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Abstract. This synthesis study assesses recent changes of Arctic Ocean physical
parameters using a unique collection of observations from the 2000s and places them in the
context of long-term climate trends and variability. Our analysis demonstrates that the 2000s
were an exceptional decade with extraordinary upper Arctic Ocean freshening and
intermediate Atlantic water warming. We note that the Arctic Ocean is characterized by
large amplitude multi-decadal variability in addition to a long-term trend, making the link of
observed changes to climate drivers problematic. However, the exceptional magnitude of
recent high-latitude changes (not only oceanic, but also ice and atmospheric) strongly suggests
that these recent changes signify a potentially irreversible shift of the Arctic Ocean to a new
climate state. These changes have important implications for the Arctic Ocean’s marine
ecosystem, especially those components that are dependent on sea ice or that have
temperature-dependent sensitivities or thresholds. Addressing these and other questions
requires a carefully orchestrated combination of sustained multidisciplinary observations and
advanced modeling.
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INTRODUCTION

Changes in the arctic climate system over the past

decades were exceptional in the history of Arctic

observations (e.g., Walsh and Chapman 2001, Polyakov

et al. 2005, Meier et al. 2007, Belchansky et al. 2008,

Lindsay et al. 2009), culminating with the summer of

2012 when the arctic ice retreat broke all records

(Overland and Wang 2013). Despite the fundamental

importance of high-latitude changes for global climate,

there are numerous gaps in our understanding of how

the system functions and what forces are driving changes

in the Arctic. In particular, analysis of high-latitude

climate change is complicated by strong arctic intrinsic

variability dominated by multidecadal fluctuations (e.g.,

Polyakov and Johnson 2000, Polyakov et al. 2008). The

key Arctic climate parameters like the Arctic surface air

temperature (SAT), Arctic Ocean freshwater content

(FWC), temperature of the intermediate (depth range

150–900 m) Atlantic water (AW), and fast ice thickness

(motionless seasonal sea ice anchored to the sea floor

and/or the shore that melts and reforms each year)

demonstrate a strikingly coherent pattern of multi-

decadal variability (MDV; Fig. 1). Anthropogenic

climate change may be amplified or masked by multi-

decadal variations, and separating the relative contribu-

tion of anthropogenic and natural drivers is not a trivial

task.

Covariability between the physical and marine bio-

logical components of the climate system suggests an

important role of the oceans in shaping the marine

environment (Fig. 2) that is the lifeblood of the biota.

Marine organisms tend to follow certain environmental

conditions (particularly water temperature, but also

stratification, light, and nutrient availability [e.g.,

Wassmann et al. 2006, Slagstad et al. 2011]); it is no

surprise, therefore, that extended warm and cold periods

have led to major changes in the ecosystem. While not

from the Arctic, next we present examples from the

North Atlantic and North Pacific, where the links

between climate and biota are better understood. The

Icelandic and Greenland seas warmed considerably in

the 1920s–1940s, causing a rapid northward shift of fish

(e.g., Loeng 1989, Rose 2005, Drinkwater et al. 2010).

The fishing industry also shifted northward following

the fish population, leading to record high catches. In

the Pacific sector, researchers have found a link between
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the pattern of atmospheric and oceanic changes and

salmon production (e.g., Francis and Hare 1994, Hare

and Francis 1995). Chavez et al. (2003) found variability

between anchovy and sardine fisheries, linked to the

Pacific Decadal Oscillation (PDO) and other climatic

indices. Overland et al. (2004) analyzed 86 spatially

distributed multidisciplinary time series over 1965–1995

with a broad geographical coverage spanning from the

Canadian Northern Territories, Siberia, and Northern

Europe to the high-latitude Arctic. They found that the

Arctic climate system (including its biological compo-

nent) responds to climate change in a coherent, but very

complex, way. More specifically, the locations of ice

algal blooms are dependent on the extent of sea ice

relative to the seasonal cycle of solar radiation (Hinz-

man et al. 2013). With 80% of the Arctic tundra

vegetation lying within 100-km of the ocean, this

maritime biome is closely linked to Arctic sea ice (Bhatt

et al. 2010) variations as well as trends. Sea ice decline

has triggered near coastal land surface temperature

increases and consequently enhanced vegetation pro-

ductivity on the tundra. Thus, the recent and long-term

changes in physical component of the climate system

discussed in this synthesis are relevant because of their

effect on the ecosystem and consequently, ecosystem

services (i.e., human benefits such as subsistence lifestyle

and resource extraction).

FIG. 1. Comparative long-term evolution of key components of the Arctic climate system. Composite time series of 7-year
running mean anomalies of (from top to bottom) the Arctic surface air temperature (Bekryaev et al. 2010), upper 150-m Arctic
Ocean freshwater content (FWC; fresher Arctic Ocean is associated with positive FWC anomalies [Polyakov et al. 2008]),
composite (15 stations) fast ice (motionless seasonal sea ice anchored to the sea floor and/or the shore that melts and reforms each
year) thickness anomalies, and normalized intermediate Atlantic water (AW) core temperature of the Arctic Ocean (Polyakov et al.
2004; values are standard deviations). All records are updated using data from the 2000s. Broken lines are used to indicate gaps in
data where we used linear interpolation.
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The Arctic Ocean plays a central role in the climate of

the northern high latitudes and there are numerous gaps

in our knowledge, which are compounded by the harsh

environment for collecting observations and by the

complex interactions and feedback mechanisms in-

volved. Near-freezing surface waters, driven by winds

and ice drift, exhibit a trans-polar drift from the Siberian

Arctic toward Fram Strait (Fig. 3). In the eastern and

central Eurasian Basin, the surface flow merges with

several branches coming from marginal Arctic seas. The

surface cap of cold freshwaters is separated from

Atlantic water by a halocline in which salinities increase

to ;34.8 psu (e.g., Pfirman et al. 1994, Schauer et al.

1997, 2002). The frontal boundary between water masses

of Atlantic and Pacific origin is an important element of

water structure (e.g., McLaughlin et al. 1996) that is

roughly aligned with the Transpolar Drift; Pacific waters

are essential water masses of the Canada Basin (Fig. 4).

Originating in the North Atlantic, Atlantic water is

carried through the Arctic Ocean interior by the pan-

Arctic boundary current following bathymetry in a

cyclonic sense (Fig. 3, red arrows [e.g., Aagaard 1989,

Rudels et al. 1994]). Two major inflows supply the polar

basins with AW: the Fram Strait branch water and the

Barents Sea branch water (e.g., Rudels et al. 1994). The

Fram branch enters the Nansen Basin through Fram

Strait and follows the slope until it encounters the

Barents branch north of the Kara Sea. Near the

Lomonosov Ridge the flow bifurcates, with part turning

north and following the Lomonosov Ridge and another

part entering the Canada Basin (e.g., McLaughlin et al.

2009).

Starting from this brief and schematic overview of

extremely complex body of polar waters interacting with

ice and surrounding basins, this study assesses changes

in the Arctic Ocean and places them in the context of

long-term climate trends and variability by linking

recent and historical observations. Thus, this synthesis

provides an overview of studies of recent and long-term

changes in the Arctic Ocean. However, we present an

interpretation of oceanic data sets updated by the most

recent observations including the 2000s, providing a

unique aspect to this study. Particularly, in this synthesis

we connect decade long observations collected through

NABOS (Nansen and Amundsen Basins Observational

System) oceanographic program, to the broader spatio-

temporal context provided by other observational

programs and longer data sets. The overall goal of this

paper is to serve as an Arctic Ocean resource for

ecologists to enrich their interpretation of changes in

biological systems and to facilitate placing their recent

results into the context of strong long-term Arctic trends

and large-amplitude variability (including MDV).

OBSERVATIONAL DATA

This synthesis effort builds on our previous studies

that have led to an extensive collection of oceanographic

data spanning the past 50–100 years. Most measure-

ments prior to the 1950s were made within areas limited

by deep-basin margins (Fig. 5). A few central-basin

observations are however available starting from Nan-

sen’s expedition aboard the Fram in the late 19th century

(Nansen 1902). This expedition provided the first few

temperature and salinity profiles from the central

Eurasian Basin. In 1937, the Russian icebreaker Sedov

was trapped in ice north of the Laptev Sea and was

forced to drift across the central Eurasian Basin for 812

days until it was released by another icebreaker. During

this drift, temperature and salinity measurements were

made (Fig. 5). In the 1930–1940s, the Russians launched

FIG. 2. Time series of major climatological indices: (A) Atlantic Multidecadal Oscillation (AMO; black line) and (B) Pacific
Decadal Oscillation (PDO; black line). Also shown are (A) lagged North Atlantic spring-spawning herring biomass anomalies
(Toresen and Ostvedt 2000; red line) and (B) Pacific salmon total catch anomalies (Klyashtorin and Lyubushin 2007; red line).
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a monitoring program consisting of manned ice-drift
stations and winter aircraft surveys complemented by

ship-based studies during summer. Their first manned
drifting station NP-1 (1937) provided several measure-

ments from the western Eurasian Basin (Fig. 5). In
1955–1956, the first Russian basin-scale aircraft surveys

were conducted. Manned drifting ice camps provided
most high-latitude (.808 N) observations in the 1960s

and 1980s. The 1970s were an exceptional period in the
history of high-latitude exploration, with seven Russian

winter aircraft surveys (1973–1979) and 1034 oceano-
graphic stations during this period. In the 1990s,

icebreakers and submarines provided measurements
covering vast areas of the central Arctic Ocean (Fig.

5). Data from oceanographic CTD (conductivity–

temperature–depth) stations, moorings (autonomous
devices moored to the seafloor), and ice-tethered

profilers (ITP) that move along a tether and sample
water temperature and salinity down to the depth of

500–800 m are available from the 2000s (Fig. 5; ITP data
available online).7

Most observations prior to the 1980s were obtained
from Nansen bottle water samples and discrete temper-

ature measurements. Typical measurement errors are
0.018C for temperature and 0.02 for titrated salinity.

CTD instruments were used in recent years, which has

resulted in increased accuracy and vertical resolution of
at least an order of magnitude greater than that of the

historical measurements. All chemical observations were

carried out during the short high-latitude summers,

insuring that our results are not contaminated by local

seasonal variations. CTD data used for FWC analyses

FIG. 3. Circulation of the surface water (blue) and intermediate Atlantic water (red) of the Arctic Ocean. Moorings are
autonomous devices moored to the seafloor and measuring various water parameters.

FIG. 4. Vertical profiles of (a) water temperature and (b)
salinity collected in the Eurasian Basin (blue; 84.378 N, 80.008
E) and Canadian Basin (red; 80.258 E, 97.608 W) in 1974
showing Arctic Ocean water mass structure. Intermediate AW
is identified by water temperatures .08C whereas Pacific water
(PW) is associated with the temperature maximum above the
AW layer and below the upper mixed layer.7 http://www.whoi.edu/page.do?pid¼23096
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were de-seasoned using seasonal climatology (Steele et

al. 2001), which reduces decadal biases associated with

seasonal differences of sampling in different periods of

time (for example, spring-time aircraft-based sampling

in the 1950s and 1970s and summer ship-based surveys

in the 1990s). Analysis of long-term AW changes have

assumed that seasonal variations in the AW layer are

small and do not affect our results (e.g., Dmitrenko et al.

2009, Ivanov et al. 2009, Lique and Steele 2012).

These deep-ocean measurements were used to study

long-term changes in the intermediate AW of the Arctic

Ocean (Polyakov et al. 2004) and Arctic Ocean FWC

anomalies (Polyakov et al. 2008). The time distribution

of measurements used in these studies is shown in Fig. 6.

Fig. 5 demonstrates that there are numerous gaps in the

early part of the record. These early measurements

clearly cannot provide reliable information about the

magnitude of anomalies; however, we argue that they

are useful in defining in very general terms the state of

the ocean (e.g., whether the Arctic Ocean was fresher or

saltier, warmer or cooler). This is corroborated by

coherent low-frequency fluctuations of the AW core

temperature (AWCT, defined by the temperature

maximum) and SAT (correlation R ¼ 0.70) and also of

FWC and SAT (R¼ 0.60); the latter time series utilizes

records from several hundred meteorological stations, a

quarter of which are longer than 100 years (Fig. 1).

Thus, despite gaps, the early parts of the oceanographic

records should not be prevented from providing some

FIG. 5. Maps of the Arctic Ocean showing the locations of deep-basin and shelf oceanographic stations used in this study (red
dots).
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useful information about the pre-conditions existing in

the early part of the 20th century.

In the analysis of recent changes, distributed obser-

vations in the central Arctic Ocean made in the 2000s

were complemented by measurements at several re-

peated oceanographic sections (series of temperature,

salinity, and chemical-tracer vertical profiles along a

line). A zonal section crossing Fram Strait at ;788500 N

has been conducted annually since 1997 (e.g., Fahrbach

et al. 2001, Schauer et al. 2004). Temperature measure-

ments from its 5–98 E segment at the 50–500 m depth

range (the depth associated with AW inflow into the

Arctic Ocean) are used in this study. Repeated sections

crossing the Siberian slope along the major AW path-

way in the vicinity of Svalbard (;308 E) and Severnaya

Zemlya (;1048 E), in the central Laptev Sea (;1258 E)

and at the junction of the Lomonosov Ridge with the

Siberian slope (;1408 E) and a cross-section through the

central Canada Basin complement the Fram Strait

observations. Water samples from sections in the Laptev

and East Siberian seas in 2007–2008 were analyzed for

dissolved oxygen, nutrients, barium, and oxygen iso-

topes.

Moorings positioned along the AW path have

provided continuous information about water mass

transformations caused by the warm surge of the early

2000s (e.g., data from Beszczynska-Möller et al.

[available online]).8,9 Water temperature at the Fram

Strait mooring (788500 N, 88200 E, instrument depth

;250 m) was measured using an Aanderaa instrument

(Aanderaa Data Instruments, Bergen, Norway). A

McLane Moored Profiler (MMP) has been used at the

central Laptev Sea slope moored in 2002–2011 (M1

mooring; 788270 N, 1258400 E). The AW core is located

over the 2500–3000 m isobaths along the Laptev Sea

slope (e.g., EWG [1997] climatology). Seven CTD cross-

sections (i.e., 2002, 2004–2009) made as a part of

NABOS captured the core within this range. The only

FIG. 6. The Arctic Ocean normalized AW core temperature (AWCT) anomalies and upper rh layer (water layer between
isopycnals [surfaces of equal density]) FWC anomalies (km3). Annual anomalies are shown by blue dotted lines, 7-yr running
means are shown by blue thick lines (dashed segments represent gaps in the records), and red dotted lines show their confidence
intervals defined by standard errors. Numbers at the bottom denote the 5-yr averaged number of stations used in the data analysis.

8 http://doi.pangaea.de/10.1594/PANGAEA.800328
9 http://doi.pangaea.de/10.1594/PANGAEA.800329
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exception was in 2003 when there were two AW cores;

the deeper one was shifted to the north, and was not

resolved by the section. However, the northern station

of this section was located over the ;3500 m isobath.

Also, there is a good correspondence between the point

measurements provided by the M1 mooring at 788270 N,

1258400 E and CTD-based estimates of the AWCT

(except 2011, when the AW core was closer to the shelf

and the mooring-derived temperature was cooler than

CTD-based temperature; at the same time the cooling

tendency since 2008 was well pronounced in both

records; Fig. 8). Thus, we argue that the M1 mooring

captures the major AW changes.

Several other long-term observational records com-

plement these oceanographic data sets. Unique obser-

vations of fast-ice thickness from 15 stations spread

uniformly along the Siberian coast (Polyakov et al.

2003) are updated until 2009 and are used in this

synthesis. A composite time series of SAT in the

Northern Polar Area (608 N) used in this study is based

on monthly records from 441 meteorological stations

(Bekryaev et al. 2010, see their Fig. 1 showing spatial

and temporal data coverage). The North Atlantic

Oscillation (NAO), Atlantic Multidecadal Oscillation

(AMO), and Pacific Decadal Oscillation (PDO) clima-

tological indices are also utilized (Table 1). To broaden

our synthesis and tie it more directly to marine

ecosystem impacts, we also discuss diverse records such

as North Atlantic herring biomass change and Pacific

salmon total catch (Table 1).

CHANGES OF THE ARCTIC OCEAN THERMAL STATE

Long-term change of Arctic Ocean temperature

The upper ocean thermal state has direct implication

to the sea-ice cover. That is why long-term changes of

the upper Arctic Ocean temperature have become a

subject of several recent studies. Steele et al. (2008),

using temperature profiles and satellite data, argued that

the upper Arctic Ocean experienced changes associated

with the atmospheric Arctic Oscillation (AO) index

phases when the ocean cooled by ;0.58C as a result of

the prevailing decrease of AO during 1930–1965 and

warmed as the AO rose since then. Steele et al. found

substantial acceleration of warming in the recent

decades. We note however, that the AO was close to

neutral in the last decade. At the same time the rate of

Arctic warming (including Arctic Ocean warming, see

Fig. 1) has accelerated suggesting that other factors not

related to AO may play an important role in warming

upper ocean layer. Using historical hydrographic data

for the Laptev and East Siberian seas spanning from

1920 through 2009 Dmitrenko et al. (2011) demonstra-

ted a strong warming in the bottom layer of the shallow

Siberian coastal zone started in the 1960s, with

particularly strong warming, up to 2.18C since the

mid-1980s. They attributed this warming to reduced

summer ice cover and increased absorption of atmos-
pheric heat by the seas.

Using high-latitude hydrographic measurements Poly-

akov et al. (2004) analyzed long-term variability of the
AW temperature. They argued that, despite gaps in the
early part of the record, composite AW time series

provided evidence that AW variability is dominated by a
long-term warming trend superimposed on MDV with a
timescale of 50–80 years (Figs. 1 and 6). Associated with

this variability, the AW temperature record showed two
warm periods in the 1930s–1940s and in recent decades
and two cold periods in the earlier century and in the

1960s–1970s. Observations from the 1990s documented
positive AW temperature anomalies of up to 18C relative

to temperatures measured in the 1970s throughout vast
areas of the Eurasian and Makarov basins (Quadfasel et
al. 1991, Carmack et al. 1995, Swift et al. 1997, Morison

et al. 1998, Steele and Boyd 1998, Polyakov et al. 2004;
Fig. 7). Newly available data from the 2000s demon-
strate that the temperature continued its rise resulting in

the decade of record-high temperatures (Fig. 6).

TABLE 1. Data used in this synthesis study, grouped by climate
system component.

Variable/source Region

Ocean, historical

Temperature/salinity, oceanographic
stations

Arctic Ocean

Temperature/salinity, oceanographic
stations

Siberian
marginal seas

Ocean, recent

CTD surveys, snapshot observations central Arctic
Ocean

Mooring observations, time series Arctic conti-
nental slope

Geochemical snapshot observations Arctic Ocean
Ice-tethered profiler snapshot

observations
central Arctic
Ocean

Atmosphere

SAT (monthly), meteorological stations Arctic/sub-Arctic
(.608 N)

Ice

Fast ice thickness, 15 coastal stations,
AARI

Siberian
marginal seas

Climate indices

NAO climate index (Portis et al. 2001) North Atlantic
AMO climate index (Enfield et al.

2001)
North Atlantic

PDO climate index (Mantua et al.
1997)

North Pacific

Other

Herring biomass (Toresen and Ostvedt
2000)

North Atlantic

Salmon catch (Klyashtorin and
Lyubushin 2007)

Pacific Ocean

Notes: Abbreviations are: CTD, conductivity–temperature–
depth; SAT, surface air temperature; AARI, Arctic and
Antarctic Research Institute; NAO, North Atlantic Oscillation;
AMO, Atlantic Multidecadal Oscillation; PDO, Pacific Decadal
Oscillation. Fast ice is motionless seasonal sea ice anchored to
the sea floor and/or the shore that melts and reforms each year.
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Improved spatial data coverage over recent decades

has made it possible to demonstrate that the AW
warming was associated with salinification, accompa-
nied by an ;150-m AW layer domelike shoaling in the
1990s and ;75–90 m in the 2000s (e.g., Carmack et al.

1997, Swift et al. 1997, Polyakov et al. 2004: Fig. 5, and
Polyakov et al. 2010: Fig. 7). Similarity between the
spatial distributions of sea-level pressure anomalies and

the pattern of the AW domelike shoaling centered in the
Makarov-Canada basins suggested that the observed
shoaling in the 1990s represented a dynamical response

to winds driving the circulation, while temperature,
salinity and heat content fluctuations may be either
dynamically or thermodynamically controlled (Polya-
kov et al. 2004). Since the 1970s, there was a sizable

weakening of the Eurasian Basin stratification above the
AW core: an important finding which links changes in
the Arctic Ocean interior with potentially enhanced

upward oceanic heat fluxes (e.g., Polyakov et al. 2010).
The ultimate source of the observed changes in the

intermediate AW of the Arctic Ocean lies in interactions

between polar and sub-polar basins (e.g., Dickson et al.
2000, Schauer et al. 2002, 2004, 2008, Gerdes et al.
2003). The observed fluctuations in the AW temperature

are mostly due to low-latitude ‘‘switchgear’’ mechanisms
controlling temperature and salinity inflows into the
Arctic Ocean via the intensity and position of the
subpolar North Atlantic gyre. However, there are

probably local mechanisms for the Arctic and sub-
Arctic, which may modulate the AW inflows. One of the
numerous examples of such mechanisms is presented in

a study by Holliday et al. (2008) who documented a
rapid increase of water temperature of the Atlantic
Water inflow from the North Atlantic subpolar gyre

through the Nordic Seas to Fram Strait since the 1970s.

Their Fig. 3 clearly indicates that the warming was

accelerated in the northern parts of the Nordic Seas,

with the maximum warming rates at Fram Strait

suggesting that local air-sea interactions modulate the

North Atlantic signal. Using modeling results Aksenov

et al. (2011) demonstrated that the AW transports along

the Arctic Ocean margins are governed by a combina-

tion of buoyancy loss and non-local wind, creating high

pressure upstream in the Barents Sea. This finding is

consistent with Karcher et al. (2007) who showed that

buoyancy forcing in the Barents Sea is a main driver of

the AW flow. According to the negative feedback

mechanism proposed in (Polyakov et al. 2004), changes

in polar basin density act to moderate the inflow of

Atlantic water to the Arctic Ocean, and hence provide a

potential local source for fluctuations in AW inflow.

Change of Arctic Ocean temperatures in recent decades

Over recent decades, satellite records showed a strong

3.7% per decade decline of sea ice extent (Parkinson and

Cavalieri 2008), which culminated in a record-breaking

ice minimum during the summer of 2012 (Overland and

Wang 2013). Ice-mass buoys were used in the Beaufort

Sea in summer 2007 to detect enhanced upper-ocean

solar heating through openings in the ice and conse-

quent bottom ice melting (Perovich et al. 2008, Toole et

al. 2010). This is a manifestation of the ice–albedo

feedback mechanism, in which warming leads to a

reduction in ice cover and albedo, resulting in increased

absorption of solar radiation, warming and further sea-

ice retreat (e.g., Manabe and Stouffer 1994, Serreze and

Barry 2011). Indeed, Steele et al. (2008) used 2007

satellite surface temperature observations, which cov-

ered the entire ice-free area of the Arctic Ocean to

FIG. 7. (a) Mean AW temperature averaged over the 1970s; (b, c) AW temperature anomalies averaged over the 1990s and for
data from 2007. Anomalies are computed relative to climatology shown in panel (a). Isolines 0.05, 0.1, and 0.2 in panels (a) and (b)
show standard errors (8C); they are small (,0.058C) in the Canada Basin and higher, up to 0.18C, at some places 0.28C, in the
Eurasian Basin.
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estimate solar heating of 440 MJ/m2 of the upper 25-m

ocean layer. Direct oceanographic measurements sug-

gested somewhat lower estimate of ;283 MJ/m2

(Bekryaev et al. 2010). This anomalous upper-ocean

heat uptake caused by the albedo decrease is much lower

than the advective annual horizontal atmospheric heat

transport through 608 N, suggesting that the solar effect

of oceanic warming may be not as significant as

previously thought (for details, see Bekryaev et al.

2010). At the same time, Steele et al. (2008) noted that

the effect of the upper summertime ocean warming since

1965 may be evaluated in terms of an equivalent 75-cm

ice-thickness loss.

One more source for the Arctic Ocean heating in the

2000s was the increased influx of warm waters of Pacific

origin through Bering Strait into the Chuckchi Sea and

further into the Canada Basin (e.g., Woodgate et al.

2010). Observations of transports through Bering Strait

showed a doubling of heat flux from 2001 through 2007,

enough to explain one-third of 2007 summer Arctic ice

thickness loss (Woodgate et al. 2010). The sea-ice

reduction in the Canadian Arctic as a result of increased

influx of warm summer waters of Pacific origin clearly

shows the thermodynamic coupling between the Arctic

ice and the ocean interior. For example, Shimada et al.

(2006) suggested a positive feedback mechanism in

which enhanced inflow of warm Pacific water into the

Canada Basin weakens ice coverage, which, in turn,

causes enhanced wind-driven transport of Pacific water

into the basin.

Both observations (e.g., Woodgate et al. 2001,

Schauer et al. 2004, Polyakov et al. 2005) and modeling

(Karcher et al. 2003) indicate that fluctuations of the

intermediate AW layer in the Arctic Ocean interior are

linked to the highly variable nature of the AW inflows,

with abrupt cooling/warming events. The latest pulse of

warm water was detected using data from Fram Strait

moorings and a CTD section in 1999 (Schauer et al.

2004, Fig. 8). Further observations showed the prop-

agation of this anomaly into the polar basin interior

following a shallow-to-right propagation scheme; in-

deed, this pulse of warm Atlantic water was found in the

eastern Eurasian Basin in 2004 (Polyakov et al. 2005,

Dmitrenko et al. 2008c, Figs. 8 and 9). The distinctive

pattern of this warming event (compare 1997–2000

temperature increase in Fram Strait record and the

2002–2005 temperature increase in the eastern Eurasian

Basin, Fig. 8) was used as a tracer to estimate the speed

of along-slope warming propagation to higher-latitude

regions. According to these estimates, it took ;5 years

for the warming to reach the Laptev Sea slope from the

Fram Strait region (Fig. 9), suggesting an anomaly speed

of ;1.5 cm/s (Polyakov et al. 2005). The pulse peaked in

the polar basin interior in 2007–2008 (Fig. 9).

FIG. 8. Time series of AW temperature anomalies (8C) relative to the time-series means from oceanographic sections [blue;
mean temperatures Tmean shown on panels], mooring observations [red; panel (a) depth¼260 m, panel (b) depth¼250 m], and heat
content density of the layer overlying the AW [green; ;50–125 m depth range, MJ/m3]. The mooring records were de-seasoned;
conductivity, temperature, and depth (CTD) data are collected in summer so that the seasonal signal does not preclude meaningful
interpretation of CTD records. The figure is from Polyakov et al. (2011), updated with 2009–2011 data.
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The exceptional strength of this warming was

documented using extensive observations made in

2007 under the auspices of the International Polar

Year. Using these data, maximum temperature anoma-

lies of up to 18C were traced along the AW pathways in

a pattern similar to that observed in the 1990s (Fig. 7).

Point-to-point comparison demonstrated that AW

temperature from 2007 was, on average, ;0.28C higher

than in the 1990s thus confirming the exceptional

strength of the latest warming pulse (see also Fig. 6 and

Polyakov et al. [2012b]). Sufficient spatial coverage in

the 1990s (Fig. 5) and 2007 (Fig. 7c), with hundreds of

pairs of measurements available for comparison,

makes standard error associated with this estimate

FIG. 9. Vertical cross-sections of water temperature from the Arctic Ocean. The five series of cascaded plots show temperatures
measured at the five locations shown by yellow lines on the map. In each set, the x-axis shows distance from the southern end of the
section (km), and the y-axis shows depth (m). The scale to the left of the y-axis shows water temperature (8C). Note that the
horizontal scale and temperature scale vary from one cascaded set to another. Warming in the Eurasian Basin, approximately in the
center of this figure, is associated with the warm AW pulse, which was found in Fram Strait, the gateway to the Arctic Ocean, east
of Greenland, in 1999. This pulse peaked in the Eurasian Basin in 2007–2008. In contrast, the warm anomaly in the Canada Basin is
related to an earlier pulse of warm water, which entered the Arctic Ocean interior through Fram Strait in the early 1990s. Note that
not all available sections are shown for the Fram Strait region. The figure is from Polyakov et al. (2011).
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small (SE ¼ 0.0158C). Potential contamination of the

estimate by the seasonal signal is also minor because in

the vast area of the Arctic Ocean interior the AW

seasonal signal is negligible (Lique and Steele 2012);
measurements over the slope area of the Nansen Basin

where the seasonal signal was detected (Dmitrenko et

al. 2009, Ivanov et al. 2009) were made in summer

(August–September) so that the monthly temperature
difference is of the order of 0.058C.

Recent 2008–2010 observations suggested that the on-

going warm pulse passed its peak and the Arctic Ocean

interior is in transition toward a cooler state (Polyakov

et al. 2011, 2012b). Stronger cooling is found in the

western Nansen Basin, near the origin of AW for the
Arctic Ocean interior. Expectedly, weaker cooling was

documented further downstream from Fram Strait, in

the eastern Eurasian Basin (Figs. 8 and 9). Time series

from the Laptev Sea slope (;1258 E) extended by a four-
year long record from recently recovered mooring

demonstrates that temperature at this ocean site reached

the values observed prior to when the warm pulse was

detected (Fig. 8). Composite pan-Arctic time series of

AWCT provides further support for this cooling
showing a temperature decrease since 2007 (Fig. 6). A

comparison of the temperature records shows an almost

synchronous cooling in different Arctic Ocean regions

(Fig. 9). It suggests that cooling in areas remote from
Fram Strait is not caused by the influx of colder AW

because it would require an unrealistically rapid

propagation of water from Fram Strait along the slope

downstream. Enhanced shelf-basin exchanges may be

one of the possible non-advective processes, which may
modulate temperature changes in these regions. Dimin-

ished winter ice cover in recent years resulted in intensive

sea-ice formation associated with brine rejection and

probably sinking of brine-enriched dense and cold shelf
water into the deep basin, thus providing intense

ventilation of the basin’s interior. Spatial heterogeneity

of sea-ice coverage may explain substantial local differ-

ences in intensity and timing of this ventilation.

Upward spread of AW heat

The AW is believed to be effectively insulated from

the pack ice by a cap of fresh, cold, surface water
bounded below by a strong pycnocline (e.g., Rudels et

al. 1996) in which salinity increases from values of 33

psu or lower to around 34.5 psu at 150–300 m depth.

Strong stratification effectively suppresses mixing in the

Arctic Ocean interior, away from the boundary and
upper mixed layer. The resulting turbulent heat fluxes

from the AW layer in the Arctic Ocean interior are

small, less than 1 W/m2 (e.g., Rainville and Winsor 2008,

Fer 2009). At the same time, the decrease of AW
temperature with distance from Fram Strait (Fig. 7)

implies that AW heat must be lost as the AW spreads.

Most of this heat is spread laterally by advection, eddy

stirring, or double diffusive processes, but some portion

is lost upward, to the overlying halocline waters (e.g.,

Rudels et al. 1996, Steele and Boyd 1998, Martinson and

Steele 2001, Walsh et al. 2007, Polyakov et al. 2010,

2011).

The extensive observations in the 2000s provide an

opportunity to evaluate the upward spread of AW heat

(e.g., Polyakov et al. 2010, 2012a, 2013). Analysis of

repeated cross-sections spanning from Svalbard to the

East Siberian Sea and carried out for several years

provided strong evidence of the existence of upward heat

flux from the AW (Polyakov et al. 2010). For example,

10 sections crossing the Siberian continental slope and

spanning 438 E to 1858 E taken in summer (August–

September) 2007 were analyzed to quantify the along-

slope change of water temperature. The potential

temperature–salinity (h�S ) diagram (Fig. 10, left)

provides strong evidence that at low salinities (,34.3

psu, i.e., in the halocline and just below the upper layers

separated from the halocline by the temperature

minimum), temperatures are substantially higher at

eastern sections compared with western sections. More

specifically, temperatures from the eastern sections

(longitudes .1108 E) were 0.1–0.38C higher than were

western section temperatures. Mooring-based observa-

tions of currents at the continental slope off Svalbard,

;308 E (Ivanov et al. 2009), at the Laptev Sea slope,

;1258 E (Dmitrenko et al. 2008a), and at the junction of

the Lomonosov Ridge and the continental slope, ;133–

1508 E (Woodgate et al. 2001) suggest that the halocline

waters in the Eurasian Basin travel in the same direction

as the AW core. With the AW layer as the only source of

heat, these observations provide strong evidence of the

existence of upward heat flux from the AW.

Heat content Q was also used by Polyakov et al.

(2010) to further quantify these along-slope changes. Q

measures how much heat must be removed to cool the

water to the in situ freezing. At each section, average Q

was derived for two layers: an AW layer and an

‘‘overlying’’ layer (OL). The latter was defined to lie

below the temperature minimum separating the halo-

cline and the upper ocean layers (;30–50 m) thus

avoiding surface waters that are dominated by summer

atmospheric heating) and 125 m or the 08C isotherm,

which defines the upper AW boundary point. Fig. 10b

suggests that some heat lost from the AW is gained by

the OL along the west-to-east AW spreading path. This

analysis is based on the assumption that the OL in the

Eurasian Basin travels in the same direction as the AW

core. The strongest OL heat gain, up to 7% of the

estimated AW heat loss, was found off Severnaya

Zemlya (95–1108 E); much lower estimates were

obtained for other segments of the Eurasian slope.

Details of this analysis may be found in Polyakov et al.

(2010).

This analysis demonstrates that the AW heat does

penetrate into the overlying layers. How fast does this

process occur? Polyakov et al. (2011), using visual

inspection of available CTD observations (Fig. 8), argued

for coherent changes of AW and OL temperature as AW
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FIG. 10. (a) Potential temperature–salinity plot for the 10 cross-sections carried out in 2007. All temperature and salinity
profiles for each cross-section are shown. At low salinities (,34.3 psu), temperatures are substantially higher at eastern sections
(orange) compared with western sections (green). Water masses shown are lower-halocline water (LHW) and Atlantic water (AW).
Isolines show potential densities. (b) Anomalous heat content (GJ/m2) in the AW and overlying (OL) layers. Black triangles show
positions of cross-sections that provided observational data; linear interpolation is used in between. The insert shows along-slope
OL thickness change. These two panels provide evidence of the upward spread of AW heat along the AW path in the basin interior.
The figure is from Polyakov et al. (2010).
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warming leads to immediate (within the available

temporal resolution) warming of the OL at 1258 E.

Recalculating OL Q to yield heat flux (assuming that the

AW heat reaches the local OL in one year) yields ;3–4

W/m2 for the early 2000s and up to ;6 W/m2 for the

peak year of 2007. The microstructure observations

showed, however, that halocline mixing in the Arctic

interior is very weak, ;1 W/m2, and that mixing in the

Laptev Sea is higher, with episodic peaks of ;4–8 W/m2

(Lenn et al. 2009). How can we reconcile these estimates?

Polyakov et al. (2012a) analyzed high-resolution temper-

ature and salinity vertical profiles, which resemble a

staircase structure formed by layers of near-uniform

water temperature and salinity interleaved with strong-

gradient thin interfaces found in M1 mooring-based

records from the eastern Eurasian Basin. They found

strong, ;8 W/m2, double-diffusive (i.e., ocean motion

driven by different molecular viscosity of heat and salt)

fluxes across several diffusive layers occupying the 150–

250 m depth range and overlying the AW core. Double-

diffusive heat fluxes in the lower halocline of the Eurasian

Basin interior based on ITP data are ;1–2 W/m2 (on-

going analysis). We concluded that these fluxes provide a

means for transferring AW heat upward over more than a

100-m depth range toward the upper halocline.

Recent analysis of 2009–2010 temperature and salinity

profiles from ITP buoys demonstrated that the upper

pycnocline in the central Eurasian Basin is fed by the

upward flux of AW heat (Polyakov et al. 2012c). This

flux is estimated to be ;1 W/m2 averaged over one year.

Release of heat from the upper pycnocline through the

cold halocline layer to the surface mixed layer is,

however, seasonally intensified, occurring more strongly

in winter. This seasonal heat loss averages ;3–4 W/m2

between January and April, reducing the rate of new

winter sea-ice formation. Thus, this analysis corrobo-

rates the existence of previously hypothesized thermo-

dynamic coupling between the AW heat and the sea ice

in the Eurasian Basin of the Arctic Ocean.

CHANGES OF THE ARCTIC OCEAN FRESHWATER CONTENT

Long-term change of Arctic Ocean freshwater content

The Arctic Ocean is the key supplier of freshwater to

subpolar basins thus, contributing to intensity of the

deep convection and global thermohaline circulation

(e.g., Dickson et al. 2000). Changes of the FWC of the

Polar Basins are controlled by freezing and melting

processes, anomalous supply of fresh shelf riverine and

Pacific waters, precipitation and wind-driven redistrib-

ution of freshwater affecting ice drift and surface

currents (e.g., Aagaard and Carmack 1989, Proshutin-

sky et al. 2002, 2009, Häkkinen and Proshutinsky 2004,

Steele and Ermold 2005, Swift et al. 2005, Peterson et al.

2006, Serreze et al. 2006, Dmitrenko et al. 2008b,

Newton et al. 2008, Polyakov et al. 2008, Timmermans

et al. 2011, Giles et al. 2012, Morison et al. 2012). Figs. 1

and 6 (both updated), and Fig. 7 from Polyakov et al.

(2008) provide several examples of estimates of long-

term Arctic Ocean FWC changes. These figures show

that over the 20th century the central Arctic Ocean

became increasingly saltier. For example, FWC anoma-

lies averaged over 1950–1975 were estimated as�102 6

20 km3; salinification led to a substantial decrease,

�1478 6 17 km3, of FWC over 1976–1999. In contrast,

long-term (1920–2003) FWC trends over the Siberian

shelf were positive, 29 6 50 km3 per decade, thus

suggesting a general freshening tendency. The FWC

temporal changes (Figs. 1, 6, and 7) are consistent with

the phases of MDV. Associated with this variability, the

FWC record shows two periods, the 1930–1940s and in

the recent decade, when the central Arctic Ocean was

fresher, and two periods in the earlier century and in the

1950–1990s when it was saltier. Spatial pattern of FWC

anomalies associated with the MDV phases are shown in

Fig. 5 of Polyakov et al. (2008). The latter salinification

agrees with observational and modeling estimates (Steele

and Boyd 1998, Häkkinen and Proshutinsky 2004, Swift

et al. 2005). However, the FWC anomalies in the 2000s

stand out: the freshening was dramatic, with no analogy

in almost a century-long history of oceanographic

observations (Fig. 6).

One of the most striking features of FWC anomalies

for the central basin and its shelves is that central-basin

anomalies exceed those on the shelf by an order of

magnitude (Fig. 11, Polyakov et al. 2008). In addition,

Fig. 11 suggests an out-of-phase variability in the central

basin and on the shelves, where sustained phases of

central Arctic Ocean freshening are associated with

salinification of the shelf waters and vice versa. The

opposition of long-term tendencies expressed by trends

showing general salinification of the central basin and

freshening of shelves complement this observation.

Based on this analysis, Polyakov et al. (2008) concluded

that the FWC anomalies generated on arctic shelves

(including river discharge inputs) cannot trigger the

observed long-term FWC variations in the central Arctic

Ocean; to the contrary, they tend to moderate long-term

central-basin FWC changes.

Analysis of potential causes for the central Arctic

Ocean salinification presented in Polyakov et al. (2008)

suggested that the freshening/salinification of the upper

ocean was not induced by the AW since the lower-layer

changes were much weaker compared with the changes

in the upper Arctic Ocean. Thus, ice production and

sustained draining of freshwater (including ice and

liquid exports) from the Arctic Ocean in response to

winds are the key contributors to the salinification of the

upper Arctic Ocean in the 1980s–1990s. Finally, Poly-

akov et al. (2008) concluded that strength of the export

of arctic ice and water controls the supply of Arctic

freshwater to sub-polar basins while the intensity of the

Arctic Ocean FWC anomalies is of less importance. In

the next section, we will discuss whether these con-

clusions still hold during the 2000s.
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Change of Arctic Ocean freshwater content

in recent decades

Observational data and modeling results provide

evidence that increased arctic atmospheric cyclonicity

in the 1990s resulted in a dramatic increase in the salinity

in the Eurasian Basin. This salinification resulted from

the increased volume of salty Atlantic-origin water

entering the Eurasian Basin with a corresponding

displacement toward the Canada Basin of the Pacific-

Atlantic water boundary (Carmack et al. 1995,

McLaughlin et al. 1996, Morison et al. 1998). Steele

and Boyd (1998) found a retreat of fresh surface waters

and loss of the cold halocline layer from the Eurasian

Basin, and linked this water mass change to a shift in

atmospheric winds and ice motion. Steele and Boyd

(1998) and Dickson (1999) argued that salinification of

the upper Eurasian Basin in the late 1980s and early

1990s stemmed from the eastward diversion of Russian

rivers, in response to the anomalous atmospheric

circulation. Johnson and Polyakov (2001) suggested

that two mechanisms account for the Eurasian Basin

FIG. 11. (a) Decadal (except for the last two years) FWC anomalies and their standard errors for the central Arctic Ocean (red)
and Greenland and Barents seas (blue). (b) Decadal FWC anomalies for the Siberian marginal (green), Barents (blue), and
Greenland red) seas. (c) Pentadal freshwater input anomalies of the difference between precipitation and evaporation over the
Arctic Ocean (red) and river discharge (blue; adopted from Peterson et al. [2006]). Linear trends over 1955–2002 are shown by
dotted lines. Positive anomalies represent fresher basin or input leading to freshening. This figure suggests that the FWC anomalies
generated on arctic shelves (including anomalies resulting from river discharge inputs) and those caused by net atmospheric
precipitation were too small to trigger long-term FWC variations in the central Arctic Ocean; to the contrary, they tend to
moderate the observed long-term central-basin FWC changes. The figure is from Polyakov et al. (2008).
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salinification: eastward diversion of Russian rivers and

increased brine formation due to enhanced ice produc-

tion in numerous leads in the Laptev Sea ice cover. We

hypothesize that these changes have probably had

strong impact on the Arctic biota.

Arctic Ocean freshening in the 2000s was attributed to

the strength of the Beaufort Gyre, which, under

anticyclonic atmospheric circulation, tends to accumu-

late converging freshwater (Proshutinsky et al. 2002,

2009). Continuous freshening of the Beaufort Gyre was

observed in 2003–2007 culminating in 2008 when the

FWC anomaly exceeded climatological values by as

much as 60% (Proshutinsky et al. 2009, McPhee et al.

2009). Giles et al. (2012), using satellite data, reported

that the dome of freshwater in the Canada Basin

associated with the Beaufort Gyre continued to increase

through 2010 thus suggesting a spin-up of the gyre and

potentially further freshening of the Polar Basin. Recent

2010 freshening of the western Eurasian Basin was

associated with the release of freshwater from the

Beaufort Gyre, suggesting its important role in shaping

the Arctic Ocean freshwater outflows into sub-polar seas

(Timmermans et al. 2011). An alternative hypothesis

explaining the FWC changes in the Arctic Ocean was

proposed by Morison et al. (2012). According to this

study, the observed FWC changes are driven by

variations of large-scale atmospheric pattern character-

ized by the Arctic Oscillation index, which effectively

regulates the oceanic pathways of the Siberian riverine

waters into and through the central basin. Rabe et al.

(2010) used observations and modeling results to

attribute the strong freshening in 2006–2008 to a variety

of factors such as local wind-driven Ekman pumping, an

increased ice melt and anomalous advection of riverine

water from the Siberian shelves. Chemical observations

suggested that the Beaufort Gyre freshening in the 2006

and 2007 was due to enhanced (1.3 m/yr) ice melt

(Yamamoto-Kawai et al. 2009).

Local wind conditions make the analysis of the

freshwater pathways even more complex. For example,

using oxygen isotope samples (d18O) from stations north

of the New Siberian Islands, Abrahamsen et al. (2009)

FIG. 12. Maps showing the integrated (0–50 m) water mass fractions for meteoric water in 1993, 1995, 2007, and 2008. From
Abrahamsen et al. (2009), updated.
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calculated the freshwater composition in the upper 50 m

of the water column, deriving a balance between

meteoric water (primarily river run-off), sea ice melt-

water, and, for 2007 and 2008, when phosphate and

dissolved oxygen data were available, determining the

split between Atlantic and Pacific water masses. Oxygen

isotope data from 1993 and 1995 are from Schmidt et al.

(data available online).10 While winds in 1993 were

cyclonic, causing the freshwater plume from the Lena to

remain on the shelf, winds in 1995 were offshore,

causing a wider spread of riverine waters over the shelf

break and into the Amundsen Basin. In 2007, winds

were cyclonic around the New Siberian Islands; average

summer winds north of the New Siberian Islands were

easterly, turning northerly over much of the Laptev Sea.

This caused much of the outflow from the Lena to

remain on the shelf, or to be forced to flow eastward

over Lomonosov Ridge and into the Makarov Basin.

This can be seen in Fig. 12, where large amounts of

meteoric freshwater can be found in the central and

eastern sections. Fig. 13 shows a significant presence of

Pacific water in the easternmost stations in 2007, where

it accounts for up to 40% of the surface layer. Some

Pacific water was also measured in the eastern section in

2008, but in smaller quantities.

DISCUSSION AND CONCLUDING REMARKS

Does the host of recent Arctic Ocean changes

represent an irreversible climate shift or can the polar

basins recover (at least partially) to their previous state?

For example, was the Arctic Ocean cooling after the

warming of the 1930–1940s accompanied by enhanced

shelf-basin interactions as suggested by the recent

synchronous cooling of the Arctic Ocean interior? There

is much yet to understand; explanations remain obscure

and will require further investigation. Advances in

modeling and theory as well as continued observations

are required in order to develop a deeper understanding

of the mechanisms of high-latitude climate change. This

FIG. 13. (a, b) Average dissolved barium concentration, (c, d) integrated water mass fractions for sea-ice melt, and (e, f)
integrated water mass fractions for the Pacific water. All of these plots are integrated or averaged from the surface to 50 m depth.
The figure is from Abrahamsen et al. (2009), updated.

10 http://data.giss.nasa.gov/o18data
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will be a nontrivial task due largely to the poorly defined

character of high-latitude variability and the changing

relationship with large-scale climate parameters like the

North Atlantic Oscillation (NAO, where positive values

are characterized by a stronger north-south pressure

gradient in the North Atlantic and stronger westerly

winds) (Polyakova et al. 2006). The validity of extrap-

olating trends of the Arctic climate system into the

future is impacted by the existence of large-amplitude

MDV. Therefore it is imperative to understand how to

separate these two processes and understand the under-

lying climate mechanisms. However, the exceptional

decay of Arctic ice and anomalously strong upper Arctic

Ocean freshening and high-latitude atmospheric and

oceanic warming suggest that at least some of the

observed Arctic Ocean changes may be irreversible.

A comprehensive overview of the footprints of climate

change in Arctic ecosystems was given by Wassmann et

al. (2011). They provided compelling evidence that all

components of the high-latitude marine ecosystem are

impacted by global warming as reflected in a wide range

of changes including demography of Arctic species, their

abundance, mortality and growth. Wassmann et al.

emphasized that most reports considered large mammals

and birds and the number of reports related to plankton

and benthic species was surprisingly low. Despite uneven

spatiotemporal coverage, this overview delivered an

important message about the potentially alarming fate

of Arctic species in a changing climate. The processes

that give rise to ecosystem changes that are reflected in

demography, growth and mobility are all determined by

changes in temperature and stratification.

The trends and expectations for the carbon flux in a

warming Arctic Ocean caused by climate change are

manifold. The largest changes will take place in the

northern sections of today’s seasonal ice zone, which will

in decades to come expand to cover the entire Arctic

Ocean. Primary production will increase. The stratified

and nutrient-poor surface waters prevent further in-

creases in new production that would otherwise be

expected as light availability increases. In regions

subjected to large-scale advection or at shelf breaks

additional nutrients can be supplies. Whether the new

production of the central Arctic Ocean will remain low

depends obviously upon the physical oceanography.

Due to the thinning of the ice, the significance of ice

algae for the total primary production of the Arctic

Ocean may increase in the central Arctic Ocean, but will

decrease in the outer seasonal ice zone. The blooms of

ice and plankton algae will stretch over longer periods of

time. Again, projection of these processes in the future

depends upon insights and understanding of ice melt

and surface freshening. Freshening of the Arctic Ocean,

nutrient limitation and a prolonged growing season will

change the community composition and carbon flux. To

improve the estimates of primary production and

carbon flux in the Arctic Ocean, attempts have to be

made to increase our basic knowledge, in particular

concerning the central Arctic Ocean basins and the

entire Siberian shelf, which are poorly investigated

(Wassmann et al. 2011).

While the ecosystem response to a warming climate

may not distinguish between MDV and a long-term

trend, the long-term predictability of the system is

impacted by the nature of the forcing of the warming. If

we want to develop a thoughtful response for a

sustainable society, continued monitoring and under-

standing of the ocean, ice, atmosphere, terrestrial and

biological components of the Arctic system must be a

priority. However, we need to improve our under-

standing of key processes such as dissipation of energy

across density gradients, nutrient limitation and new

production and responses of key organisms to changes

in food, light and temperature.
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Ottersen, R. I. Perry, H. O. Pörtner, J. J. Polovina, and A.
Takasuka. 2010. On the processes linking climate to
ecosystem changes. Journal of Marine Systems
79(3–4):374–388.

Enfield, D. B., A. M. Mestas-Nunez, and P. J. Trimble. 2001.
The Atlantic multidecadal oscillation and its relation to
rainfall and river flows in the continental U.S. Geophysical
Research Letters 28:2077–2080.

Environmental Working Group (EWG). 1997. Joint U.S.–
Russian atlas of the Arctic Ocean. [CD-ROM]. National
Snow and Ice Data Center, Boulder, Colorado, USA.

Fahrbach, E., J. Meincke, S. Østerhus, G. Rohardt, U. Schauer,
V. Tverberg, and J. Verduin. 2001. Direct measurements of
volume transports through Fram Strait. Polar Research
20(2):217–224.

Fer, I. 2009. Weak vertical diffusion allows maintenance of cold
halocline in the central Arctic. Atmospheric and Oceanic
Science Letters 2(3):148–152.

Francis, R. C., and S. R. Hare. 1994. Decadal scale regime
shifts in the large marine ecosystems of the North-east
Pacific: a case for historical science. Fisheries and Ocean-
ography 3:279–291.

Gerdes, R., M. J. Karcher, F. Kauker, and U. Schauer. 2003.
Causes and development of repeated Arctic Ocean warming
events. Geophysical Research Letters 30(19). http://dx.doi.
org/10.1029/2003GL018080

Giles, K. A. S. W. A. Laxon, L. Ridout, D. J. Wingham, and S.
Bacon. 2012. Western Arctic Ocean freshwater storage
increased by wind-driven spin-up of the Beaufort Gyre.
Nature Geoscience 5:194–197.
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