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ABSTRACT

The European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) has been

downscaled using a regionalmodel coveringAlaska at 20-km spatial and hourly temporal resolution for 1979–

2013. Stakeholders can utilize these enhanced-resolution data to investigate climate- and weather-related

phenomena in Alaska. Temperature and precipitation are analyzed and compared among ERA-Interim,

WRF Model downscaling, and in situ observations. Relative to ERA-Interim, the downscaling is shown to

improve the spatial representation of temperature and precipitation around Alaska’s complex terrain. Im-

provements include increased winter and decreased summer higher-elevation downscaled seasonal average

temperatures. Precipitation is also enhanced over higher elevations in all seasons relative to the reanalysis.

These spatial distributions of temperature and precipitation are consistent with the few available gridded

observational datasets that account for topography. The downscaled precipitation generally exceeds obser-

vationally derived estimates in all seasons over mainland Alaska, and it is less than observations in the

southeast. Temperature biases tended to be more mixed, and the downscaling reduces absolute bias at higher

elevations, especially in winter. Careful selection of data for local site analysis from the downscaling can help

to reduce these biases, especially those due to inconsistencies in elevation. Improved meteorological station

coverage at higher elevations will be necessary to better evaluate gridded downscaled products in Alaska

because biases vary and may even change sign with elevation.

1. Introduction

Climate change in Alaska has been well documented

(Markon et al. 2012), and Alaska’s geographical com-

plexity requires high-resolution meteorological informa-

tion to prepare for future changes. Spatial resolution is

especially important in areas of significant topography and

in coastal regions. Alaska’s major topographic features

include extensive coastlines, islands, and mountain ranges

containing the tallest mountains in North America. Its

economy depends heavily on oil and mineral extraction,

fishing, and tourism, activities that are all intimately tied to

weather and climate. TheArctic is also amilitarily strategic

location, and sea ice decline is expected to increase ship

traffic, leading to enhanced security risks (e.g., Knell 2008).

Many Alaska residents depend on food obtained

through hunting and gathering, the future of which is

uncertain at present. All of these activities rely heavily

on environmental information, especially historical ob-

servations and future projections. Climate projections of

temperature, precipitation, and winds are especially

important but must be at appropriate spatial and tem-

poral resolution to be useful for future planning.

Climate information required for future planning is

typically needed for regions around cities or villages that

are smaller than the size of a global-model grid box

(;100km). The representation of the terrain is notably

different in a 20-km regional model (Fig. 1a) versus a re-

analysis product at ;100km (Fig. 1b), and the model

resolution impacts meteorological variables that are sen-

sitive to topography. Since temperature and precipitation

vary strongly with altitude, the improved representation of
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topography found with increasing model resolution en-

hances the simulation quality of these quantities (e.g.,

Fig. 4 in Bhatt et al. 2007). While dynamical downscaling

has significantly larger computational overhead than

statistical downscaling, one advantage is that the re-

gional model output provides a full suite of dynamically

consistent meteorological variables, allowing the in-

vestigation of mechanisms associated with a given be-

havior. Statistical downscaling also requires long

observational records for training data, which are not

always available for Alaska where many data voids

exist. Nevertheless, each method has its strengths and

weaknesses, as summarized below. The present study

examines dynamical downscaling over the historical

period to document biases in the simulations, investi-

gate climatological patterns, and highlight the local

detail that is added to the coarse reanalysis by the

downscaling procedure over Alaska. This study fo-

cused on temperature and precipitation, as these are

key variables in present climate science research ac-

tivities. As background for the dynamical downscaling

study presented here, we first assess the strengths and

limitations of alternative approaches to downscaling.

Lessons learned from previous Alaska downscaling

Statistical downscaling has previously been conducted

for Alaska with a focus on producing high-resolution

monthly grids (,5-km grid increment) of temperature

and precipitation. The Scenarios for Alaska and Arctic

Planning (SNAP) at the University of Alaska Fairbanks

has conducted statistical downscaling using the ‘‘delta’’

method to downscale monthly temperature and pre-

cipitation for more than 500 locations (communities) in

Alaska and western Canada (https://www.snap.uaf.edu/

sites/all/modules/snap_community_charts/charts.php).

The delta method is similar to bias correction in which a

model’s simulated future change from the present is simply

added (as an adjustment or ‘‘delta’’) to a high-resolution

historical field of the same variable. The historical data

providing the basis for the SNAP downscaling were from

the Parameter-Elevation Regressions on Independent

Slopes Model (PRISM) monthly climatology for Alaska

(Simpson et al. 2005) at 2.0-km resolution (for downscaling

of CMIP3 models) and 0.8km (for downscaling of CMIP5

models).Monthly temperature and precipitation have also

been downscaled using the delta method by Hill et al.

(2015) who utilized PRISM as the baseline climatology,

but anomaly fields were derived directly from station data

and then interpolated using a spline with tension approach

to a 2-km grid. These aforementioned downscaling prod-

ucts do not include daily output and are therefore not as

useful for quantifying extreme events, which occur at daily

or shorter time scales.

FIG. 1. Downscaling domain showing (a) WRF Model and

(b) ERA-Interim topography (m). (c) The difference of surface

elevations (m), WRF Model minus reanalysis topography, with

a box denoting the areal coverage of Figs. 3 and 4. The locations

of the four meteorological stations of this study are shown by the

red dots in (a).
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Statistical downscaling of daily temperature and

winds has been undertaken at SNAP following the

quantile-mapping method. The essence of the quantile-

mappingmethod is the adjustment of each quantile (e.g.,

percentile or other segment of a distribution) of model

output for a past period to match a corresponding dis-

tribution of target values for the same time period. The

target values are typically observed values, or values

from an observationally based reanalysis. SNAP has

used quantile mapping of output from several CMIP5

models to project changes in the occurrences of ex-

tremes of temperature and wind speeds at various

Alaskan coastal locations (http://shiny.snap.uaf.edu/

temp_wind_events/). However, the validity of the his-

torical wind data (in this case, from an atmospheric re-

analysis) is a key limitation in this particular application

of quantile mapping.

In the case of Alaska and elsewhere, applications of

statistical downscaling are limited by the availability of

the high-resolution observational data to compute the

necessary statistics. Many variables such as wind, solar

radiation, and evapotranspiration have limited gridded

historical data that make statistical downscaling either

impossible or questionable. Moreover, the increments

of future change that are added to historical values in

applications of the delta method are based on coarse-

resolution global models and hence are unrealistically

smooth. For these reasons, there are unique advantages

to dynamical downscaling, which readily produces sub-

daily products and does not require historical training

data to develop statistics, as dynamical equations are

used in the driving model.

There has been limited dynamical downscaling con-

ducted for Alaska. Past studies have focused primarily

on applications for estimating glacier mass balance

(Zhang et al. 2007a,b), which used a high-resolution

MM5 regional model (Grell et al. 1994) to dynamically

downscale global climate model and reanalysis data.

The downscaled temperatures and precipitation were

used to estimate the mass balance for the Gulkana gla-

cier in the Alaska Range and the Hubbard and Bering

glaciers along the south coast of Alaska over the 1994–

2004 period, and these estimates were validated against

multiyear observations (Zhang et al. 2007a,b). Forcing

of the glacier mass balance model revealed its sensitivity

to biases in the temperature and precipitation values,

which led to a process for correcting seasonal biases.

Gulkana glacier mass balance calculated with the sea-

sonally corrected downscaled variables compared fa-

vorably to the observed mass balance (Zhang et al.

2007b). The glacier studies demonstrated the value of

dynamical downscaling for Alaska, although they high-

lighted the necessity of bias correction to produce

downscaled data of sufficient reliability to force glacial

process models.

The Chukchi–Beaufort High-Resolution Atmospheric

Reanalysis (CBHAR;Liu et al. 2014; Zhang et al. 2013) is a

focused regional reanalysis conducted in northern Alaska

and is related to dynamical downscaling. This reanalysis

employed the WRF Model (Skamarock et al. 2008) and

WRF Model data assimilation system (WRFDA; Huang

et al. 2009; Barker et al. 2012) to produce a 31-yr, 10-km

horizontal resolution, 1-hourly high-frequency regional

reanalysis. TheCBHARreanalysis, particularly the surface

wind field, demonstrates consistent improvements for ev-

ery season of the year and four times (i.e., 0000, 0600,

1200, and 1800 UTC) of the day when compared with

the European Centre for Medium-Range Weather Fore-

casts interim reanalysis (ERA-Interim), whichwas used to

force the model (Zhang et al. 2013). The high temporal

and spatial resolution CBHAR provides a unique op-

portunity to quantitatively study the mesoscale clima-

tology and variability of the area’s surface winds,

including the sea breezes, up/downslope winds, and the

mountain barrier jets in northern Alaska (Zhang et al.

2016). A broader downscaling/reanalysis effort was the

Arctic System Reanalysis (ASR; Bromwich et al. 2016),

which used the WRF Model for pan-Arctic downscaling

of theNCEP–NCAR reanalysis. Its domain encompassed

the entire Arctic with a grid increment of 30km. The data

from ASR are presently limited to 2000–12, but an ex-

tension to 1979 is under way. Our downscaling builds on

the ASR, CBHAR, and MM5 study by providing data

coverage to anAlaska-centered domain at 20km,which is

the highest spatial resolution available for any similar

hourly observational data that covers the entire region of

Alaska. The downscaling data presented in this paper

were not produced with data assimilation as in ASR and

CBHAR. However, spectral nudging was employed to

constrain the simulation to the input ERA-Interim

forcing data.

2. Data and methods

a. Downscaling procedure

The Advanced Research version of the WRF Model

(Skamarock et al. 2008) was utilized to dynamically

downscale data in this study. An optimized configura-

tion of the WRF Model physical parameterizations for

Alaska (Zhang et al. 2013) was employed. Nudging was

used during the WRFModel simulations to ensure that

the model did not deviate significantly from the input

reanalysis forcing. Following Zhang et al. (2013),

spectral nudging with a wavenumber of 3 and was ap-

plied to all variables at all vertical levels in the down-

scaling simulations. The WRF Model configuration for

MARCH 2016 B I EN I EK ET AL . 637

http://shiny.snap.uaf.edu/temp_wind_events/
http://shiny.snap.uaf.edu/temp_wind_events/


this study is summarized in Table 1. The Morrison 2-

moment (Morrison et al. 2009) microphysical and

Grell 3D cumulus schemes were utilized to parame-

terize cloud and precipitation processes. Shortwave

and longwave radiative effects were parameterized by

the Rapid Radiative Transfer Model (RRTM) for

GCMs (Iacono et al. 2008). Boundary layer and

surface-layer processes utilized the Mellor–Yamada–

Janjić (Janjić 1994) and Janjić eta (Monin–Obukhov)

schemes, respectively. A thermodynamic sea ice

model (Zhang and Zhang 2001) was coupled with the

Noah land surface model used within the WRFModel

to accurately model the thermal conditions over

sea ice.

The downscaling covered a domain with 262 3 262

grid points that encompassed all of Alaska and portions

of far eastern Russia and northern Canada at 20-km

spatial resolution (Fig. 1a) with 49 vertical model levels.

The downscaling simulations were integrated for a total

54 h after initialization at 48-h increments; each 54-h

simulation includes 6 h of spinup time and 48h of actual

downscaled output. The model was reinitialized every

two days where the first 6 h of spinup time data were

discarded. These spinup data could be discarded be-

cause they overlap with the last 6 h of the previous 54-h

integration. The output from the 2-day simulations was

combined together to form the final downscaled prod-

uct. Each initialization occurred at 1800 UTC (0900

Alaska standard time). Because the WRF Model is re-

initialized every 2 days, parameters such as atmospheric

moisture and energy are not precisely conserved over

the entire period of the downscaling as in a continuous

model run. Spectral nudging of the atmospheric fields

was performed every 6 h. Hourly WRF Model output

was saved and used to produce daily means, maximum

and minimum values of downscaled variables. Post-

processing of the WRF Model output was conducted

using the Unified Post-Processing (UPP) software

package. UPPwas utilized to interpolate from themodel

sigma coordinates to 12 standard pressure levels (1000–

50 hPa) for the upper-air variables.

b. Input and evaluation data

The reanalysis dataset known as ERA-Interim (Dee

et al. 2011) was downscaled for the period 1979–2013

using the previously described WRF Model procedure

for this study. The ERA-Interim data were obtained at

0.758 (;83 km) spatial and 6-hourly temporal resolu-

tion. The following variables were obtained to force the

WRF Model downscaling: surface, 2-m and upper-air

temperature, 10-m and upper-air u and y wind, 2-m and

upper-air relative humidity, geopotential height of the

pressure levels, mean sea level pressure, surface pres-

sure, sea surface temperatures, sea ice concentration,

soil temperature and moisture at four soil levels, snow

depth, and snow density. A few minor data issues were

corrected in the input data prior to downscaling, in-

cluding several short periods with inhomogeneities in

the 6-hourly sea ice concentration after 2000 (in those

cases the data from the previous time step were used to

replace the bad data frames). ERA-Interim was se-

lected as it has been successfully downscaled using the

WRF Model in many regions of the world (e.g., Gao

et al. 2015; Srivastava et al. 2014, 2013; Soares et al.

2012), used in previous Arctic WRFModel simulations

and analysis (e.g., Liu et al. 2014) and is among the best

performing reanalysis datasets for Alaska (Lader et al.

2016) and the wider Arctic (Lindsay et al. 2014).

The downscaled data were compared with the origi-

nal input reanalysis data and meteorological station

data. Station temperature and precipitation were ob-

tained from the Global Summary of the Day (GSOD)

database maintained by the National Centers for En-

vironmental Information (formerly National Climatic

Data Center) for stations throughout Alaska, Canada,

and Russia for 1979–2013. The GSOD database was

selected because it uses a 0000 UTC instead of local

midnight to compute daily maximum, minimum, and

average temperatures. This manner of daily averaging is

consistent with downscaled model parameters and re-

sults in a clean comparison between observations and

the downscaled variables. Monthly gridded 2-km tem-

perature and precipitation for 1979–2009 produced by

Hill et al. (2015) were also utilized to augment station

observations, as stations tend to be only at lower ele-

vations with sparse coverage in many areas. Hill et al.

(2015) statistically downscaled monthly temperature

and precipitation using spline and tension interpolation

of station anomalies to a regular grid followed by a

delta-method adjustment using the PRISM 1971–2000

climatology (Simpson et al. 2005) as the baseline data to

form the final product. These gridded temperature and

precipitation data (herein called gridded observations)

were bilinearly interpolated to the 20-km WRF Model

TABLE 1. WRF Model configuration.

Options Configuration

Physics Microphysics Morrison 2-moment

Radiation RRTM

Cumulus Grell 3D

Planetary boundary layer Mellor–Yamada–Janjić

Surface layer Monin–Obukhov

Land surface model Noah land surface model

Grid Horizontal grid spacing 20 km

Vertical levels 49 levels with top at 10 hPa

Nudging Spectral nudging All levels
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grid for ease of comparison. Solar radiation data were

obtained from the U.S. Department of Energy’s At-

mospheric Radiation Measurement (ARM) Program

observation site at Barrow (available online at http://

www.archive.arm.gov). The downscaled data were

evaluated using twomethods: bias (i.e., the difference in

means) and root-mean-square error (RMSE; Wilks

2006). Station and reanalysis data contain their own

uncertainties; therefore the term ‘‘bias’’ is used only to

denote the difference between the WRF Model output

and observational data, not to imply that the differences

are entirely errors in the model results.

3. Results

a. Evaluation of temperature and precipitation

Dynamical downscaling adds value by enhancing

local information through the inclusion of mesoscale

atmospheric features, especially in regions with com-

plex topography like Alaska. The difference between

the WRF Model and reanalysis terrain is quite large

throughout Alaska (Fig. 1c). The mountains in the

WRF Model are often more than 200m taller than

those in the reanalysis in the major mountain ranges.

Likewise, the WRF Model topography is frequently

more than 100m lower in elevation than the reanalysis

in many of the major valleys. These differences are

largely due to the unrealistically smooth topography

in the reanalysis over the Alaska domain (cf. Figs. 1a

and 1b). These disparities in the terrain account for

some of the differences between the reanalysis and the

downscaled temperature and precipitation that will be

shown next.

The spatial complexity of temperature and pre-

cipitation can be seen by examining the maximum of the

eight RMSEs of the monthly time series of each center

grid point in comparison with its eight neighboring

points (Fig. 2), thereby highlighting the similarity of

each grid point with its adjacent points. Lower RMSEs

indicate that the grid point was more similar to its

neighbors. For temperature (Fig. 2a), grid similarity is

lowest in the mountainous regions of south-central and

southeast Alaska and also at the land–sea boundary,

which stands out as a band of higher RMSEs outlining

the entire coastline. For precipitation (Fig. 2b), grid

similarity is lowest in mountainous terrain. The same

calculation was also performed on the input reanalysis

bilinearly interpolated to the WRFModel grid and then

subtracted from the downscaled result. Grid similarity is

reduced for both temperature and precipitation relative

to the original reanalysis (Figs. 2c,d), especially in the

mountainous terrain of south-central and southeast

Alaska. Reduced grid similarity indicates that local

atmospheric features were added by the WRF Model to

the downscaled output, which should improve tempera-

ture and precipitation fields in the complex terrain of

Alaska. Such improvements in south-central and south-

east Alaska are especially valuable as the majority of the

population lives in these areas.

A significant improvement in the spatial represen-

tation of 2-m temperature in the downscaling com-

pared to the coarse reanalysis is seen in a comparison

with gridded observed seasonal climatologies for 1979–

2009 (Fig. 3). Here the climatological temperatures are

compared in the Fairbanks vicinity (see box outlining

the region in Fig. 1c), which is a region of complex to-

pography with the Alaska Range running east–west

across the southern portion of each panel in Fig. 3. This

region also includes the highest-elevation point in

North America, Mount McKinley (Denali), which is

located in the southwest corner of each panel in Fig. 3.

The reanalysis has a much smoother climatological

temperature gradient in all seasons, with little in-

dication of the topography in the region (Figs. 3a–c),

while the downscaling (Figs. 3e–h) has a signature

similar to the gridded observations (Figs. 3i–l). In

winter (Figs. 3a,e,i) the reanalysis has a smooth north–

south temperature gradient with little hint of the in-

fluence of the mountains in the contours (Fig. 3a),

whereas the downscaling has warmer 2-m temperatures

over the higher terrain relative to lower elevations

(Fig. 3e). The downscaled temperatures are more

similar to observations (Fig. 3i) and consistent with the

frequent presence of low-level temperature inversions

in the area. A similar improvement in the spatial dis-

tribution of 2-m temperatures can be seen during spring

(Figs. 3b,f,j), summer (Figs. 3c,g,k), and fall (Figs. 3d,h,l)

when the mountainous regions are much cooler than the

surroundings in the downscaled and observed data than

in the reanalysis.

Comparisons of the climatologies of seasonal pre-

cipitation reveal a similar improvement of the spatial

distribution around complex topography in the down-

scaled versus the reanalysis data (Fig. 4). In all seasons

precipitation amounts are larger over the mountains in

the downscaling (Fig. 4e–h) when compared to the re-

analysis (Figs. 4a–d), which shows only a smooth gra-

dient. The enhanced precipitation over the mountains in

the downscaling (Figs. 4e–h) is more spatially consistent

with gridded observations (Figs. 4i–l) in all seasons.

Improved spatial representation of temperature and

precipitation is a key improvement added to the coarse

reanalysis by dynamical downscaling for Alaska.

Because correlations with data from single stations

are sensitive to details of the station location, we also

compared the downscaled output with regionally
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averaged downscaled temperatures based on Alaska’s

13 climate divisions (Fig. 5). This comparison produced

mixed results when compared with the coarse reanalysis

and the gridded observations (Table 2). The Alaska

climate divisions represent regions of homogeneous

climate variability (Bieniek et al. 2012) and have been

used to analyze climatic trends and variability (e.g.,

Bieniek et al. 2014; McAfee et al. 2014) and evaluate

model/reanalysis performance (e.g., Lader et al. 2016).

The downscaled temperatures have mixed positive and

negative biases in all seasons and divisions when com-

pared with the gridded observations, with the largest-

magnitude departure of 23.18C in the northeast gulf

division in June–August (JJA). Correlations between

regionally averaged downscaled seasonal values and

corresponding (same division) observations are mostly

greater than 0.9 with some exceptions such as the

central panhandle divisions, which have a correlation

of 0.58 in September–November (SON). RMSEs in all

regions are mostly less than 1.08C with the largest

RMSE of 3.18C in the northeast gulf divisions (also the

region with the greatest bias value) in June–August.

When compared with similar metrics of bias, correla-

tion, and RMSE of the reanalysis versus observations

to assess the performance of the downscaling, the

downscaling had mixed results. Overall, correlations

were slightly higher or nearly the same as those of the

reanalysis. Bias and RMSE in the downscaled output

were lower in December–February (DJF) but higher in

March–May (MAM) and JJA when compared with the

values from the reanalysis.

A similar analysis of downscaled precipitation versus

observations (Table 3) shows a general wet bias in all

climate divisions north of the Alaska Range in most

seasons, with a dry bias in the southern coastal divisions.

The largest biases and RMSEs occur in the southern

coastal divisions where precipitation amounts are typi-

cally much higher throughout the year than the northern

FIG. 2. The similarity of each grid point to its neighbors of monthly downscaled (a) 2-m temperature (8C) and
(b) precipitation (mm). The differences (downscaled minus ERA-Interim) interpolated to the downscaled grid for

(c) 2-m temperature (8C) and (d) precipitation (mm). The similarity was determined by the maximum of the eight

RMSEs of the monthly time series of each center grid point vs its eight neighboring points.
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FIG. 3. (a)–(d) ERA-Interim, (e)–(h) downscaled, and (i)–(l) gridded observation seasonal average temperature climatologies (8C) for
1979–2009 with WRF Model topography (m) contours overlaid. The seasons analyzed were (top) DJF, (top middle) MAM, (bottom

middle) JJA, and (bottom) SON. Fairbanks is shown by the star.
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FIG. 4. As in Fig. 3, but for precipitation (mm).
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divisions (Bieniek et al. 2012). Correlations of down-

scaled precipitation versus observations reveal lower

correlations overall than for downscaled temperature

compared to reanalysis. When compared with the same

results for the reanalysis versus the observations, the

northern climate divisions had larger wet biases in all

seasons in the downscaled case than in the reanalysis.

However, biases and RMSEs were generally reduced by

the downscaling in the southern coastal divisions with

some exceptions in the south panhandle and northwest

gulf divisions where biases increased.

Improvements made by the downscaling in the spatial

representation of temperature and precipitations over

terrain shown in Figs. 3 and 4 are not evident in this

comparison based on averages over larger regions.

Accordingly, a direct grid-to-grid comparison is pre-

sented next in order to better assess local improvements

that result from downscaling ERA-Interim. Local biases

are evaluated by comparing seasonally averaged 2-m

temperature from downscaling and station observations

by subtracting the station data from the nearest adjacent

downscaled grid point with the most similar elevation

(Figs. 6a–d). For DJF, the downscaling was warmer than

observations throughout much of Alaska with the ex-

ception of the northwest coastal regions, which were

slightly cooler (Fig. 6a). At many stations in the interior,

the downscaling had a warm bias reaching or exceeding

58C in winter. This seems to indicate a warm bias in the

model in winter; however, since most stations are at low

elevations, making simple comparisons is somewhat

problematic. Even with corrections in place for eleva-

tion it is possible that the elevation difference between

the stations and model accounts for this apparent DJF

warm bias in the downscaling. The difference or bias

was less pronounced and more mixed in MAM, JJA,

and SON (Figs. 6b–d). The largest bias outside of

winter was a cold bias during summer in the south-

central coastal mountains of Alaska, approaching268C
at several stations.

When the downscaled data were comparedwith gridded

observations over Alaska, similar features to the station

comparison are apparent (Figs. 6e–h). Low-elevation

warm biases are evident in winter with cold biases over

higher elevations throughout the state (Fig. 6e). These

elevation-specific biases highlight the need to include

high-altitude observations in generating and evaluating

gridded data inmountainous regions. Cold biases occur in

higher terrain throughout the interior in spring (Fig. 6f),

again mostly at higher elevations. In summer and fall

(Figs. 6g,h) warmbiases are evident over lower elevations

with cold biases over higher elevations. The southeast

panhandle displays mainly weak warm biases in all sea-

sons with slight cold biases over the mountains on the

eastern side of the region.

The difference in the absolute value (herein referred

to as absolute bias) of the downscaled bias and re-

analysis bias (both compared to the gridded observa-

tions) was calculated for all seasons (Figs. 6i–l) to assess

whether the biases were improved by the downscaling

compared to the reanalysis. A negative value of this

difference indicates that the downscaling had a smaller

absolute bias than the reanalysis when both were com-

pared with observations. It does not account for changes

in the sign of the bias. The downscaling achieved the

FIG. 5. The 13 Alaska climate divisions (Bieniek et al. 2012) utilized for the analysis in Tables 2

and 3.
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greatest reduction in absolute bias in winter (Fig. 6i)

over higher-elevation regions throughout Alaska. This

was also the time when the downscaling had the biggest

increase in biases compared with the reanalysis in the

lower-elevation regions of eastern interior Alaska,

where biases were approaching 68C (Figs. 6a,e). These

enhanced winter biases at low elevations may be related

to shortcomings in how inversions are represented by

the WRF Model in the exceptionally stable boundary

layer conditions that occur in the valley regions of in-

terior Alaska in winter (Mölders and Kramm 2010). The

differences between the biases in temperature down-

scaling versus reanalysis are much smaller in the re-

maining seasons of spring, summer, and fall (Figs. 6j–l).

The exception is an isolated area of larger bias in the

downscaling in summer in south-central Alaska

(Fig. 6k). This issue is related to a cold bias induced by

excessive snow remaining throughout the summer in the

TABLE 2. Bias, correlation, and RMSE of seasonal 2-m temperature for downscaled vs gridded observations and reanalysis vs gridded

observations over the 13 Alaska climate divisions.

Downscaled Reanalysis

DJF MAM JJA SON DJF MAM JJA SON

Bias (8C)
North Slope 0.9 0.2 0.8 0.4 21.6 20.5 0.3 20.3

West coast 20.2 20.2 0.4 20.1 20.4 0.0 0.0 20.1

Central interior 0.5 21.3 0.1 0.2 20.2 20.3 0.0 0.1

Northeast interior 20.2 21.9 0.3 0.3 22.2 21.5 0.0 20.4

Southeast interior 1.4 20.8 21.2 0.3 22.1 0.2 0.3 20.3

Cook Inlet 0.5 21.2 21.6 20.5 22.2 20.2 0.4 20.6

Bristol Bay 0.0 20.3 0.5 20.1 20.3 0.2 0.6 0.2

Northwest gulf 0.1 20.7 20.4 20.2 1.2 0.5 0.4 1.2

Northeast gulf 0.7 21.0 23.1 20.7 0.0 0.5 0.3 0.6

North panhandle 20.2 21.9 22.6 21.2 24.0 21.5 20.4 22.0

Central panhandle 0.8 0.2 1.4 0.8 21.4 0.5 1.7 0.0

South panhandle 0.3 20.1 0.3 0.6 20.5 0.0 0.3 0.2

Aleutians 2.3 0.4 20.4 1.0 4.2 1.8 0.0 2.5

Statewide 0.4 20.7 20.1 0.1 20.9 20.2 0.2 20.1

Correlation

North Slope 0.95 0.96 0.87 0.95 0.91 0.92 0.86 0.96

West coast 0.99 0.99 0.96 0.99 0.99 0.99 0.97 0.99

Central interior 0.93 0.94 0.83 0.97 0.91 0.95 0.86 0.96

Northeast interior 0.82 0.93 0.83 0.92 0.78 0.94 0.80 0.92

Southeast interior 0.96 0.97 0.94 0.97 0.95 0.98 0.92 0.99

Cook Inlet 0.98 0.97 0.94 0.98 0.98 0.96 0.94 0.97

Bristol Bay 1.00 0.98 0.95 0.98 1.00 0.99 0.97 0.99

Northwest gulf 0.99 0.96 0.95 0.95 0.99 0.97 0.93 0.95

Northeast gulf 0.96 0.96 0.96 0.97 0.94 0.94 0.93 0.96

North panhandle 0.95 0.93 0.80 0.94 0.89 0.90 0.78 0.92

Central panhandle 0.78 0.83 0.89 0.58 0.71 0.79 0.85 0.60

South panhandle 0.94 0.86 0.93 0.93 0.87 0.79 0.92 0.89

Aleutians 0.97 0.97 0.93 0.92 0.96 0.96 0.93 0.90

Statewide 0.98 0.98 0.93 0.99 0.98 0.98 0.93 0.99

RMSE (8C)
North Slope 1.1 0.7 1.0 0.7 1.8 1.2 0.6 0.7

West coast 0.4 0.4 0.5 0.2 0.6 0.3 0.3 0.3

Central interior 1.0 1.4 0.6 0.5 1.0 0.6 0.5 0.5

Northeast interior 1.3 2.0 0.7 0.8 2.6 1.6 0.6 0.8

Southeast interior 1.5 0.9 1.3 0.6 2.2 0.4 0.5 0.5

Cook Inlet 0.7 1.2 1.6 0.6 2.2 0.4 0.5 0.8

Bristol Bay 0.3 0.5 0.6 0.3 0.3 0.3 0.6 0.3

Northwest gulf 0.3 0.7 0.5 0.4 1.2 0.6 0.5 1.3

Northeast gulf 0.8 1.1 3.1 0.7 0.7 0.6 0.4 0.7

North panhandle 0.6 1.9 2.6 1.3 4.2 1.6 0.7 2.1

Central panhandle 1.3 0.7 1.5 1.4 2.0 0.9 1.8 1.2

South panhandle 0.5 0.5 0.4 0.7 0.9 0.6 0.4 0.5

Aleutians 2.3 0.6 0.5 1.0 4.2 1.9 0.2 2.6

Statewide 0.5 0.7 0.3 0.3 1.0 0.3 0.4 0.2
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input reanalysis as this is flagged as a glaciated region in

ERA-Interim and given a fixed, unphysically high value

of snow depth (Drusch et al. 2004). Snow cover and

depth should be evaluated and improved in future

Alaska dynamical downscaling activities that utilize

reanalysis datasets.

Precipitation from the reanalysis is not initialized

in the WRF Model; only the atmospheric humidity

is ingested into the WRF Model from the reanalysis.

Therefore, the downscaled precipitation is gen-

erally a product of the WRF Model simulation. A

comparison of the downscaled precipitation with

station observations (Figs. 7a–d) shows a general wet

bias at many stations in the regions that were cli-

matologically the wettest during each season. This

wet bias is not completely uniform as there are sta-

tions with strong dry biases adjacent to ones with

strong wet biases in southeast Alaska. When the

TABLE 3. Bias, correlation and RMSE of seasonal precipitation for downscaled vs gridded observations and reanalysis vs gridded

observations over the 13 Alaska climate divisions.

Downscaled Reanalysis

DJF MAM JJA SON DJF MAM JJA SON

Bias (mm)

North Slope 5.5 7.1 14.4 7.6 3.2 5.2 10.2 4.1

West coast 11.6 12.2 9.4 6.6 9.3 9.2 8.0 5.0

Central interior 12.7 18.7 32.2 12.4 8.7 12.2 15.0 8.7

Northeast interior 6.1 10.5 33.3 8.2 3.5 7.3 21.9 5.2

Southeast interior 16.7 25.9 27.5 20.3 7.2 11.7 9.4 6.4

Cook Inlet 28.8 27.3 9.5 9.1 9.4 13.8 2.4 25.6

Bristol Bay 37.1 23.4 8.2 14.3 29.7 21.9 2.1 10.0

Northwest gulf 224.7 223.1 222.2 262.6 275.4 250.7 241.6 2108.8

Northeast gulf 2147.5 2102.6 2153.3 2275.1 2149.6 2108.3 2144.9 2261.9

North panhandle 221.8 23.9 0.2 247.4 267.7 24.1 1.8 270.7

Central panhandle 2197.3 2109.1 2128.5 2333.6 2219.0 2125.2 2135.3 2342.8

South panhandle 2142.5 293.4 265.6 2192.1 2116.0 276.8 259.8 2160.9

Aleutians 228.4 218.2 234.4 259.0 250.5 233.7 238.0 271.8

Statewide 20.9 5.5 6.9 213.8 27.1 20.6 21.8 218.8

Correlation

North Slope 0.56 0.84 0.68 0.81 0.60 0.82 0.72 0.82

West coast 0.90 0.82 0.68 0.90 0.90 0.85 0.75 0.92

Central interior 0.93 0.85 0.65 0.96 0.92 0.87 0.75 0.96

Northeast interior 0.74 0.51 0.58 0.67 0.71 0.54 0.60 0.76

Southeast interior 0.81 0.52 0.80 0.86 0.80 0.62 0.79 0.86

Cook Inlet 0.75 0.70 0.71 0.88 0.76 0.70 0.79 0.90

Bristol Bay 0.62 0.76 0.39 0.75 0.63 0.75 0.49 0.81

Northwest gulf 0.89 0.90 0.73 0.83 0.92 0.89 0.76 0.88

Northeast gulf 0.88 0.85 0.92 0.92 0.88 0.87 0.92 0.92

North panhandle 0.67 0.81 0.79 0.90 0.77 0.85 0.79 0.94

Central panhandle 0.70 0.82 0.71 0.82 0.69 0.84 0.76 0.85

South panhandle 0.88 0.88 0.89 0.92 0.90 0.90 0.92 0.92

Aleutians 0.70 0.71 0.33 0.66 0.68 0.62 0.25 0.64

Statewide 0.92 0.89 0.66 0.94 0.93 0.91 0.78 0.95

RMSE (mm)

North Slope 6.9 7.5 16.6 9.3 4.9 5.7 12.7 5.9

West coast 12.6 13.4 13.1 9.7 10.3 10.3 11.4 8.3

Central interior 13.4 19.5 34.3 13.1 9.4 12.9 18.1 9.6

Northeast interior 6.8 11.5 34.6 9.6 4.6 8.5 23.7 6.7

Southeast interior 18.1 27.3 29.4 21.8 9.7 13.3 14.3 9.7

Cook Inlet 34.8 32.7 21.8 20.3 19.4 21.1 17.8 17.2

Bristol Bay 39.8 26.3 19.4 22.1 32.5 24.9 16.6 18.0

Northwest gulf 33.6 29.0 27.6 69.0 80.1 54.9 43.6 113.2

Northeast gulf 159.7 108.4 157.1 282.9 161.8 113.5 149.0 270.1

North panhandle 50.4 32.0 18.8 58.2 79.2 20.0 18.6 77.9

Central panhandle 206.8 120.6 139.0 348.2 227.9 135.4 145.0 356.4

South panhandle 147.6 99.0 70.6 196.7 121.0 82.1 64.0 165.6

Aleutians 36.9 27.5 42.0 64.1 56.9 40.9 45.3 76.4

Statewide 4.1 6.9 10.3 14.9 7.9 3.3 6.8 19.6
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downscaled precipitation data were compared to the

gridded observations, wet biases tended to be largest

at higher elevations in all seasons (Figs. 7e–h), often

exceeding 40mm. The wet biases tended to be

smaller in interior and northern Alaska than in

coastal areas in winter, spring and fall. Biases

were largest in interior and northern Alaska during

the summer convection season. They were largest

over higher-elevation points where they exceeded

50mm and were smaller (in the 10–20-mm range)

at lower elevations. In contrast, southeast/south-

central Alaska had a substantial dry bias, with a

magnitude often exceeding 50mm, in all seasons and

at all elevations when compared with the gridded

observations.

Precipitation tended to have higher biases in the

downscaling than the reanalysis at higher-elevation points

throughout much of interior and northern Alaska

FIG. 6. (a)–(d) Downscaled minus station, (e)–(h) downscaled minus gridded observations, and (i)–(l) downscaled minus reanalysis

absolute value of bias for seasonally averaged temperature (8C) 1979–2009. The seasons analyzed were (top) DJF, (top middle) MAM,

(bottom middle) JJA, and (bottom) SON. The station analysis in (a)–(d) was conducted at the nearest adjacent downscaled grid point to

the station with the most similar elevation.
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(Figs. 7i–l). Precipitation biases in the interior summer

were primarily larger in the downscaling compared to

the reanalysis over higher-elevation terrain and were

smaller at lower elevations. Southeast Alaska was an

exception, and inland mountains had lower precipitation

biases in the downscaling than the reanalysis in all sea-

sons. South-central Alaska also had improved pre-

cipitation biases in the downscaling over the mountains

near Anchorage and the Kenai Peninsula to the south.

Enhanced precipitation in the downscaled data is

likely due to the representation of terrain in the model

and possibly due to issues with the observations

themselves. For example, Fairbanks is located in a valley

in interior Alaska where annual mean precipitation

observed at the airport (at 135-m elevation in the valley)

is about 27.4 cm, but it is 30.8 cm at a slightly higher el-

evation only 3 km to the north and exceeds 40 cm in the

hills 20 km farther north (Shulski and Wendler 2007).

Gauge undercatch is also known to be a problem in high-

latitude areas where a substantial portion of the pre-

cipitation falls as snow (Goodison et al. 1998), adding

uncertainty to the station observations themselves. It is

also not surprising that the downscaled precipitation

exceeds observational estimates, as analysis has shown

FIG. 7. As in Fig. 6, but for precipitation (mm).
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that ERA-Interim used as the initial, nudging, and

boundary conditions for the WRF Model also has a wet

bias over Alaska (Lader et al. 2016). It is again impor-

tant to note that stations observations in Alaska tend to

be located at lower elevations; therefore it is difficult to

assess the quality of the downscaled precipitation in

higher terrain. The following detailed evaluation at four

of Alaska’s major stations will highlight the need to

carefully select which downscaled grid points should be

compared to stations to help minimize local biases in

temperature and precipitation.

b. Local evaluation

To better analyze the usefulness of the ERA-Interim

downscaling from uniquely local perspectives and to

evaluate these data over the few major population

centers in Alaska, a bottom-up approach will be fol-

lowed in this section. One of the goals of this exercise is

to present a framework for stakeholders to understand

the strengths and weaknesses of complex downscaled

output and how it can be used in their backyards. Here

we will evaluate the monthly temperature and pre-

cipitation at the nearest downscaled grid cells to four

cities in Alaska, together with the adjacent surrounding

grid cells. The cities selected are Juneau, Fairbanks,

Anchorage, and Barrow (see locations in Fig. 1a). Each

city has unique topography or other features that are

complicating factors. The downscaled topographies for

the nine grid cells centered on each observing station are

shown in Fig. 8.

Juneau is located in the coastal maritime climate of

southeast Alaska. In this region of the state, pre-

cipitation amounts are high and temperatures are

moderate (Bieniek et al. 2012). The topography in the

vicinity of Juneau is complex, with a substantial jump in

model elevation (;500m) immediately north of the

observation station at the airport (Fig. 8a). The eleva-

tion of the station at Juneau is 7m, while the elevation of

the nearest grid point in the downscaling is 570m. The

monthly 1979–2013 climatology temperatures at the

nearest grid cell in the downscaling and the coarser re-

analysis were compared to the station records (Fig. 9a).

FIG. 8. The downscaled elevation for the nine grid cells surrounding the meteorological observation station at

(a) Juneau, (b) Fairbanks, (c) Anchorage, and (d) Barrow. The locations of the stations are marked by a star.

Elevations are in meters. Grid cells that are located over the water are shaded blue. The elevations of the stations

are 7, 138, 4, and 40m above sea level at Juneau, Fairbanks, Barrow, and Anchorage, respectively.
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Both were climatologically colder throughout the year

than observations at the nearest grid cell. This difference

is likely due to the great variability in elevation in the

Juneau region, and the temperature climatologies re-

flect (Fig. 9b) warmer temperatures at the lower-

elevation grid cell that is more similar to the station

observations. Therefore the grid cell nearest the station

with the most similar elevation was compared with the

observed climatology (Fig. 9a), yielding a more consis-

tent, warmer result. A correction based on the lapse

rate of the surrounding points was also carried out

as a potential method to handle the elevation dis-

crepancy between the station and the gridded data. A

lapse rate was calculated each month using a least

squares regression of the temperature at the nine grid

cells encompassing the station shown in Fig. 8a, with

temperature as the dependent variable and elevation

as the independent variable. This type of regression

approach has been successfully applied in various

forms to calculate lapse rates in other studies (e.g.,

Gao et al. 2015; Li et al. 2013; Minder et al. 2010). The

lapse rate was then applied to the data at the nearest

grid cell to the station using the elevation difference

between that point and the station. The resulting

lapse rate correction yielded a similar result to the

approach with the nearest adjacent cell (Fig. 9a). Such

an analysis would be more problematic for the coarser

reanalysis, for which the nearest adjacent grid cells

encompass a much broader geographic area than the

downscaling (the nine downscaled points are within

60km of each other, while the reanalysis points are

spread over 300km). Besides elevation, other synoptic-

scale meteorological factors, such as the position of

fronts and cyclones, play a greater role at the larger

spatial extent of the reanalysis and may impact the

derivation of local lapse rates. Therefore, the lapse

rate correction could only be feasibly applied to the

downscaled data.

Precipitation was also evaluated at Juneau for the

downscaling and the coarse reanalysis (Fig. 9c). Both

the nearest downscaled and reanalysis grid cells had

higher climatological precipitation amounts than the

FIG. 9. Monthly 1979–2013 climatology of station observations at Juneau (black diamonds), nearest downscaled

grid point to the station (brown squares), nearest downscaled grid point with most similar elevation to the station

(green triangles), lapse rate corrected (open circles), and nearest reanalysis grid point (red circles) for (a) 2-m

temperature and (c) precipitation. Precipitation does not include lapse-rate-corrected data. Climatology of (b) 2-m

temperature and (d) precipitation at the nine grid points surrounding the station at Juneau. The line labels in

(b) and (d) correspond to the grid points marked in Fig. 8a.
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station observation. An evaluation of the downscaled

precipitation climatologies at the surrounding grid cells

reveals a large spread in the amounts of precipitation

with higher amounts at higher elevations (Fig. 9d).

Therefore, the nearest downscaled grid cell of similar

elevation was evaluated and, while still having a wet

bias, had a more favorable comparison to the data than

was obtained by simply using the closest grid cell

(Fig. 9c). Lapse rates for precipitation are not well

defined, so no attempt was made to correct the pre-

cipitation based on lapse rates in this study.

The overestimation of precipitation at Juneau

represents a local positive bias in the northern part of

southeast Alaska, in contrast to the rest of southeast

Alaska where the downscaling tended to be drier than

gridded observations in all seasons (see Figs. 7e–h).

This could be due to the somewhat blocky represen-

tation of the 20-km terrain in the WRF Model that,

while more realistic than the smooth topography in the

reanalysis, still does not accurately represent the

pathways for upslope precipitation in this mountain-

ous and rainy region of Alaska. Unrealistic gradients

in precipitation have been noted in this region in

similar WRF Model studies utilizing a 20-km grid and

have been linked to the coarse terrain (Ziemen et al.

2016). For practical applications, adjustments in the

gradient of precipitation may be advantageous in

southeast Alaska until improvements can be made.

Finer-resolution downscaling represents one approach

to such improvements.

Fairbanks is located in interior Alaska and has a

continental climate that is relatively dry but has a wide

range of temperatures, with cold winters and warm

summers (Bieniek et al. 2012). The topography around

Fairbanks is somewhat hilly except on the southern

side (Fig. 8b). Elevation changes are within 200–300m

in the nine grid cells being evaluated centered on the

observation station located at the airport. The station

at the airport is at 138-m elevation while the nearest

grid cell is at 186-m elevation. While the terrain is

simpler than that of Juneau, the region surrounding

Fairbanks features strong temperature inversions in

winter (Malingowski et al. 2014; Mayfield and Fochesatto

2013; Bourne et al. 2010). When the 1979–2013 clima-

tology of downscaled monthly temperatures were

compared with the Fairbanks station (Fig. 10a), a slight

warm bias was detected in winter. This bias is likely

attributable to the downscaled gridpoint elevation

being higher than that of the observation site. Fre-

quent winter temperature inversions often result in an

increase in temperature with elevation in Fairbanks

and temperatures can increase rapidly when moving

only a few tens of meters up in elevation. The

difference of nearly 50m between the station and

gridpoint elevation likely accounts for the winter warm

bias. Therefore the lapse rate correction and nearest

grid cell with most similar elevation approaches used

in Juneau were applied to Fairbanks as a test. Neither

approach reduced the winter warm bias. Fairbanks is

located on the northern edge of the valley where a

general warm bias was noted in winter temperatures in

the previous section. The bias may therefore be due to

shortcomings of the modeling system as discussed

earlier. However, the downscaling performs better

than the reanalysis in the warm months, both with and

without any correction for elevation. The downscaled

precipitation was much more similar to that of the

reanalysis when compared with the observation

(Fig. 10b), with both having a wet bias in all months

FIG. 10. Monthly 1979–2013 climatology of station observations

at Fairbanks (black diamonds), nearest downscaled grid point to

the station (brown squares), nearest downscaled grid point with the

most similar elevation to the station (green triangles), lapse rate

corrected (open circles), and nearest reanalysis grid point (red

circles) for (a) 2-m temperature and (b) precipitation. Precipitation

does not include lapse-rate-corrected data.
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similar to the results of the grid-based analysis in the

previous section.

Alaska’s largest city, Anchorage, in south-central

coastal Alaska has complex topography, especially to

the east of the city (Fig. 8c) with a rise of nearly 500m

from the city’s location near sea level to locations 15–

20 km to the east. The station at the Anchorage airport

is located at 40-m elevation. The nine downscaled grid

cells that encompass the Anchorage area include four

on the southwest side that are water.When themonthly

downscaled temperature was compared between the

grid cells and the station observation a complex story

emerges (Fig. 11a). The grid cell nearest the station

along with the adjacent grid cells to the west and south

are over water and therefore contain a much more

moderate climate than the station. In contrast, the

higher-elevation grid cells over land are too cold

throughout the year. The grid cells that best match the

station in this case are those lower-elevation cells that

are farther inland. A further complication with this

location is that the adjacent waters that are present in

the downscaling and reality are not resolved in the

coarse reanalysis. This also precludes sea ice over the

inlet in the downscaling because the inlet is not present in

the reanalysis. In nature, the inlet is ice covered during

much of the winter, so future downscaling efforts in this

region should consider this issue. Precipitation (Fig. 11b)

showed a similar elevation distribution as Juneau, with

higher precipitation amounts at higher-elevation loca-

tions. However, precipitation at the nearest grid cell

correlated well with that at the station.

Barrow is not a major population center but was se-

lected for evaluation because of its location in Arctic

Alaska, which has experienced significant climatic and

environmental changes in recent decades (e.g., Bieniek

et al. 2014; Wendler et al. 2014; Bhatt et al. 2013;

Markon et al. 2012). Like Fairbanks, Barrow has a

somewhat continental climate, but can be moderated

when the sea ice cover is absent. Unlike the previous

stations the topography in the vicinity of Barrow is

quite flat with a range of only a few tens of meters

(Fig. 8d). Like Anchorage, a complicating factor for

selecting the nearest grid cell to the observation station

is that the station is located over the ocean in the

downscaling land–sea mask. Therefore the nearest grid

cell over land was selected. The station and nearest

downscaled grid point are both located at 4–5-m ele-

vation, so no corrections were made to the data for

elevation. The monthly 1979–2013 climatologies of

temperature were compared with the station at the

airport, and downscaled temperatures were found to be

noticeably warmer (;28C) than the observed in June–

August (Fig. 12a). In contrast, reanalysis temperatures

were cooler during this same period, and no other large

biases were noted during other months. The effect of

cloud cover was evaluated by comparing the incoming

solar radiation observed at the Barrow ARM site versus

that in the WRF Model (Fig. 12b). The comparison was

limited to the 1988–2013 period for which data are

available from the ARM station. Based on that analysis,

there is a slightly higher amount of incoming solar

FIG. 11. Monthly (a) 2-m temperature and (b) precipitation at

eight adjacent grid points vs the nearest downscaled grid point to

the station at Anchorage. The 1:1 line is displayed along with the

best-fit line by least squares regression for each variable. The line

labels correspond to the grid pointsmarked in Fig. 7d. The blue and

green points/lines indicate water and land points respectively, and

the red and yellow points/lines indicate those two grid points that

have the best correlation with the Anchorage station observations.
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radiation in theWRFModel downscaling than is actually

observed in May–July. However, additional factors such

as sea ice are likely playing a role, and overwater fetch

with the WRF Model land mask will differ from the ac-

tual fetch for various wind directions.

4. Conclusions

The results presented here show that dynamical

downscaling forAlaska benefits from the higher-resolution

topography and better-resolved coastlines of a regional

model such as the WRF Model. In particular, the lower

temperatures and greater precipitation amounts known

to characterize higher elevations are more apparent in

the WRF Model output than in a coarse-resolution re-

analysis such as ERA-Interim. The improved depictions

of temperature and precipitation should also result in

improved distributions of snow, which have already

been demonstrated in regional climate model simula-

tions for other areas such as the Pacific Northwest

(Leung et al. 2003).

Because dynamical downscaling adds local information

to coarser reanalysis data, it can also add local information

to global model simulations for both historical and fu-

ture periods. However, dynamical downscaling of global

climate models will not benefit from the observational

constraints on the lateral boundaries provided by forc-

ing from a reanalysis. In the case of global climate

model-derived lateral forcing, the downscaled output

will be adversely impacted by any biases in the global

climatemodel as well as any biases in the regional model

(e.g., the WRF Model).

Even with the observational constraints imposed by

the use of a reanalysis for boundary forcing, the biases

resulting from the regional model will require cor-

rections in many applications. For example, the use of

the dynamical downscaling output to drive a glacier or

land surface model will require adjustments of tem-

perature and precipitation if biases of several degrees

Celsius or several tens of a percent of precipitation are

unacceptable. Since interannual variations and mul-

tidecadal changes of means have similar magnitudes,

bias corrections will often be advisable, if not abso-

lutely necessary.

The validation of the dynamically downscaled fields is

problematic in a region such as Alaska where the

number of high-quality surface stations with long re-

cords is only a few dozen. The locations of these stations

at almost entirely low elevations and in the southern

half of the state biases the station data toward higher

temperatures and lower precipitation amounts. The low-

precipitation bias is compounded by the tendency for

gauges to undercatch precipitation by as much as 50%

during the cold season. Remote sensing products offer the

potential for more spatially complete validation data, al-

though remote sensing products have their own systematic

errors that may be as large as those of a regional model.

The comparison of downscaled output for data from

particular observational sites highlights another chal-

lenge of model–data comparisons. Topography near

sites such as Anchorage, Juneau, and even Fairbanks

can vary sharply over distances comparable to the 20-km

resolution of the simulation described here. A station’s

FIG. 12. Monthly (a) climatology 1979–2013 of 2-m temperature

in the downscaled and ERA-Interim at the nearest grid point and

the station observation at Barrow and (b)maximumdaily incoming

solar radiation downscaled and observed at the Barrow ARM

station 1998–2013.
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location relative to a coastal boundary or a major to-

pographic feature may not be captured even with 20-km

resolution, making it necessary to maximize consistency

between the station’s location and the ‘‘comparison’’

grid cell in the WRF Model, even if maximum consis-

tency requires the use of aWRFModel grid cell in which

the station is not actually located.

Future downscaling efforts with the WRF Model in

Alaska will include the use of global climate model out-

put driven by scenarios of external forcing (greenhouse

gases, aerosols) to downscale future climate changes.

Downscaling of additional reanalysis products would also

help to better quantify the biases in the WRFModel and

the uncertainty of the downscaled output, as reanalyses

have biases that vary from product to product (e.g., Lader

et al. 2016). The development of bias corrections for ap-

plications to wildfire models, glacier modules, and sea

ice–ocean–land interactions is also a high priority before

stakeholders can fully benefit from dynamical downscal-

ing. Finally, dynamical downscaling offers unique op-

portunities to address future changes in extreme events

such as storms with high winds, heavy precipitation epi-

sodes, and changes in extreme temperatures over a region

that is presently characterized by one of the largest an-

nual cycles in the Northern Hemisphere.
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