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Continuous high quality data are critical for weather and climate investigations.
Numerous data gaps exist particularly over mountainous regions which limits the
ability to construct climatologies and perform trend analysis. This study addresses
the issue of sparse precipitation data over Northwest Himalaya (NWH) and fills
data voids by applying the quantile mapping (QM) method. QM is applied to
observed winter precipitation for a period of 25 years (1991–1992 to 2015–2016)
to construct a continuous reliable data set. The first 20 years (1991–1992 to
2010–2011) are used for training and the remaining 5 years (2011–2012 to
2015–2016) are used for validation. In total, 10 stations are available for this study
and each one is considered serially as a reference to generate daily precipitation
values at the other stations. The mean precipitation of NWH region is constructed
by considering the mean of all the stations. Standard statistical measures like root
mean square errors, standard deviation, skill score and its decompositions are
applied to evaluate the generated datasets. Based on statistical analysis, the Kanzal-
wan station, located in Great Himalaya range, is one of the best performing refer-
ence stations for generating precipitation values over NWH. The statistical
measures of this station show the highest skill scores, lowest root mean square error
and lowest standard mean errors for all winter months except January. This study
provides a successful application of QM to generate precipitation data for climate
analysis over the complex terrain of the Himalaya region.
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1 | INTRODUCTION

Climatological analyses of various meteorological parame-
ters are essential for investigating weather phenomena. How-
ever, the reliability of meteorological parameters is affected
by the percentage of data in a times series that is missing.
There are many reasons for gaps in observed time series
such as communication breakdowns, non-response of the
observer, technical issues and instrument failure. This prob-
lem is amplified when dealing with missing daily precipita-
tion values for stations located over the Himalayan region,
since this region has a sparse network and high spatial and
temporal variability. The Himalayas provide fresh water for

nine rivers in Asia, serving approximately 500 million
inhabitants comprising 10% of North India's human popula-
tion and also providing water for agriculture throughout the
year (IPCC 2007). Accurate forecasting is required to antici-
pate avalanches in order to protect local residents during
their day-to-day activities as well as members of the Indian
army as they conduct operational activities and plan future
deployments. Therefore, improving the precipitation data by
filling in gaps will serve these forecasting needs. Scientists
generally deal with gaps in time series by either using
methods that tolerate missing data, or by limiting analysis to
periods of continuously available data in order to do mean-
ingful scientific analysis.
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To generate missing precipitation values, various empiri-
cal and statistical techniques have been developed over the
past few years. The arithmetic averaging (AA) (Linacre
1992) and Inverse distance interpolation (ID) methods (Wei
and McGuinness 1973) are examples of empirical methods.
Moreover statistical methods such as multiple linear regres-
sion (REG) (Tabony 1983; Kim et al. 1984), kriging (Hevesi
et al. 1992a, 1992b) and optimal interpolation. However,
Ramos-Calzado et al. (2008) demonstrated that AA and lin-
ear interpolation (Lowry 1972) method has limited applica-
bility to precipitation, which has high temporal variability.
The Handbook of Hydrology (ASCE 1996) recommends
using the normal ratio and inverse distance weighting
methods for estimating missing data values in a time series.
Suhaila et al. (2008) fill missing target station data from
neighbouring stations by using the modified inverse distance
and normal ratio methods. Silva et al. (2007) produced
monthly missing rainfall values at stations in Sri Lanka by
applying select statistical methods, from surrounding sta-
tions and demonstrated that the inverse distance method was
suitable for low terrain. The normal ratio method was found
suitable for hilly areas as well as higher altitude zones.
Despite modifications to traditional and spatial interpolation
methods there are still some limitations. Teegavarapu (2016)
discussed the limitations of inverse distance weighting and
spatial interpolation methods. To estimate point rainfall, the
arithmetic average and inverse-distance methods are not suit-
able in mountainous regions (Tung 1983).

Previous studies applied various techniques to generate
the missing data but found limited applicability in limited
areas consistent with numerous studies: Kemp et al. (1983);
Eischeid et al. (1995); Degaetano et al. (1995). Simolo et al.
(2010) suggest that regression leads to both an over and
under-estimation in the number of heavy precipitation events
since the probability distribution is not conserved. The Arti-
ficial neural network (ANN) technique is also used to gener-
ate the missing precipitation values. Coulibaly and Evora
(2007) examined six different types of artificial neural net-
work to fill the missing values in daily precipitation and
extreme temperatures in Northeastern Canada. They found
that the MLP artificial neural network estimated missing
values of the precipitation well. Teegavarapu (2007) uses the
ANN to a fitted semivariogram model within ordinary kri-
ging and demonstrated that ANN with in-kriging is better
than the ordinary kriging. However, it still has limitations in
the selection of the semivariogram model, distance intervals,
and the computational power (Teegavarapu 2009).

While many studies have been carried out to estimate
missing values of rainfall and temperature globally using dif-
ferent methods, few studies (Bhutiyani et al. 2010; Kanda
et al. 2017) have estimated missing values over the North-
west Himalayan (NWH) region and the Karakoram region,
key regions for Indian national security. Considering the
strategic importance of the NWH, an attempt has been made

to generate missing precipitation values over the region by
using quantile mapping (QM), which employs an empirical
cumulative distribution function. Actually, this technique
effectively reduces errors by preserving information on the
frequency distribution of modelled and observed precipita-
tion data (Lafon et al. 2012). The data and methodology is
described in Section 2, results and discussion in Section 3
and the conclusion in Section 4.

2 | DATA AND METHODOLOGY

2.1 | Data

The Indian Snow and Avalanche Study Establishment
(SASE) maintain 48 Western Himalaya surface observato-
ries, which collect precipitation data twice daily (at 0830 and
1,730 hr Indian Standard Time [IST]) using a snow stack
(a plane surface with a 1 m measuring stick perpendicular to
the surface) and a rain gauge. The SASE observatories pro-
vided high quality daily observed precipitation data at 10 sta-
tions spanning three important Himalayan ranges for the
period 1991–1992 to 2015–2016 (25 years) during winter
(November–April) for the present study. This study focuses
on extreme winter precipitation events that are associated
with important synoptic weather systems called western dis-
turbances (WDs). WDs travel from west-to-east across this
region and result in snow accumulations that lead to ava-
lanche danger (Rao and Srinivasan 1969). The 10 stations
located in the three mountain regions are shown in Figure 1
while mean climatological data are provided in Table 1. The
10 station comprise the following regions: three stations in
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FIGURE 1 Domain representing the study area showing the location of
the 10 stations along with topography (m) and names of the mountain
ranges in the Northwest Himalaya region. Table 1 provides the station
names that corresponds to the capital letters in the map [Colour figure can
be viewed at wileyonlinelibrary.com]
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Pir Panjal, four in Shamshawari and three in the Great
Himalaya.

In this study, 25 years of precipitation time series are
available without any missing values and for the analysis the
data is split into two periods. The first 20 years of data from
1991–1992 to 2010–2011 has been used to develop the algo-
rithm and the remaining 5 years from 2011–2012 to
2015–2016 are used to validate the results. A total of
155 daily values were generated for each winter month dur-
ing the 5 years validation period.

2.2 | Quantile mapping

Before applying the QM, a Kolmogorov–Smirnov two-sample
test (Chakravarti and Laha 1967) was performed on the empiri-
cal cumulative distribution functions (ECDFs) between all sta-
tions. It revealed that all station time series have similar ECDFs
which confirm the capability of the QM technique. The QM
approach has been typically used to bias-correct model forecast
data with observational data. QM algorithms generally perform
better than simple bias correction methods which only preserve
mean and variance of the precipitation time series (Teutschbein
and Seibert 2012; Chen et al. 2013). In the QM method, the
empirical probability distribution of data assumes that there are
no gaps in the time series that is used to produce a continuous
observed record. Forecasted data generated by numerical
weather prediction (NWP) models have their own errors and
using these data to fill gaps in observed time series can result in
spurious observed precipitation values and may not be very reli-
able for climate studies. Hence, instead of using the forecasted
data, the observed data have been used as reference data to gen-
erate the missing precipitation values over Northwest Himalaya.
Each station is considered as the reference individually to gener-
ate precipitation values at other stations and the combined mean
of all these stations (except reference station) produce the mean
precipitation over NWH region. This procedure has been
adopted for all the months (November–April).

The generated precipitation output is an inverse of cumula-
tive distribution function (CDF) of observed values at the proba-
bility which corresponds to the reference CDF at the particular
value. Details of this method can be seen in Wood et al. (2002)

and Gudmundsson et al. (2012). However, for the sake of com-
pleteness, important steps for finding the empirical probability
distribution function will be discussed. The empirical probability
distribution is obtained by simply fitting a histogram for a given
variable and then dividing the frequency of each class by the
total number of observations. For this purpose, the number of
classes created should be sufficiently large and typically has a
minimum number of classes of 5 for short and 20 for long data
series to ensure reliable results.

This provides a set of probabilities falling in each class
say P (xi) where the subscript i = 1… n, where n is the num-
ber of classes.

Mathematically the CDF (C(xi),) equation is written as

C xið Þ=
ð
f tð Þdt, ð1Þ

where f (t) is the probability density function.
If the equation is discretized then the function looks like

Ci =
Xn
i

P xið Þ, i=1, 2, 3……:n, ð2Þ

where
P

Ci = 1. In addition, Ci will provide the fraction of
total number of data points below a particular value (the
quantile of the particular class). The inverse of the CDF will
give the value at a particular probability and is called a quan-
tile function.

Suppose Fo and Fr are CDFs for the observed and refer-
ence data sets, respectively. Then for a reference output
X the estimated value Y will be as follows.

Y =F − 1
o Fr Xð Þð Þ: ð3Þ

Here, F−1 is an inverse of CDF. Thus, QM is a transfor-
mation technique between two CDFs as shown in Figure 2,
where Z-Gali (station C) precipitation data is generated by
using Kanzalwan (station I) data as a reference data for the
month of February.

2.3 | Validation approach

A simple and effective approach to evaluate the process
known as split validation has been used. Here, a large

TABLE 1 Details of stations located in the study domain

Names Stations code Altitude (m) Ranges Data availability Average seasonal precipitation (mm)

H-Taj A 3,080 Shamshawari 1973–2016 1038.6

Stage-2 B 2,650 Shamshawari 1991–2016 1168.4

Z-Gali C 3,192 Shamshawari 1992–2016 1166.6

Pharkiyan D 2,960 Shamshawari 1992–2016 1029.8

Gulmarg E 2,800 Pir Panjal 1991–2016 844.7

Dhundi F 3,050 Pir Panjal 1989–2016 1161.6

Banihal Top G 3,250 Pir Panjal 1992–2016 804.0

Drass H 3,230 Great Himalaya 1991–2016 415.0

Kanzalwan I 2,440 Great Himalaya 1973–2016 1051.8

Patsio J 3,800 Great Himalaya 1983–2016 477.2
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fraction of a dataset is used to develop the algorithm for
generating the precipitation values and a smaller fraction
of the dataset is kept for verifying the methodology
(WMO No.-100 2011). Smaller datasets are generated
using the algorithm developed from the larger datasets,
and the generated values are compared with observed
datasets to evaluate the skill of the algorithm. Most stud-
ies evaluate skill score (SS), mean absolute errors (MAE),
similarity index (SI), coefficient of efficiency (CE), root
mean square error (RMSE) and several other statistical
measures because these measures quantify correctness of
fit and variability of the generated data compared to
observations. In this study, generated daily precipitation
time series produced by the QM method are validated by
applying RMSE and SS.

The RMSE (also called root-mean-square deviation
[RMSD]) represents the fluctuation and error between model
generated and observed values. RMSE is a robust measure
of accuracy. RMSE values that are less than half of the stan-
dard deviation (SD) of the observed data are generally con-
sidered to be sufficiently low and it is appropriate for model
validation (Singh et al. 2004).

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N

XN
i=1

XGen
i −XObs

i

� �2,
vuut ð4Þ

where XGen
i and XObs

i represent generated and observed data
respectively in Equation (4) and N is the number of total
generated data points.

The skill of the generated values provides correctness
relative to the observed values. The SS has been calculated
by using mean square error (MSE) and SD of the observed
data as shown in Equation (5). A skill score of 1 represents
perfect match between generated and observed and a value
of 0 indicates that the generated data has no improvement on
climatology (Hashino et al. 2007).

SS= 1−
MSE
σ2x

: ð5Þ

According to the Murphy and Winkler (1992), SS can be
further decomposed as:

SS= ρ2rx − ρrx − σr=σxð Þ½ �2 − μr − μxð Þ=σx½ �2, ð6Þ
where ρrx represents the correlation between model gener-
ated and observed values, σ is the SD of generated (subscript
r) and observed (subscripted x) data, μr and μx are the mean
of the generated and observed values, respectively. The
terms in right hand side of Equation (6) represents potential
skill (PS), slope reliability (SREL), and standardized mean
error (SME). Potential skill (PS) is what can be achieved by
eliminating conditional and unconditional biases where
slope reliability (SREL) is a measure of the conditional bias
and SME is a measure of the unconditional bias (Murphy
and Epstein 1989).

Taylor (2001) developed a graphical method (Taylor's
diagram) for summarizing the statistical comparison between
observed and generated data. Luu and Tkalich (2014) have
compared the statistics between observations and experi-
ments using Taylor diagrams for the constructed mean sea
level time series by establishing a relationship between El
Niño–Southern Oscillation (ENSO) and Asian monsoon. A
similar statistical approach has been adapted (Taylor dia-
gram shown in Figure 4) in the present study for comparing
the precipitation datasets over NWH.

3 | RESULTS AND DISCUSSION

An evaluation of generated and observed precipitation data
using QM against competing methods (inverse distance
interpolation (ID), normal ratio method (NR) and multiple
regression analysis (REG)) is provided in Table 2. The

FIGURE 2 Description of QM method with an example for generating precipitation at the station Z-Gali (left panel) using Kanzalwan station as a reference
data (right panel) for the month of February
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details of these methods are available in Kashani and Dinpa-
shoh (2012). At least two stations are required to use the ID
or NR methods otherwise these methods will provide the
same values as those of the training station. However, only
one station was needed for using the QM methodology to
generate data at other stations (Table 2) and additionally,
QM produced the most statistically robust results. Therefore,
the present study focuses on the QM method. Precipitation
data at each of the 10 stations was used to produce data at
the other 9 stations. The mean of these 9 station time-series
represents data over the whole NWH. The data sets gener-
ated by QM for the period 2011–2012 to 2015–2016 (5 years
or 155 days for each month, November–April) were vali-
dated by using various standard statistics (e.g., SD, mean,
RMSE, skill score and its decompositions). The MSE Skill
Score and its decomposition of precipitation generated for
Gulmarg (E), Banihal Top (G) and Kanjalwan (I) displays
high skill scores and low errors (SREL and SME) in
November (Figure 3). During December, Dhundi (F), Drass
(H) and Kanjalwan (I) produced slightly better statistical
results than other stations. The stations H-Taj (A), Z-Gali
(C) and Pharkiyan (D) display higher skill scores and lower
errors compared to the others stations in January. In
February, Stage-2 (B), Z-Gali (C), Pharkiyan (D) and Kan-
jalwan (I) display high skill scores and low errors. While in
March, the stations Stage-2 (B) and Kanzalwan (I) had high
SS and low error. Similarly, the stations Stage-2 (B), Z-Gali

FIGURE 3 Monthly (November to April) MSE skill score (SS) and its decompositions, that is, Potential skill (PS), slope reliability (SREL) and standard
mean error (SME) by 10 stations for NWH region

TABLE 2 Comparison between QM and three other methods

Months Methods SS PS SR SME RMSE

November ID 0.70 0.77 0.06 0.01 1.72

NR 0.79 0.83 0.04 0.01 1.44

REG 0.67 0.68 0.00 0.01 1.81

QM 0.74 0.75 0.00 0.00 1.60

December ID 0.67 0.72 0.06 0.00 3.18

NR 0.71 0.76 0.05 0.00 2.95

REG 0.73 0.77 0.04 0.00 2.83

QM 0.93 0.94 0.00 0.00 1.41

January ID 0.80 0.81 0.00 0.00 3.87

NR 0.76 0.78 0.02 0.00 4.29

REG 0.68 0.70 0.01 0.01 4.94

QM 0.79 0.81 0.00 0.01 3.98

February ID 0.70 0.72 0.00 0.01 7.46

NR 0.76 0.77 0.00 0.01 6.74

REG 0.76 0.79 0.03 0.00 6.70

QM 0.87 0.87 0.01 0.00 5.01

March ID 0.88 0.90 0.02 0.00 4.08

NR 0.91 0.91 0.00 0.00 3.61

REG 0.77 0.82 0.05 0.00 5.73

QM 0.89 0.90 0.00 0.01 4.04

April ID 0.63 0.72 0.09 0.00 4.73

NR 0.67 0.77 0.10 0.00 4.50

REG 0.75 0.75 0.00 0.00 3.90

QM 0.83 0.85 0.02 0.01 3.22

Note. ID: inverse distance Interpolation; NR: normal ratio method; REG: regres-
sion (Significant methods are represented by bold values).
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(C), and Kanjalwan (I) have better results compared to the
other stations over NWH during April.

Kanzalwan (station I) has a high correlation, low RMSE
and almost the same SD as the observed data in November

(Figure 4). During December, observed data have a SD of
5.5 mm/day, the stations Drass (H) and Kanzalwan
(I) show little deviation from observed data, display low
RMSE and high correlation with observations. Compared

FIGURE 4 Taylors diagram representing the monthly performance of various stations (10) of NWH during (a) November, (b) December, (c) January,
(d) February, (e) March and (f) April

TABLE 3 Performance of stations in terms of statistical measures (high SS and low RMSE) represented by tick marks from November to April

Names Stations code November December January February March April

H-Taj A ✓

Stage-2 B ✓ ✓ ✓

Z-Gali C ✓ ✓ ✓

Pharkiyan D ✓ ✓

Gulmarg E ✓

Dhundi F ✓

Banihal Top G ✓

Drass H ✓

Kanzalwan I ✓ ✓ ✓ ✓ ✓

Patsio J
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TABLE 4 Precipitations thresholds statistics of 10 stations (A–J) for the months of November–April

Months
Precipitation
thresholds (mm) Statistics OBS A B C D E F G H I J

November <3 Mean 0.24 0.13 0.08 0.05 0.07 0.12 0.00 0.03 0.07 0.05 0.00

SD 0.60 0.49 0.36 0.23 0.39 0.47 0.00 0.25 0.45 0.22 0.00

3–7 Mean 4.30 0.00 4.70 4.57 5.08 4.15 4.16 4.52 4.28 4.82 0.00

SD 1.09 0.00 1.42 1.18 1.04 1.01 0.91 1.76 0.00 1.17 0.00

7–12 Mean 8.43 8.14 9.71 0.00 7.33 9.87 9.11 8.81 0.00 9.37 8.66

SD 0.91 1.15 3.15 0.00 0.21 2.89 1.44 1.81 0.00 0.41 0.00

12–16 Mean 12.88 13.95 0.00 12.27 0.00 13.45 13.21 15.11 13.37 0.00 12.81

SD 0.41 0.92 0.00 0.00 0.00 0.89 0.00 0.04 0.00 0.00 0.48

>16 Mean 27.71 46.78 27.11 37.92 26.20 27.31 24.96 27.06 29.38 22.37 16.78

SD 0.00 0.00 14.32 14.77 1.19 7.42 7.16 9.75 6.01 5.77 0.00

December <5 Mean 0.30 0.21 0.23 0.23 0.20 0.15 0.11 0.00 0.21 0.41 0.11

SD 0.82 0.70 0.80 0.85 0.66 0.62 0.67 0.00 0.82 1.15 0.57

5–10 Mean 6.99 7.53 6.97 6.36 8.60 6.72 7.15 8.35 7.88 7.33 5.83

SD 1.84 1.13 1.63 0.67 1.67 1.26 1.19 1.47 1.55 1.02 0.35

10–15 Mean 12.14 12.50 11.26 0.00 14.35 10.87 11.41 13.23 11.99 12.36 12.25

SD 1.31 2.00 1.83 0.00 0.00 0.64 1.05 1.11 1.38 2.56 1.76

15–20 Mean 18.19 0.00 18.21 18.42 16.70 0.00 15.69 0.00 17.67 16.63 17.53

SD 1.13 0.00 0.86 1.36 1.46 0.00 0.64 0.00 1.94 1.34 3.35

>20 Mean 24.99 29.42 33.68 37.64 36.20 31.64 33.54 29.65 25.01 25.06 35.52

SD 4.88 10.49 12.71 13.18 5.91 7.31 16.15 8.55 4.59 5.85 7.51

January <5 Mean 0.54 0.40 0.31 0.42 0.37 0.34 0.35 0.04 0.50 0.29 0.29

SD 1.10 1.08 1.00 1.15 1.11 1.01 0.97 0.43 1.18 0.90 1.02

5–10 Mean 5.89 6.87 8.10 6.77 7.30 7.25 7.14 7.66 7.52 6.96 7.21

SD 1.26 1.14 0.89 1.66 1.56 1.22 1.12 1.34 1.34 1.51 1.00

10–20 Mean 14.36 16.08 16.62 15.76 15.45 14.65 12.80 11.73 14.53 16.52 13.88

SD 3.48 1.90 2.01 3.17 2.83 2.82 3.09 1.32 3.02 3.46 2.47

20–30 Mean 24.99 24.19 24.99 25.01 23.73 25.29 23.48 23.96 0.00 23.27 23.16

SD 3.91 2.77 3.68 2.22 2.77 2.41 2.03 3.25 0.00 2.22 3.27

>30 Mean 39.79 35.91 41.79 44.72 40.92 56.54 61.53 57.43 43.24 47.14 48.72

SD 5.49 4.91 13.95 9.98 13.18 29.59 17.73 18.40 0.00 21.03 14.06

February <5 Mean 0.70 0.44 0.17 0.34 0.39 0.39 0.30 0.00 0.35 0.54 0.15

SD 1.12 1.00 0.56 0.72 1.04 1.11 0.98 0.00 1.23 1.14 0.76

5–10 Mean 5.90 6.88 6.85 7.22 7.57 7.62 7.37 8.00 6.40 8.08 7.34

SD 1.05 1.61 1.65 1.43 1.84 1.47 0.74 1.20 1.33 1.44 1.68

10–30 Mean 17.23 17.20 17.23 18.23 19.08 22.05 18.40 18.98 18.16 19.55 18.70

SD 4.86 7.15 5.66 5.19 6.97 5.43 4.53 6.11 6.22 6.20 5.13

30–50 Mean 37.59 36.68 37.42 42.15 37.33 36.44 36.30 39.98 36.97 34.39 38.21

SD 6.17 6.02 6.11 5.31 5.55 3.27 7.40 7.38 5.33 3.14 7.04

>50 Mean 63.07 51.12 70.24 63.13 61.78 67.77 67.91 71.27 87.46 62.90 71.80

SD 10.09 0.00 8.70 14.72 20.38 13.93 19.84 15.16 40.19 2.65 24.24

March <5 Mean 0.70 0.51 0.26 0.59 0.30 0.44 0.31 0.00 0.30 0.51 0.40

SD 1.18 1.21 0.88 1.24 0.94 1.10 0.93 0.00 1.06 1.07 1.23

5–10 Mean 6.68 7.63 6.89 7.17 7.82 7.63 7.47 8.99 7.46 7.21 7.46

SD 1.07 1.61 1.43 1.71 1.61 1.46 1.18 1.10 1.19 1.59 1.19

10–30 Mean 18.35 17.39 17.22 19.39 20.41 19.45 17.93 17.99 16.80 17.32 17.53

SD 5.29 5.69 5.49 5.15 5.51 5.93 5.23 4.98 4.70 5.63 4.99

30–50 Mean 35.77 38.55 42.35 30.83 40.67 41.85 34.34 37.75 37.58 38.06 39.25

SD 6.78 5.58 6.42 0.00 5.92 7.15 3.26 5.37 6.75 5.81 6.37

>50 Mean 57.02 61.10 68.11 82.96 92.89 73.33 77.84 62.33 69.59 57.45 77.96

SD 6.44 15.62 23.75 0.00 25.60 17.19 17.57 7.92 13.46 3.59 16.68

DEVI ET AL. 7



to other stations, H-Taj (A) depicts stronger correlations,
lower RMSE and the same SD as the observed data in
January. For the month of February, the generated data at
the stations Stage-2 (B) and Pharkiyan (D) show a slight
deviation in SD compared to the SD of observed data.
Whereas at station Kanzalwan (I), the difference in SD is
slightly higher than observations, but the correlation and
RMSE are approximately the same as those of the two sta-
tions (B and D). In March the stations Stage-2 (B) and Kan-
zalwan (I) have a RMSE that is less than half of the SD of
the observed data and high correlations. However, Stage-2
(B) displays low variation in SD compared to Kanzalwan
(I). Finally, in April, the stations Stage-2 (B), Z-Gali
(C) and Kanzalwan (I) display high correlations and low
RMSEs compared to the other stations. The performance of
the stations in terms of various statistical measures is sum-
marized in Table 3 and clearly shows that the Kanzalwan
(station I) has the best statistical results in all the months
except for January.

To quantify biases of the generated data using the QM
approach, two statistical measures mean and SD have been
calculated for 5 precipitation thresholds for each month at
different stations (Table 4). Comparing the observed and
generated data at Kanzalwan (I) indicates that the mean and
SD are not well captured for extreme events >12, >30 and
>50 mm for November, April and February, respectively.
For the month of January, the SD of the generated data dis-
plays a high deviation for >30 mm events (represented by
bold values in table 4). This can be attributed to low skill
score in January of the Kanzalwan station. Scatter plots
have also been used to assess the performance of QM meth-
odology. Each of the 10 stations was considered individu-
ally to serve as the reference station and scatter plots were
constructed for all of the months (November to April) to
examine the behaviour of very low/zero or very high pre-
cipitation events. Figure 5 shows a direct comparison of
generated precipitation data for all the stations (A–J) with
observed precipitation data. The strength of the statistical
relationship is quantified by the adjusted R2, which varies

between 0.13 and 0.85. Note that Patsio (J), located in
Great Himalaya range, does not show a strong statistical
relationship (low value of adjusted R2) in any given month.
This may be due to its location over high mountains where
it is strongly affected by orographic features.

The present study is consistent with the results obtained
by Dimri et al. 2008 regarding a precipitation forecast using
the k-nearest neighbour method over the Western Himalaya.
According to Dimri et al. (2008), the Himalayan regions
generally receives different patterns of precipitation depend-
ing on the frequency and movement of Western Distur-
bances eastward and as they cross the Pir-Panjal range,
leading to interactions with the other ranges. Due to the
close association of WD with precipitation at these stations,
the generated value may not perform well for all the other
stations. The analysis of this study, which used various sta-
tistical measures (e.g., SS, correlations, errors, etc.) suggests
that the availability of at least two or three stations which
have a high SS and low errors in each month can be used to
generate a precipitation time series representative for the
whole NWH area. Results over NWH can be improved by
considering all the stations that have a good SS and low
errors for a given month.

Moreover, the Taylor diagram indicates that the
stations A, B, C and I are most suitable to serve as reference
stations for generating the mean regional precipitation time
series over the NWH. Since the initial data availability at
some of the stations begins in 1973 (Table 1), QM can be
applied to fill in gaps and generate a longer time series for
the entire NWH region. This would result in a complete
30–40 years long time series of data and could be used to
define a climatology and for trend analysis over the NWH.
This study provides a successful application of the above
mentioned method for generating precipitation data sets over
the NWH. A next step in this area of research will involve
the generation of precipitation data by dividing the stations
into different classes based on altitudes and location within
mountain ranges of the NWH.

TABLE 4 (Continued)

Months
Precipitation
thresholds (mm) Statistics OBS A B C D E F G H I J

April <5 Mean 1.14 0.54 0.59 0.60 0.35 0.75 0.48 0.20 0.04 0.70 0.26

SD 1.46 1.23 1.07 1.28 0.96 1.26 1.20 0.98 0.42 1.23 1.10

5–10 Mean 7.08 6.97 7.52 6.73 6.73 7.15 7.67 5.87 7.39 7.69 8.05

SD 1.41 1.34 1.41 1.32 1.30 1.44 1.11 1.14 1.32 1.35 0.73

10–20 Mean 15.15 13.88 13.28 13.79 16.06 13.60 16.88 15.51 12.67 15.92 13.79

SD 2.37 2.47 2.14 2.43 1.60 2.78 2.88 2.32 2.49 2.15 2.60

20–30 Mean 25.42 25.98 24.81 24.05 24.89 23.77 23.33 23.76 21.89 23.61 26.15

SD 3.94 3.88 3.80 1.99 2.78 2.32 2.88 3.29 2.05 3.59 1.73

>30 Mean 32.91 36.70 48.18 41.47 58.07 44.59 37.02 50.03 48.73 38.76 40.45

SD 1.18 8.02 6.73 5.25 17.09 21.20 9.28 19.86 13.22 5.92 10.78
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4 | CONCLUSION

There is a large amount of missing data at various stations in
the Northwest Himalaya range and due to complex topogra-
phy these data gaps cannot be easily filled. Of the various
methods tested for generating missing precipitation data,
QM was the most suitable. The QM approach was success-
fully applied in this study to fill data gaps in precipitation
time series. The suitability of the QM technique in

generating precipitation time series over NWH using 10 dif-
ferent stations was evaluated using standard statistical
methods and displayed using Taylor diagrams. It is notewor-
thy that to generate the precipitation time series over the
NWH, the Kanzalwan (I) station shows the best statistical
measures for generating the missing data. Kanzalwan
(I) displays the highest correlation with the observations,
high skill score and low RMSE during all the months except
January. In fact, Kanzalwan is one of the principal

FIGURE 5 Scatter plots of generated precipitation time series (2011–2012 to 2015–2016) versus observed precipitation (mm) from November to April for
different stations [Colour figure can be viewed at wileyonlinelibrary.com]
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observatories of our centre and provides long-term high
quality data for the winter season. This may in part provide
an explanation as to why Kanzalwan shows the best results.
However, for January the station H-Taj (station A) has a low
RMSE, high correlation and approximately same value of
SD as the observed data. Using the QM approach, one can
extend a continuous time series more than 40 years without
any missing values, which would be very useful for climate
studies over NWH.
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