 

Source Data 
Vegetation classification 

 accuracy (%) 

Fuel type classification  

accuracy (%) 

Cohen’s 

Kappa 

LF EVT 20 - - 

AVIRIS-NG PCA image 

+ DEM 
69 74 0.4 

AVIRIS-NG 304 band 

image 
56 61 0.36 

4. Discussion 

The existing vegetation type (LF EVT) of the Alaskan boreal forest were created from 

Landsat multispectral satellite imagery (pixel size: 30 m) that lack spatial and spectral res-

olution essential to capture the diversity and granularity of vegetation classes and fuel 

classes needed for fuel and fire management at local scales compared to AVIRIS-NG (~5 

m). The LF products also lack sufficient field data to accurately classify vegetation types 
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Table 2. Comparison of vegetation map products for LF EVT and AVIRIS-NG 304 band image pixel size, number of
dominant vegetation classes, and top 3 dominant vegetation classes by percent cover.

LANDFIRE EVT (Landsat) AVIRIS-NG 304-Band Image + DEM Veg. Class

Pixel size 30 m ~5 m
Number of Dominant

classes with % cover > 1 8 20

Top 3 dominant
classes (% cover):

1. Birch-Aspen forest (33)
2. Black spruce forest (26)

3. Birch-Willow shrubland (15)

1. Closed Birch forest (16)
2. Open White Spruce forest (9)

3. Closed tall shrub (9)

Table 3. Classification accuracy for vegetation and fuel type classification from different source data at BCEF. “-“ indicates
data wasn’t available for calculation.

Source Data Vegetation Classification
Accuracy (%)

Fuel Type Classification
Accuracy (%) Cohan’s Kappa

LF EVT 33 - -
Landsat + DEM 65.2 74.2 0.55

AVIRIS-NG PCA image + DEM 64.1 71.9 0.56
AVIRIS-NG 304 band image 80 81.5 0.7

3.2. CPCRW

Using the random forest classifier 18 different vegetation types and 14 fire fuel types
were mapped from the CPCRW AVIRIS-NG data. Both of the products at CPCRW had
a fair agreement (Kappa > 0.2) based on Cohen’s Kappa. The LF EVT map had a 20%
accuracy based on our field plots. The Landsat image used in LF EVT at CPCRW was
likely collected in the winter because vegetation was classified as snow/ice. For this site,
we achieved the highest accuracy for the vegetation type (overall accuracy: 69%) and fuel
types (overall accuracy: 74%) generated from the 5 PCA bands+DEM. Using the 304 bands
AVIRIS-NG data, we achieved an overall accuracy of 56% for vegetation types and 61% for
fuel types map products (Table 4).

Table 4. Classification accuracy for vegetation and fuel type classification from different source data at CPCWR. “-“ indicates
data wasn’t available for calculation.

Source Data Vegetation Classification
Accuracy (%)

Fuel Type Classification
Accuracy (%) Cohen’s Kappa

LF EVT 20 - -
AVIRIS-NG PCA image + DEM 69 74 0.4

AVIRIS-NG 304 band image 56 61 0.36

4. Discussion

The existing vegetation type (LF EVT) of the Alaskan boreal forest were created from
Landsat multispectral satellite imagery (pixel size: 30 m) that lack spatial and spectral
resolution essential to capture the diversity and granularity of vegetation classes and fuel
classes needed for fuel and fire management at local scales compared to AVIRIS-NG (~5 m).
The LF products also lack sufficient field data to accurately classify vegetation types [24].
As a result, the available fuel maps are inadequate for effective management of active fires
and firefighting resources. An example in which LF is inadequate is at CPCRW where a
large area of vegetation is classified as snow/ice. Using AVIRIS-NG hyperspectral data
(pixel size: 5 m) we were able to produce improved (highly accurate and detailed) fuel
map products for BCEF (Figure 8) and CPCRW (SF3) sites. The vegetation maps of BCEF
derived from AVIRIS-NG (304 bands and 5 band PCA image) had an accuracy of 80% and
74% at a fuel level compared to the 33% accuracy of LF EVT map. DeVelice also reported
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similar lower accuracy of the LF EVT map (39% based on Forest Inventory and Analysis
data) over the Chugach National Forest (located in southcentral Alaska), the second largest
national forest in the U.S. [23]. Our fire map also identified 20 dominant classes (percent
cover >1%) while the LF EVT only identified eight dominant classes within the BCEF. We
demonstrated that hyperspectral data is capable of classifying boreal vegetation in greater
detail (Viereck level IV) and at a higher accuracy than products created from Landsat 8. We
observed that the random forest classifier yielded different accuracy using the 304 bands
vs the five PCA bands coupled with the Arctic DEM. The random forest classifier using the
304 bands resulted in 81.5% accuracy at BCEF and a 60.7% accuracy at CPCRW at a fire fuel
level. While the PCA bands had a 72% accuracy at BCEF and a 73.8% accuracy at CPCRW
at a fire fuel level. This could be a result of different vegetation species and vegetation
diversity at these sites. The 304 bands likely performed better at BCEF because of the
larger number of vegetation classes here (25) compared to CPCRW (18). It appears that
the random forest classifier performs better on 304 bands when the vegetation diversity
is higher. The PCA bands generated products with higher accuracy for sites with less
vegetation classes and did worse identifying classes from sites with a larger number of
vegetation classes. When vegetation diversity is low the 304 bands may be too much data
to accurately differentiate vegetation classes compared to the five PCA bands. This shows
the PCA bands are still able to accurately classify boreal vegetation while also reducing the
data volume.
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Figure 8. Vegetation Map created from 304 AVIRIS-NG bands using the Random Forest classifier. This product had a ~80%
accuracy at Viereck level IV; ~82% accuracy at Alaska Fuel Model Guide Task Group (2018) fuel type.

At BCEF the LS + DEM over classified the Black Spruce Woodland with Tussocks
compared to the 304-band AVIRIS-NG image (Table 3 and Table S1). The PCA + DEM
over classified the Open Spruce/Paper Birch and Black Spruce Woodland with Tussocks
classes compared to the 304-band AVIRIS-NG image (Table 3 and Table S2). At CPCRW the
304-band AVIRIS-NG image over classified the Closed White Spruce Forest while under
classifying Open Black Spruce Forest and Open Low Shrub Birch/Willow compared to the
PCA + DEM (Table 5 and Table S6). This over and under misclassification may result in a
lower product accuracy.
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Table 5. Classified CPCRW AVIRIS-NG PCA image + DEM percent area by vegetation classes.

Vegetation Type Fuel Type Cover (%)

Black Spruce Woodland with Tussocks Black Spruce Woodland w/Tussocks 2.34
Black Spruce/Tamarack Forest Black Spruce-Tamarack Forest 1.22

Closed Tall Alder Closed Tall Alder-Willow 12.67
Closed White Spruce Forest Closed White Spruce Forest 3.36

Dwarf Tree Black Spruce Scrub Dwarf Tree Black Spruce Scrub 1.66
Open Black Spruce Forest Open Black Spruce & Open Mixed Black Spruce 18.96

Open Low Shrub Birch/Willow Open Low Shrub Birch— Ericaceous Shrub Bog and
Open Low Shrub Birch—Willow 14.80

Open Paper Birch Forest Open Paper Birch Forest 3.91
Open Quaking Aspen Forest Open Quaking Aspen Forest 9.25

Open Tall Alder Shrub Open Tall Alder-Willow 3.60
Open Tall Willow Shrub Open Tall Alder-Willow 1.25

Closed Paper Birch Forest Paper Birch-Quaking Aspen Forest 1.94
Closed Quaking Aspen Forest Paper Birch-Quaking Aspen Forest 4.82

Closed Spruce/Paper Birch Forest Spruce-Paper Birch-Aspen Forest 3.79
Open Quaking Aspen/Spruce Forest Spruce-Paper Birch-Aspen Forest 7.44

Open Spruce/Paper Birch Forest Spruce-Paper Birch-Aspen Forest 3.17
Tussock Tundra Tussock Tundra 0.94

Wet Sedge Meadow Wet Sedge Meadow 4.89

The common misclassification in our fire fuel maps were closed fuel types being
misclassified as open fuel types of the same vegetation composition and vice versa (i.e.,
closed black spruce misclassified as open black spruce). The second type of misclassification
observed was a pure fuel type being misclassified as a mixed fuel type and vice versa (i.e.,
Closed quaking aspen misclassified as closed quaking aspen/spruce). Lastly coniferous
fuel type was misclassified as another coniferous fuel type (i.e., Closed white spruce
misclassified as closed black spruce). The AVIRIS-NG imagery has the ability to limit these
misclassifications. For example, at BCEF the Open Spruce/Paper Birch Forest class was
mapped correctly 100% of the time and no other plots were misclassified as the Open
Spruce/Paper Birch Forest in the 304-band AVIRIS product (Table S6). While out of the
11 random points classified as Open Spruce/Paper Birch Forest in the Landsat product, 6
of the points were incorrectly mapped in this class (Table S4). Another example is Open
Spruce class at BCEF; it was mapped correctly with an accuracy of 92% (n = 13) in the
304-band AVIRIS product while in the Landsat 8 product the accuracy for this class was
85%. The error matrices can be found in Supplementary Materials (Tables S4–S8).

One downside of using AVIRIS-NG imagery to create vegetation and fire fuel maps is
the data is collected from a fixed winged aircraft and has limited coverage. Although satel-
lite multispectral sensor images lack spatial and spectral resolution and the derived map
products usually have lower accuracy, they have global coverage allowing for fuel maps
to be created almost anywhere. Another limitation of these fuel maps is that understory
vegetation, moisture, and solar radiation are not considered. All of these factors greatly
impact fuel’s flammability. Vegetation changes in the boreal forest due to natural succession
can take decades to occur but can rapidly change because of a natural disturbance such as
fires, permafrost thaw, blowdowns, floods, droughts, and insect and pathogen outbreaks
that alter the fuel properties [38,39]. Therefore, fire fuel maps will need to be updated
using AVIRIS-NG or similar hyperspectral camera at 5–10 years interval to keep up with
the boreal forest vegetation change cost-effectively and the resulting fuel product to be
useful for fire managers.

This study shows that much improved and highly accurate fuel maps of boreal forest
can be generated from hyperspectral data. Our products ability to map fuel/vegetation
at stand scale leads to a highly detailed product that is generally lacking across the state
and will be further useful for fire managers. Today’s fire management involves use of
sophisticated fire spread models such as FARSITE and FS Pro to reliably predict the
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potential fire behavior and spread [40], but the accurate fuel information, which is essential
for these predictions, is often the most limiting factor [24]. The method and findings
of this study inform how to create accurate local area fuels maps. In addition to active
fire management, accurate fuels maps are essential to develop strategic fire mitigation
practices. For example, identifying areas of high fire risk and major paths of fire spread can
be used along with values at risk to inform the fuels treatment and management around
communities in the Wildland-Urban-Interface to enhance community resilience to fire
risk. Research shows that fuel breaks (clearing between populated areas and wild lands)
can provide an incredibly cost-effective and efficient tool for fire suppression [41,42]. For
example, when fuel breaks in Alaska’s Kenai Peninsula were evaluated (after three different
fires), the treated areas had less intense surface fires [41]. These fuel breaks also expand
the tactical options that managers use on fires near communities (e.g., 2019 Shovel Creek
fire in outskirt of Fairbanks and 2019 Swan Lake fire in the outskirt of Soldotna). When
fuel treatments are present on public lands, nearby homeowners are more willing to spend
time and money on improving their own defensible space [41]. Using AVIRIS-NG to map
moisture and running spectral unmixing (mapping percent conifers and grass in a pixel)
will further improve the effectiveness of predicting fire behavior. This study serves as a
benchmark for creating vegetation and fuel maps across the Alaskan boreal forest domain
using scaled up and simulation techniques. The improvement of boreal forest vegetation
and fuel type maps will help improve the accuracy of fire spread models and can be used
to help improve research on habitat use and ecosystem services.

5. Conclusions

We produced a significantly improved and detailed vegetation and fuel type map
products of BCEF and CPCRW using AVIRIS-NG hyperspectral data coupled with the
Arctic DEM and field data. This research demonstrated that AVIRIS-NG data can be used
to accurately map Alaskan boreal forest vegetation at a finer scale than Landsat data. The
products derived from AVIRIS-NG were also mapping fuel and vegetation types in more
detail than the LF EVT. At BCEF our map 304 band image product has an overall accuracy
of 80% at a Viereck level IV (Alaska Vegetation Classification) which is higher than the
33% accuracy of the LF EVT map. Our product at BCEF was able to identify 20 dominant
classes (percent cover >1%) while the LF EVT only identified 8 dominant classes (Table 2).
The more classes you have at a site using all essential bands will perform the best while the
PCA performs better with less classes. Overall, both methods should be tested at a new site.
The fuel maps created from this study can be used by fire managers to properly prepare for
local fire events and land managers to determine species habitat and ecosystems services.
This study served as a stepping stone for using scaling up and simulation techniques to
create fire fuel map products for the entirety of the Alaskan boreal forest.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-4
292/13/5/897/s1, Figure S1: Vegetation Map created from Landsat 8 using the Random Forest
classifier. This product had a ~65% accuracy at Viereck level IV; ~74% accuracy at Alaska Fuel Model
Guide Task Group (2018) fuel type. Figure S2: Vegetation Map created from AVIRIS PCA bands
using the Random Forest classifier. This product had a ~64% accuracy at Viereck level IV; ~72%
accuracy at Alaska Fuel Model Guide Task Group (2018) fuel type. Figure S3: Vegetation Map created
from AVIRIS PCA bands using the Random Forest classifier. This product had a ~69% accuracy at
Viereck level IV; ~74% accuracy at Alaska Fuel Model Guide Task Group 2018) fuel type. Figure S4:
Vegetation Map created from 304 AVIRIS bands using the Random Forest classifier. This product
had a ~56% accuracy at Viereck level IV; ~61% accuracy at Alaska Fuel Model Guide Task Group
(2018) fuel type. Table S1: A list of vegetation types (fuel types) and their area percent cover mapped
from LS + DEM at BCEF. Table S2: A list of vegetation types (fuel types) and their area percent cover
mapped from AVIRIS-NG PCA image + DEM at BCEF. Table S3: Classified CPCRW AVIRIS-NG 304
band image percent area by vegetation classes. Table S4: Vegetation type error matrix table on the
random forest 5 band PCA AVIRIS BCEF product Table S5: Vegetation type error matrix table on the
random forest Landsat BCEF product. Table S6: Vegetation type error matrix table on the random
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forest 304 band AVIRIS BCEF product. Table S7: Vegetation type error matrix table on the random
forest 304 band AVIRIS CPCWR product. Table S8: Vegetation type error matrix table on the random
forest 5 band PCA AVIRIS CPCRW product.
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