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ABSTRACT: In this study, seasonal forecasts from the National Centers for Environmental Prediction (NCEP) Climate

Forecast System, version 2 (CFSv2), are compared with station observations to assess their usefulness in producing accurate

buildup index (BUI) forecasts for the fire season in Interior Alaska. These comparisons indicate that the CFSv2 June–July–

August (JJA) climatology (1994–2017) produces negatively biased BUI forecasts because of negative temperature and

positive precipitation biases. With quantile mapping (QM) correction, the temperature and precipitation forecasts better

match the observations. The long-term JJA mean BUI improves from 12 to 42 when computed using the QM-corrected

forecasts. Further postprocessing of the QM-corrected BUI forecasts using the quartile classification method shows

anomalously high values for the 2004 fire season, which was the worst on record in terms of the area burned by wildfires.

These results suggest that the QM-corrected CFSv2 forecasts can be used to predict extreme fire events. An assessment of

the classified BUI ensemble members at the subseasonal scale shows that persistently occurring BUI forecasts exceeding

150 in the cumulative drought season can be used as an indicator that extreme fire events will occur during the upcoming

season. This study demonstrates the ability of QM-corrected CFSv2 forecasts to predict the potential fire season in advance.

This information could, therefore, assist fire managers in resource allocation and disaster response preparedness.

KEYWORDS: Ensembles; Hindcasts; Seasonal forecasting; Climate models; Model evaluation/performance;

Reanalysis data

1. Introduction

Wildfires are a natural component of boreal forest ecological

processes (Rowe and Scotter 1973; Bond-Lamberty et al. 2007).

As Alaska continues to warm, the frequency and areal extent of

wildfires are increasing, as is the demand for firefighting re-

sources (Chapin et al. 2008). Interior Alaska is dominated by

60%–70% boreal forest coverage (Nowacki et al. 2003) and is

home to approximately 100 000 inhabitants. Most of this pop-

ulation lives in remote villages where access through conven-

tional transportation options is limited. Thus, the most common

way tomitigate fires that threaten rural indigenous communities

is via expensive air tankers (Todd and Jewkes 2006).

Weather is themost important factor influencing fire behavior.

Regions with warm and dry atmospheric conditions have more

frequent and more severe fire events (Flannigan et al. 2009;

Partain et al. 2016). In Alaska, the seasonal severity of boreal

forest fires changes frequently based on the forest floor fuel loads

and their flammability. Dollard (2020) distinguished the fire

season into four subseasons to capture the fire behavior

based on the primary fire drivers: the wind-driven season

(1 April–10 June), the duff-driven season (11 June–9 July),

the cumulative drought season (10 July–15 August), and the

diurnal effect-driven season (16 August–30 September). In each

subseason, fuel availability and weather conditions affect fire

growth differently. For example, frontal winds contribute to

fire growth during the wind-driven season, whereas in the duff-

driven season, longer days combined with warm and dry con-

ditions result in the production of fuel loads from dried tundra

and spruce vegetation, which in turn supports intense fires. The

cumulative drought season is dominated by severe and fre-

quent fires, as below-normal precipitation and high air tem-

peratures contribute to dry fuel loads. Eventually, the fire

season subsides during the diurnal effect season, when shorter,

cooler days limit the occurrence of fires.

Information about the availability of dry fuel loads on the

forest floor and the local weather conditions in each subseason is

necessary for fire managers to evaluate the growth and severity ofSupplemental information related to this paper is available at

the Journals Online website: https://doi.org/10.1175/WAF-D-19-

0225.s1.
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fires in boreal forests. The Canadian forest fire weather index

system (FWI; Van Wagner 1987) is commonly used to connect

boreal fire behavior to local weather conditions (Horel et al.

2014). In the FWI system, the buildup index (BUI) is a unitless

quantity that estimates the total amount of dry forest fuel avail-

able for combustion and helps identify areas with increased fire

potential. Alaskan fire managers assess fire severity and develop

effective preventive action plans based on the BUI (Partain et al.

2016). According to Arpaci et al. (2013), the BUI has been

identified as the best indicator of the severity of seasonal fires and

overall flammability of boreal forest fires. Climate–fire relation-

ships are location specific (Littell et al. 2009); thus, fire managers

consider the evaluation of the BUI in predictive service areas

(PSAs) to be ideal for fire-fighting logistics because PSAs en-

compass regions with unique weather conditions.

Studies have demonstrated the applicability of NCEP’s op-

erational forecast system, the Climate Forecast System, ver-

sion 2 (CFSv2), for hydrological and soil moisture predictions

(Yuan et al. 2011; Mo et al. 2012). The present study aims to

assess the usefulness of the CFSv2 temperature, precipitation,

and specific humidity forecasts that are available in early

March for producing BUI forecasts in each PSA for the

Interior Alaska fire season. Application of CFSv2 forecasts

in BUI prediction requires a preprocessing step to minimize the

forecast biases, which hinder the better representation of local

weather. For this purpose, this study also focuses on correcting

the forecast biases using the quantile mapping (QM) method.

The QM technique is most commonly used in climate change

applications; however, this study explores its usage for seasonal

prediction purposes. The proposed correction procedures are de-

veloped based on the discussions present in Cannon et al. (2015).

The CFSv2 precipitation and temperature forecasts are important

to calculateBUI and are corrected to ensure no additional artifacts

are added to the forecasts. This step retains the original distribu-

tions of the ensemble forecasts, thusmaximizing their applicability

to seasonal extreme weather prediction applications. After the

correction, the performance of the forecasts is investigated by

comparing the temperature, precipitation, and BUI forecasts with

stationobservations at thePSAscale.Overall, the usefulness of the

corrected CFSv2 ensemble forecasts in determining the potential

predictability of BUI forecasts is demonstrated.

This paper is organized as follows: section 2 explains how

the QM correction method is applied to the CFSv2 ensemble

forecasts, including a description of the model forecasts,

observations, and statistical analysis. Section 3 presents the

CFSv2 forecast evaluations, the corrected CFSv2 forecasts,

the skill analysis of the corrected forecasts, and a discussion

of their ability to predict the BUI. Section 4 provides con-

clusions and recommendations based on the results of the

QM-corrected forecasts.

2. Data

a. Predictive service area station observations

Fire managers use daily BUI values that are calculated

from in situ observations and are specific to each PSA

(Fig. 1) in their early preparation plans. These observations

are archived and available to fire professionals in the United

States via the MesoWest web interface, and are widely used

for evaluating model forecasts in fire weather applications

(Horel et al. 2014). Data resources from the Alaska Fire and

Fuels (AKFF; https://akff.mesowest.org/) include both the

National Weather Service (NWS) station and the Remote

Automated Weather System (RAWS; Horel and Dong

2010) networks.

All station observation data in each PSA (Fig. 1, black circles)

are averaged together to calculate the daily PSA data. In this

study, observational data from each PSA are used to develop

PSA-specific correction procedures over the period of 1994–2010

and to evaluate the CFSv2 from 1994 to 2017. The Fairbanks–

TananaValley region, which has a continental climate, is an area

of focus for fire managers in Interior Alaska (McCorkle et al.

2018). The Tanana Valley West PSA has the highest density of

observations (Fig. 1). Therefore, only the analysis for this PSA is

presented and discussed in the main body of the paper.

FIG. 1. Fire predictive service area (PSA) divisions. The legend

labels show the 10 Interior Alaska PSA names that are analyzed in

this study. MesoWest stations are shown by the black circles. See

text for further details.

FIG. 2. Schematic view of the quantile mapping (QM) correction

method for a temperature forecast for the Tanana Valley West.

QM for precipitation looks similar.
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b. Climate Forecast System Reanalysis

The NCEP Climate Forecast System Reanalysis (CFSR;

1982–2010) is a high-resolution reanalysis product that in-

cludes coupled atmosphere, ocean, land surface, and sea ice

climate model components (Saha et al. 2010). This integrates a

spectral atmospheric model (Saha et al. 2006) at a horizontal

resolution of ;38 km (T382), with 64 hybrid vertical levels. In

addition to a full range of observations, satellite radiances are

assimilated in this reanalysis.

FIG. 3. JJA temperature (8C) for the period of 1982–2010: (a) climatology of CFSv2, (b) climatology of CFSR, (c) climatology of NARR,

(d) CFSv2 minus CFSR, and (e) CFSv2 minus NARR.
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c. North American Regional Reanalysis

The NCEP North American Regional Reanalysis (NARR;

1979–present) is a dynamically consistent, high-resolution

model with substantially improved atmospheric circulation

throughout the troposphere (Mesinger et al. 2006). This re-

analysis is generated using the high-spatial-resolution NCEP

Eta model with a horizontal resolution of 32 km and 45 vertical

FIG. 4. As in Fig. 3, but for JJA precipitation (mm).
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layers. The Regional Data Assimilation System (RDAS) is in-

tegrated with this reanalysis. The NARR includes accurately

assimilated precipitation (Becker et al. 2009) and 2-m temper-

ature fields that have been shown to be in agreement with ob-

servations (Mesinger et al. 2006). This reanalysis also includes a

full range of observations.

d. CFSv2 forecast

The NCEP CFSv2 system is a coupled operational ensemble

forecast system that consists of atmosphere, ocean, land, and

sea ice models (Saha et al. 2014). The CFSv2 spectral atmo-

spheric component model is the Global Forecast System

(GFS), which is run at a T126 (;100 km) horizontal resolution

with 64 vertical sigma-pressure hybrid levels.

CFSv2 hindcasts (1982–2010) have 24 ensemble members

and are initialized using CFSR data. CFSv2 real-time forecasts

(2011–present) have 120 ensemble members (Becker and Van

Den Dool 2016). These CFSv2 forecasts use initial conditions

from the seasonal Climate Data Assimilation System, version

2. The hindcasts and forecasts are both initialized every 5 days

at four coordinated universal time (UTC) cycles (0000, 0600,

1200, and 1800).

3. Methods

a. The buildup index

The BUI calculation uses a set of nonlinear mathematical

formulations that require data on the daily total precipitation,

2-m temperature, and relative humidity at local solar noon

(Van Wagner 1987). The relative humidity is calculated using

the forecasted CFSv2 temperature and specific humidity. Solar

noon is approximately 1400AKST in the eastern InteriorAlaska

region (i.e., close to the Canadian border) and 1500AKST in the

western Interior Alaska region (i.e., adjacent to the Bering Sea).

Due to the wide range of local noon times, 0000 UTC (1500

AKST) CFSv2 forecast values are used in the BUI calculations.

Therefore, in this study, it is assumed that the uncertainty due to

the differences between the values at local noon in the forecast

and those in the PSA is marginal and does not contribute to any

major biases. The total daily precipitation is computed by

summing the precipitation from all four cycles (0000, 0600, 1200,

and 1800). The BUIs are then calculated for each PSA from the

daily weighted average of the CFSv2 temperature and precipi-

tation forecasts. These values are later evaluated by comparing

themwith the BUI values calculated from the PSA observations

to explore the sensitivity of the BUI to weather parameters. In

this study, BUIs are calculated using the FORTRAN 95 version

of the FWI source code (Wang et al. 2015).

b. Quantile mapping

Downscaled forecasts have been created using QM, and

these forecasts are reasonably comparable to observations

(Wood et al. 2004). In this study, the nonparametric empirical

QMmethod (i.e., Zhao et al. 2017) is used to correct the CFSv2

seasonal forecast biases. The QM correction method is im-

plemented for temperature and precipitation variables for the

calibration period of 1994–2010 and validated for the period of

1994–2017. In the QM correction method, the cumulative

distribution function (CDF) of the forecast variables is shifted

toward those of the observations. Therefore, each quantile of

the model data is mapped to the corresponding quantile in the

observations (Zhao et al. 2017).

To correct the data, daily area-weighted averages of the

forecasted temperature and precipitation are first calculated

for each PSA. Then, the time series of both the forecasts and

the corresponding PSA observations are smoothed using a

31-day moving average window (e.g., Pierce et al. 2015). The

31-day moving window ensures that noise and extreme values

are removed from the observations before the data are

corrected using the QM correction method. In addition, this

smoothing process facilitates the comparison of time series

observations with time series weighted-area averages of

gridded data. The smoothing process is repeated with vari-

ous window lengths to explore the sensitivity of the obser-

vational data to smoothing processes. Overall, the 31-day

FIG. 5. BUIs for the Tanana ValleyWest (1994–2017) PSA are calculated using observations

only (black), model with observed precipitation (cyan), model with observed temperature

(purple), model with observed relative humidity (orange), and model only (green).
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window has been determined to best capture the seasonal

observations.

Next, lookup tables are created for each PSA, with empirical

quantiles of the forecast values and empirical quantiles of the

observations using the CDF (Fig. 2). An inverse CDF value for

the daily uncorrected forecast (or corrected forecast) is pro-

duced by looking up the quantile corresponding to the closest

forecast value in the forecast calibration set (i.e., 1994–2010).

This forecasted quantile value is then matched to the observed

quantile value to determine the associated observed value [Eq.

(1); see Fig. 2]:

x
corr-fcst(t)5F21

obs F
fcst

[x
fcst

(t)]
� �

, (1)

x
corr-temp-fcst(t)5

x
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(t)1F21
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2
, (2)

x
corr-prec-fcst(t)5

r21x
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(t)1F21
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[x

fcst
(t)]

� �

2
. (3)

Here, Ffcst is the CDF of the uncorrected forecast xfcst, and

F21
obs is the inverse CDF of the observations xobs at time t. The

corrected forecast at time t for the forecast that best matches

observations is defined as xcorr-fcst [Eq. (1)]. The corrected

temperature and precipitation forecasts beyond the obser-

vations are defined as xcorr-temp-fcst [Eq. (2)] and xcorr-prec-fcst
[Eq. (3)], respectively. The precipitation values are re-

scaled to reduce the peak values using a scaling factor r.

Here, r is the ratio of the average of all values in the cali-

bration set of observations to the average of all values in the

uncorrected forecast. Incorporating scaling processes into

correction procedures has been shown to result in better

corrected precipitation forecasts (Cannon et al. 2015). In

this study, the proposed correction methods are intended to

correct any major biases associated with the shape and

magnitude of the ensemble members at the daily time scale

but not to correct the original model physics of the forecasts

(for a discussion on correcting for model physics, see

Bürger et al. 2011).

c. Skill assessment of the CFSv2 forecast

The CFSR and NARR are used to evaluate the CFSv2

temperature and precipitation data from 1982 to 2010. The

datasets, variables, and postprocessing methods are described

in a flowchart (see the appendix).

The PSA area-weighted averages of the corrected and un-

corrected forecast temperature and precipitation are used for

the June–July–August (JJA) skill assessment for individual

ensemble members with respect to the PSA observations

spanning 1994–2017. The skill of the corrected forecast en-

semble members at the daily time scale is assessed for all 10

PSAs using root-mean-square error (RMSE) and skill score

(SS) values (Wilks 2006). The SS, defined as a percentage, is

determined for the individual forecast ensemble members

[Eq. (4)]:

skill score (SS)5
RMSE

uncorr
2RMSE

corr

RMSE
uncorr

3 100%. (4)

In Eq. (4), RMSEuncorr represents the RMSE of the uncor-

rected forecasts, and RMSEcorr is the RMSE of the corrected

forecasts. A high SS indicates high forecasting skill.

A quantile classification (Freund and Perles 1987; Hyndman

and Fan 1996) is used to further postprocess the corrected BUI

FIG. 6. Daily mean seasonal cycle over 1994–2017 for the Tanana

Valley West: (a) temperature, (b) precipitation, and (c) BUI.
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forecasts. The corrected BUI ensemble members are grouped

into five equal-sized bins based on their statistical rank: zeroth

quantile (minimum), first quantile (Q1), second quantile (Q2),

third quantile (Q3), and fourth quantile (Q4). In this study, the

fourth quantile is used to describe the predictability of QM-

corrected BUI forecasts at the subseasonal scale for each PSA.

4. Results and discussion

a. Climatology of the temperature and precipitation

forecasts

The uncorrected JJA CFSv2 ensemble forecast data are

assessed for their prediction skill with respect to the CFSR and

NARR data over Interior Alaska (Figs. 3 and 4 ). The spatial

distributions of the long-term means show that temperatures

vary from 138 to 198C for CFSv2 and that they capture the range

found in the CFSR and NARR data across Interior Alaska

(Figs. 3a–c). The temperature differences between CFSv2 and

CFSR range from 18 to 38C (Fig. 3d) and from 28 to 58C between

CFSv2 and NARR (Fig. 3e), which demonstrates a warm bias in

the CFSv2 forecasts across Interior Alaska (relative to NARR).

The CFSv2 JJA total precipitation patterns are comparable

to those of CFSR and NARR (Figs. 4a–c). In most of the low-

precipitation regions, the accumulated JJA CFSv2 precipitation

forecasts are approximately 30mm lower than those of CFSR

and NARR (Fig. 4c). The warm and dry weather patterns in the

CFSv2 forecasts are in better agreement with CFSR than with

NARR. These findings suggest that CFSv2 forecasts are rea-

sonably comparable to the CFSR and NARR datasets and

are reliable for the Interior Alaska region. However, the

warm and dry weather patterns in the CFSv2 forecasts are in

better agreement with CFSR than with NARR.

b. Bias correction and its impacts

To explore the relationship between the calculated BUIs

and the local fire weather conditions, sensitivity tests were

performed using the daily weighted time series of observations

and CFSv2 forecasts for the Tanana Valley West PSA (Fig. 5).

The following combinations of BUI-affecting parameters are

tested: 1) forecasted temperature and relative humidity (RH)

with observed precipitation, 2) forecasted precipitation and

RHwith observed temperature, and 3) forecasted temperature

and precipitation with observed RH.

The results from the sensitivity test show that precipitation

affects theBUImore than the rest of the includedmeteorological

variables, followed by temperature (Fig. 5). The sensitivity of

the BUI to precipitation confirms that fire weather indices are

particularly sensitive to seasonal precipitation (Horel et al.

2014). In the cumulative drought season, the combination of

observed precipitation with forecasted temperature and RH

best captures the BUI calculated from the station observation

data. Based on the results of the sensitivity tests, this study

proposes to correct the daily CFSv2 precipitation and tem-

perature fields using the QM correction method to match the

FIG. 7. Corrected and improved RMSEs (1994–2017) for (a) temperature, (b) precipitation, and (c) BUI over all 10 Interior Alaska PSAs

at the four subseasonal scales. The improved RMSE is uncorrected minus corrected.
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observations at the climatological scale (Fig. 6). Although RH

is not corrected using theQM correctionmethod, the corrected

temperature is used to calculate RH from the CFSv2-specific

humidity to preserve the thermodynamic consistency between

RH and temperature.

Comparing the time series between the CFSv2 forecasts and

observational data shows a cold bias in the 2-m temperature

forecasts and a wet bias in the precipitation forecasts for the

Tanana Valley West PSA (Fig. 6). After the QM correction,

the cold bias in early spring is reduced and matches the ob-

servation values (approximately 78–128C) well (Fig. 6a). This
correction also removes the aforementioned precipitation bias,

which is two times larger than the observed values, but it does

not remove the observed precipitation biases in the wind-

driven season (Fig. 6b). Overall, this correction procedure

improves the JJA long-term mean temperature value from

15.58 to 17.58C and improves that of precipitation from 3.4 to

1.6mmday21. The corrected temperature and precipitation

change the long-term mean JJA BUI value from 12 to 42

(Fig. 6c), which is reasonably close to the observed BUI of 52.

The forecasts for the other nine Interior Alaska PSAs are

similarly improved after applying the QM correction method

(see Figs. S1–S3 in the online supplemental material). These

findings indicate that this correction process is key for im-

proving forecasts at the climatological scale with reference to

observations.

The RMSEs of the corrected temperature forecasts range

from 38 to 68C for all PSAs in all but the diurnal effect season,

when the individual PSA RMSEs range from 18 to 28C (left

panel of Fig. 7a). This means that the applied QM correction

method reduces the temperature RMSE by approximately

half. The corrected precipitation forecast RMSEs range from 0

to 2.5mmday21, and the improvements range from 20.25 to

2mmday21 for all subseasons (Fig. 7b). Overall, the corrected

precipitation error is reduced by approximately 25%. The

corrected temperature and precipitation forecasts improve the

RMSE values of the BUI forecasts for all PSAs (Fig. 7c). The

corrected BUI RMSEs range from 7 to 45. Improvements in

the BUI range in magnitude from 28 to 27. The proposed

correction methods do have limitations with regard to cor-

recting extreme conditions in precipitation and temperature

forecasts, which introduces forecast errors. The skill of the

temperature forecasts also decreases with the addition of a

‘‘new extreme’’ whenever the actual forecast values are close

to the observed values (e.g., Wilks and Hamill 2007).

Therefore, the correction methods cannot mitigate the

prediction errors associated with extreme conditions of

several ensemble members.

The SS assesses the degree to which the corrected ensemble

forecasts are more skillful than the uncorrected forecasts

(Fig. 8). A corrected forecast with a skill equal to that of the

uncorrected forecast would have an SS of 0%, and a corrected

forecast that is more skillful than the uncorrected forecast

would have a positive SS value. The SSs of the corrected BUI

forecasts for most of the PSAs show an approximately 30%

improvement (Fig. 8). The skill analysis also suggests that en-

semble forecasts can be useful in identifying rare events, as

shown for the 2004, 2005, and 2015 fire seasons, which resulted

in SS values greater than or equal to 40%. During these years,

the calculated burn areas for some of the PSAs are larger than

those in other years. These findings suggest that the corrected

CFSv2 forecasts have the ability to predict the observed large

fire years.

c. Case studies: The record fire years 2004, 2005, and 2015

The 2004, 2005, and 2015 fire seasons are considered to be

theworst inAlaska’s 56-yr record in terms of area/acres burned

(4 million acres or more) (Partain et al. 2016). Further analyses

and discussions regarding these fire seasons are based on their

impacts in the Tanana Valley West PSA, which is the PSA

that is the most representative of the Interior Alaska climate.

FIG. 8. Skill score of JJAcorrected forecastsBUI over the 10PSAs.

The 100% percentage indicates perfect forecasts, and 0%percentage

indicates random forecasts.
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This study assesses the corrected forecast skill for large fire

years in InteriorAlaska using normalized anomaly indices. The

anomalies are normalized by dividing the anomaly by the

standard deviation. Temperature and precipitation anomalies

are determined for the years 2004, 2005, and 2015 for both the

corrected forecasts and the observations, taking the 1994–2017

JJA forecast means as the climate normal. The above-normal

temperature anomalies (10.015 or higher) and below-normal

precipitation anomalies (21.5 or higher) suggest that the

forecasts show larger variability for 2004, the year during which

the largest area was burned, than for other years (Fig. 9). The

forecast anomalies from 2015 have a much lower variability

than those in other years because of the larger number of en-

semble members, i.e., 120; in 2004 and 2005, there were only

24 ensemble members. The temperature and precipitation

anomalies from 2015 suggest that forecasts with more ensemble

members have better prediction skills, as they were predicted

better than those from 2004 to 2005 (Fig. 9; Becker et al. 2013).

Notably, the forecasts could better capture anomalies and ex-

tremes than the observational network. This is attributed to the

fact that the forecast anomalies are calculated for every grid

cell, while the PSA observation anomalies are based on rela-

tively few, sparse point measurements.

The comparison of the JJA ensemble means to the obser-

vations for the large fire seasons suggests that the ensemble

means of both the temperature and precipitation forecasts

roughly capture the variable observations for the duff-driven

season and cumulative drought seasons (Fig. 10). Consistent

with the 2015 anomaly results (Fig. 9), the 2015 ensemblemean

forecasts predict observations better than the 2004 and 2005

forecasts. However, the ensemble mean forecasts for temper-

ature, precipitation, and BUI fail to capture the observed JJA

peak conditions and underestimate the observed BUI. This

suggests that the BUI ensemble mean values may not be useful

in predicting the BUI values that correspond to extreme fire

weather conditions. The ensemble spread of the BUI is large

enough to capture the extremes of the observed BUI on any

given day. These findings suggest that the classification of the

BUI ensemble members can preserve the fire seasonality cor-

responding to the observed BUI values and can be useful in

predicting severe fire events. Furthermore, considering indi-

vidual ensemble members and their uncertainties could be

FIG. 9. Standardized anomaly patterns of JJA (left) temperature and (right) precipitation for the high

fire activity seasons of 2004, 2005, and 2015. The 10 Interior Alaska PSAs, numbered from 1 to 10, are

Tanana Valley West, Tanana zone South, Koyukuk and Upper Kobuk, Lower Yukon, Middle Yukon,

Upper Yukon Valley, Tanana zone North, Seward Peninsula, Tanana Valley East, and Kuskokwim Valley,

respectively.
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useful for determining the predictability of the CFSv2 forecast.

The observed BUI analysis (Fig. 10; dark line) shows that

forecasts of high temperatures precede peak BUIs by ap-

proximately two weeks. This indicates that peak temperatures

and high-BUI events within a two-week window should be si-

multaneously considered for fire action planning in Interior

Alaska PSAs. Furthermore, a study by Arpaci et al. (2013)

reported better performance of both the daily temperature and

the BUI in predicting extreme fire years.

d. Discussion of BUI predictability

Based on the work presented above, it would be useful to

ensure the practicability of the QM-corrected BUI forecasts in

predicting extreme fire events in the duff-driven and cumula-

tive drought seasons. For this purpose, the ensemble members

are ranked based on their corresponding quantiles (Fig. 11).

The forecasted BUI values in the Q4 set closely match the

observed peak BUI values in the duff-driven and cumulative

drought seasons (Fig. 11). For 2004, the anomalous maximum

BUI value is forecasted in the cumulative drought season, in

which the Q4 BUI increases as the observation value de-

creases. The skill of the temperature and precipitation forecasts

may contribute to these anomalousQ4BUI values that contradict

the observed BUI in the cumulative drought season. This ob-

served minimum Q4 BUI forecast may arise due to terrain

elevation differences between the forecast model, which uses

grid-averagedelevations, andpoint-basedobservations.Therefore,

Q4BUI forecasts have the potential to predict the dry fuel loads

and weather conditions associated with extreme fire seasons.

Moreover, the anomalous Q4 BUI forecasts can be used as an

indicator of extreme fire events in the upcoming season.

The source of forecast predictability can be determined

using a so-called persistence measurement. Typically, in a

persistence measurement, future forecasts are assumed to

maintain the current observed anomaly conditions (Spillman

andAlves 2009). In this case, minimum-skill BUI forecast values

of 150 or higher in the cumulative drought season would be re-

peated in the future forecast for the same season. If such

FIG. 10. Daily mean seasonal cycle of Tanana Valley West temperature, precipitation, and BUI for 2004, 2005, and 2015, respectively.

610 WEATHER AND FORECAST ING VOLUME 36

Brought to you by Geophysical Institute/International Arctic Research Center | Unauthenticated | Downloaded 07/20/21 06:29 PM UTC



persistence is identified in the forecast, the fire season is labeled

an extreme fire year in which extreme fire events are likely to

occur. These anomalous forecast conditions are observed in the

duff-driven and cumulative drought seasons in the worst

fire years.

The prediction skill of the JJA Q4 BUI is assessed by

comparing the observed total acres burned and the observed

BUI from 1994 to 2017 for all PSAs (Fig. 12). Extreme changes

in the BUI are found in both 2004 and 2009. Similarly, the Q4

BUI exceed the threshold value of 150 in the cumulative

drought season. These findings support the usefulness of per-

sistence forecasts for identifying seasons with severe fire events

(Fig. 11). Overall, these results are consistent across all PSAs,

indicating that CFSv2 forecasts can provide decision-makers

with valuable information on the maximum probable value of

the BUI corresponding to an extreme fire season.

5. Summary and conclusions

Seasonal fire forecasting is a challenging problem for climate

scientists. This study investigates the seasonal predictions of

1–3-month leads using the CFSv2 March forecasts for JJA

using all available ensembles for 1994–2017. The spatial com-

parison of JJACFSv2 climatology forecasts (Figs. 3 and 4) with

the CFSR and NARR data shows a positive 2-m temperature

bias of approximately 28C and a negative precipitation bias of

approximately 30mm in CFSv2 over Interior Alaska.

Given the lack of gridded observational data for Interior

Alaska, correction procedures are developedusingobservational

time series data for temperature, precipitation, and relative hu-

midity, all of which are commonly used by fire managers in

decision-making procedures. The nonparametric QM correction

method is applied to correct the time series of the CFSv2

temperature and precipitation forecasts because it 1) sim-

plifies the correction procedure and 2) keeps the distribu-

tion of the actual ensemble forecasts without introducing

uncertainty into the forecast physics. In this method, the

shape and spread of the ensemble forecasts are kept similar

to that of the original forecast, which makes them useful for

predicting extreme weather events.

Evaluations of seasonal QM-corrected forecasts of tem-

perature, precipitation, and BUIs are performed for all

PSAs. This evaluation shows that the QM correction

method removes a portion of the temperature and precip-

itation biases associated with forecast errors. Furthermore,

these corrections show an improvement in the BUI forecasts,

which is reflected in the calculated JJA mean BUI increasing

from 12 to 42 based on the corrected JJAmean temperature and

precipitation forecasts of 17.58C and 1.6mmday21, respectively.

Thus, these findings demonstrate that QM-corrected CFSv2 en-

semble forecasts are able to capture the seasonal-scale features of

FIG. 11. Tanana Valley West quantile-based BUI for (a) 2004,

(b) 2005, and (c) 2015. Results are similar for other PSAs.

FIG. 12. Tanana Valley West observed JJA total acreage burned (blue dashed line),

forecasted Q4 BUI (purple dotted line), and observed BUI (black line). Plots for other PSAs

look similar.
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the observed BUI climatology over the PSAs. These results also

suggest that additional postprocessing might shift the limits of

predictability even further in detecting severe fire seasons.

The classification of corrected BUI ensemble members using

quartiles reflects their usefulness for identifying severe fire

events. The Q4 BUI forecasts tend to perform the best in pre-

dicting the observed BUI in the duff-driven season, while over-

estimating the BUI in the cumulative drought season. Moreover,

the overestimates coincide with the severe fire events of 2004 and

2009 in the Tanana Valley West PSA (Fig. 12). This finding

suggests that the usefulness of theCFSv2 ensemble forecasts with

uncertainties can be tailored touser-specific needs by considering

the observed patterns of boreal fires at the subseasonal to sea-

sonal scale. Overall, this work demonstrates that the BUI values

determined from the nonparametric QM-corrected forecasts can

add value to firefighting preparation plans developed by fire

managers when evaluating weather and fuel states in PSAs.

Furthermore, these findings illustrate the usefulness of CFSv2

seasonal forecasts from March for fire managers developing re-

source allocation plans for Interior Alaska. Therefore, to better

serve the firefighting community, this study recommends a

combination of griddedCFSv2 operational forecasts and theBUI

system to produce operational BUI ensemble forecasts. The

potential utility of the CFSv2 gridded forecasts for fire weather

prediction in Interior Alaska is highlighted.
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APPENDIX

Data Analysis Overview

Figure A1 outlines the data processing steps carried out in

this study.
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