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Abstract: The late-season extreme fire activity in Southcentral Alaska during 2019 was highly unu-
sual and consequential. Firefighting operations had to be extended by a month in 2019 due to the 
extreme conditions of hot summer temperature and prolonged drought. The ongoing fires created 
poor air quality in the region containing most of Alaska’s population, leading to substantial impacts 
to public health. Suppression costs totaled over $70 million for Southcentral Alaska. This study’s 
main goals are to place the 2019 season into historical context, provide an attribution analysis, and 
assess future changes in wildfire risk in the region. The primary tools are meteorological observa-
tions and climate model simulations from the NCAR CESM Large Ensemble (LENS). The 2019 fire 
season in Southcentral Alaska included the hottest and driest June–August season over the 1979–
2019 period. The LENS simulation analysis suggests that the anthropogenic signal of increased fire 
risk had not yet emerged in 2019 because of the CESM’s internal variability, but that the anthropo-
genic signal will emerge by the 2040–80 period. The effect of warming temperatures dominates the 
effect of enhanced precipitation in the trend towards increased fire risk. 

Keywords: boreal forest; wildland fire; climate change; drought; PM2.5; Buildup Index; SPEI; RCP 
8.5; LENS; temperature; precipitation 
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1. Introduction 
The late-season extreme fire activity in Southcentral Alaska during 2019 was highly 

unusual and consequential. Alaska’s fire season typically starts with lightning in June and 
ends by late July as seasonal rains arrive [1]. In 2019, a prolonged drought and several 
high wind events lengthened the fire season in Southcentral Alaska, driving extreme fire 
activity in the existing Swan Lake Fire (Figure 1) as well as enabling new ignitions begin-
ning August 17. The McKinley Fire in the Susitna Valley north of Anchorage also started 
in mid-August. Regional average August climatic anomalies from station observations 
within the Kenai Peninsula and Susitna Valley Predictive Service Areas were +4.1 °C and 
−126.5 mm for temperature and precipitation, respectively. 

 
Figure 1. Major burn areas of 2019 in southern Alaska. Inset shows PSA (Predictive Service Areas) 
boundaries and the analysis domain used for the gridded data. 

The lightning-ignited Swan Lake Fire located in the Kenai Peninsula started on 5 June 
2019 and grew under high temperatures from mid-June through mid-July (Figure 2). The 
prolonged drought and several high wind events in mid-August drove extreme fire activ-
ity in the existing Swan Lake Fire and contributed to several new ignitions. Farther north 
in the Susitna Valley, the McKinley Fire started near the Parks Highway on 17 August 
2019 when sparks from a downed power line spread rapidly in strong northerly winds 
with relative humidity less than 20%. The rapid spread was exacerbated by vegetation 
that was unusually dry after a summer of positive temperature and negative precipitation 
anomalies [2]. 
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Figure 2. Progression of the Swan Lake Fire. Colors correspond to the date of the detection of fire 
from the VIIRS (S-NPP) I-Band 375 m active fire product between June and September 2019. Ar-
rows indicate the direction of fire spread. 

The McKinley Fire forced evacuations and destroyed 52 homes, 84 outbuildings, and 
3 businesses [3]. Major highway closures disrupted tourism-dependent livelihoods (Fig-
ure 3, left panel), with some small businesses (e.g., tourism, gas stations, eateries) in the 
vicinity of Swan Lake Fire losing up to 20% of their seasonal revenues [4]. The strong 
winds were the result of the unseasonably strong high pressure across northern Alaska 
and broad low pressure over the Gulf of Alaska. The Alaska Department of Natural Re-
sources had to extend firefighting operations in 2019 by a month due to the extreme con-
ditions that were surpassed only by the 2004 fire season. The drought created dry deep 
organic fuel layers, and some fires burned deep enough to leave ash pits, a phenomenon 
rarely seen before in Alaska. Ash pits are very difficult to see and resulted in numerous 
serious burns to firefighters [5]. 

  
Figure 3. (Left panel) Southcentral highway conditions in 2019 during fires (photo credit: Alaska 
Division of Forestry/Shutterstock). (Right panel) Reduced air quality in August 2019 as viewed 
from the campus of the University of Alaska Anchorage (photo credit: Micah Hahn). 

The ongoing fires created poor air quality (Figure 3) throughout the region contain-
ing over 60 percent (460,000) of Alaska’s population, and both the high concentration of 
pollutants and the unprecedented number of days with poor air quality caused substan-
tial impacts to public health. In Anchorage, nearly one-third (32.6%) of the days during 
June−August had 24-h levels of fine particulate matter (particulate matter 2.5 µm or less, 
or PM2.5) considered at least moderately unhealthy for the general population, based on 
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the Environmental Protection Agency’s National Air Quality Index. Daily PM2.5 concen-
tration first peaked at the end of June, followed by a larger peak at the end of August 
(Figure 4), and the three-month average was 156.9 percent higher than the previous 10-
year average over the same summer period. PM2.5 originating from wildfire smoke dur-
ing the 2019 and previous fire seasons in Alaska was associated with an increase in emer-
gency department visits for asthma and heart failure, with pronounced effects among 
Alaska Natives [6]. 

 
Figure 4. Daily PM2.5 concentrations in Anchorage during April–September of 2019 (red line) 
compared to long-term daily mean values (dotted black line). 

In addition to public health effects, costs to the 2019 economy included suppression 
expenditures, infrastructure losses, and disruption from transportation closures and evac-
uation orders. Suppression costs for the two largest fires totaled $43 million for Swan Lake 
[7] and $15 million for the McKinley Fire [8], not counting local response. The total sup-
pression costs for the 2019 season in Southcentral Alaska was $70 million [8]. The Swan 
Lake Fire burned a major electric power transmission line [9], costing utilities and custom-
ers an estimated $10.4 million [10]. 

Climate is an important driver of fires in Alaska. The magnitude and extremes of 
historical Alaska fire seasons have been shown to be linked with broader modes of climate 
variability [11–14] however, most work has largely focused on the Interior where fires are 
most prevalent. Southcentral Alaska and Kenai Peninsula boreal forests differ from Inte-
rior Alaska in that insect outbreaks and invasive species are tied to fire activity, and 
drought stress has not been common [15]. The annual temperature for all of Alaska has 
warmed between 1976 and 2016 by 0.3 °C per decade [16] but there is a large gradient in 
trend magnitudes between northernmost and southern Alaska. Regional warming trends 
are largest on the North Slope of Alaska and decrease southward [17] and are largest in 
the cooler months. Southcentral Alaska which is located in the Cook Inlet climate division 
[1] has June–August trends over the 1949–2019 period of 1.2 °C (mean = 10 °C) for tem-
perature and −30.7 mm (mean = 320.3 mm) for precipitation. Temperature trends are sim-
ilar for the Central Interior climate division (1.6 °C, mean = 12.5 °C) but of opposite sign 
for precipitation (+7.5 mm, mean = 191 mm) (updated from [17]). The Cook Inlet climate 
division is cooler and wetter in summer than the Central Interior climate division. The 
anthropogenic signal has already emerged in Interior Alaska based on an attribution 
study of 2015 fires [18] and we hypothesize that the anthropogenic signal is just starting 
to emerge in Southcentral Alaska, where the mean summer climate is cooler and wetter. 
In 2019, the Cook Inlet climate division July–September temperature was ranked warmest 
while June–August precipitation was ranked driest (Figure 5) over the 1925–2019 period. 
The unprecedented persistent warm temperatures and dry conditions in Southcentral 
Alaska in 2019 set the stage for the extreme late fire season. 
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Figure 5. Ranking of average temperature for July–September (left) and total precipitation (right) for June–August for 
Alaska climate divisions. Cook Inlet climate division is identified by grey asterisks. Data for figure provided by NOAA 
National Centers for Environmental information, Climate at a Glance: Divisional Mapping at 
https://www.ncdc.noaa.gov/cag/. 

The extreme seasonal climate, large economic costs, and societal consequences of the 
2019 Southcentral Alaska fire motivates investigating the following questions: 
• How did the climate conditions of 2019 in Southcentral Alaska vary intraseasonally 

in comparison with previous years from the observational record? 
• Do we expect more fire seasons in the future in Southcentral Alaska like 2019? 
• What are the relative contributions of temperature and precipitation to future 

changes of fire risk in Southcentral Alaska? 
Section 2 describes the data and methods while Section 3 documents the events of 

2019 in the historical observational setting, presents attribution and future projection anal-
ysis. Section 4 provides a discussion of these analyses and Section 5 contains the conclu-
sions. 

2. Data and Methods 
2.1. Data 

Observations at the Predictive Service Area (PSA) level for temperature and precipi-
tation are based on station data from the Alaska Fire and Fuels (AKFF) website maintained 
by Mesowest (https://akff.mesowest.org/), an online cooperative data provider [19]. The 
AKFF database includes both National Weather Service stations and remote automatic 
weather stations (RAWS and USArray), which provide high-quality station data through-
out the summer to monitor fire-relevant parameters. 

The European Center Reanalysis version 5 (ERA5) [20] was used to represent obser-
vations because the drought measure SPEI (see Section 2.2 for definition) requires a long-
term, consistent reference data set not available at many stations in the region [21]. ERA5 
performs well in the Arctic [22] with fewer heterogeneities than station data for precipita-
tion in Alaska [23]. The gridded ERA5 and climate model output (see below) were ana-
lyzed over a region bounded by 58–63°N and 144–157°W in order to represent the region 
south of the Alaska Range that included most of the PSAs of interest while excluding the 
mountains in the gridded data sets. Within this domain (red box, Figure 1 inset) land grid 
points (minimum 80% land) that are at or below 800 m in elevation were averaged to 
construct indices from gridded reanalysis and model data. 

The role of anthropogenic climate change was quantified by using SPEI calculated 
from a climate model, the Community Earth System Model (CESM), for which a large 
ensemble (39 members were employed in this study) of simulations is available. The 
CESM model ranks among the top models representing temperature and precipitation in 
Alaska [24]. Comparisons of CESM and ERA5 depictions of temperature and precipitation 
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from 1979 to 2019 for this study’s domain are included in Section 3. The use of a large 
ensemble from a single, widely used climate model offers the best means for assessing 
internal variability. A similar single-model strategy has been applied in the attribution of 
fire risk in Canada [25]. 

2.2. Methods 
The key drivers of wildfire potential used in this attribution are monthly June–Au-

gust temperature and precipitation, which are combined into the Standardized Precipita-
tion Evapotranspiration Index (SPEI). SPEI is a measure of surface wetness/dryness de-
fined as a normalization of precipitation minus potential evapotranspiration (PET) [26]. 
The normalization procedure produces a departure (in standard deviations) from the cli-
matological mean for the location and calendar month. The SPEI was evaluated as a meas-
ure of fire danger using monthly accumulated precipitation and PET; cumulative June–
August SPEI were constructed by summing 1-monthly values. 

The monthly PETs were calculated using the Thornthwaite approach [27]. The 
Thornthwaite method was used over a more physical model like Penman−Monteith be-
cause of a lack of quality surface wind and solar radiation data in Alaska. The monthly P-
PET values were normalized following the inverse normal approximation procedure in 
Vicente-Serrano et al. [26] but using the nonparametric Tukey plotting position to deter-
mine the probability positions of the data for simplicity [28], similar to the application for 
Evaporative Demand Drought Index [29]. 

Each ensemble member of the CESM Large Ensemble [30] provided monthly histor-
ical (1920–2005) and projected (2006–2100; RCP8.5) climate information. The 39 ensemble 
members from 1920–2100 were analyzed for two 41-year periods, 1979–2019 and 2040–
2080. A 1000-year CESM-LENS preindustrial control simulation (PI) was randomly sam-
pled, with the condition that each year was included once, to obtain 39 preindustrial en-
semble members that were also 41 years in length. This provided a consistent framework 
to compare preindustrial, present and future SPEI. 

SPEI requires a base climatological period against which to normalize the index. For 
ERA5 the observed 1979–2019 period was used. For a consistent comparison across the 
CESM suite of simulations, an ensemble average of the PI CESM was used as the base 
climatological period to normalize the 1920–2100 ensembles. The base climatological pe-
riod is created by ranking the values in each ensemble member and then averaging across 
same ranks (i.e., the CESM-LENS rank 1 value is the average of the 39 rank 1 values) to 
construct the CESM-LENS distribution. 

While this study uses the SPEI index because it can be readily evaluated from the 
monthly output available from the CESM simulations, an alternative metric of shorter-
term (daily) variations of wildfire susceptibility is the Buildup Index (BUI). The BUI is 
computed from the 1300 (local time) air temperature, relative humidity, 24-hr accumu-
lated precipitation, and herbaceous stage. The Buildup Index (BUI), part of the Canadian 
Fire Weather Index system was evaluated because it represents cumulative drying and 
potential flammability [31] and is used operationally by fire management in Alaska. 

3. Results 
3.1. Historical Context 

The summer of 2019 was characterized by abnormal warmth and dry conditions in 
Southcentral Alaska. Station-based temperatures showed several departures from the cli-
matological (1981–2010) averages in both the Kenai Peninsula and Susitna PSAs (Figure 
6), in which the Swan Lake and McKinley Fires occurred, respectively. Daily averaged 
temperatures from the AKFF database were more than 5–15 °C above normal from mid-
June through early July in both PSAs. During this period, Anchorage reached its highest 
temperature ever recorded: 32 °C (90°F) on July 4, while nearby stations located farther 
from the coast reached even higher temperatures. Subsequent excursions of 5–10 °C above 
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normal occurred over a multiday period in mid-July and during the first two-thirds of 
August. Figure 6 also shows that precipitation was well below normal over the June–Au-
gust period, with the only notable precipitation occurring in late July. Even after several 
substantial rain events in September, the total warm-season (April–September) precipita-
tion was approximately 25% below normal. 

 
Figure 6. Daily station-based temperature (°C) and daily cumulative precipitation (mm) for 2019 
compared to corresponding climatological (averaged daily values over the period 1994 to 2019) 
values for Susitna Valley PSA (upper panel) and Kenai Peninsula PSA (lower panel). The 2019 
temperatures are shown in red and precipitation amounts in dark blue. Climatological tempera-
ture shown in grey and climatological cumulative precipitation shown in light blue. Plotted values 
are averages over all weather-reporting stations in the respective PSAs. 

Figure 7 shows the August BUI values for 1994–2019 computed using AKFF data for 
the Kenai Peninsula and Susitna Valley PSAs. In both PSAs, the August values of the BUI 
were the highest of the entire period. The only prior year with BUI values approaching 
those of 2019 was 2004, in which the statewide total area burned by wildfire was the high-
est on record. Figure 8 compares the daily BUI evolution of 2019 with that of other severe 
fire years in Alaska based on the gridded ERA5 data. The daily BUI over our entire grid-
ded analysis domain had two major peaks, in early July and late August in 2019, corre-
sponding to the major growth periods of the Swan Lake and McKinley Fires. The evolu-
tion of BUI throughout the season from ERA5 reanalysis corresponds well to the station-
based observations. While 2004 also had peaks with similar timing, the 2019 peaks were 
higher. In fact, the late-July peak of the daily BUI in 2019 exceeded the daily values of the 
severe fire years of 2004 and 2005, each of which had a larger statewide burn area than 
2019. 

a)

b)
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Figure 7. Average August Buildup Index (BUI) values for the Kenai Peninsula PSA (dark red) and 
the Susitna PSA (light brown). BUI values were computed from station data over the 1994–2019 
period and are unitless. 

 
Figure 8. Daily values of the BUI in 2019, 2013, 2005 and 2004 computed from ERA5 over the grid-
ded analysis domain defined in Figure 1. The climatology (thick grey line) is calculated by averag-
ing daily BUI over the 1979–2019 period. BUI is unitless. 

The extreme nature of the 2019 fire season is also apparent in the ERA5-based domain 
averages of the seasonal and monthly temperature and precipitation, which form the basis 
of the SPEI attribution analysis in the following section. As shown in Figure 9, the domain-
averaged temperature for the June–August (JJA) period was the highest while the JJA-
averaged precipitation was the lowest of the entire 1979–2019 period spanned by the 
ERA5 reanalysis. Again, only 2004 comes close to matching the temperature and precipi-
tation departures of 2019. The corresponding SPEI values are shown in Figure 10, where 
the SPEI values for the individual calendar months are color-coded. The 2019 SPEI deficits 
were large in each of the three summer months. Only four other years of the 41-year pe-
riod had negative SPEI anomalies in all three summer months, and the 3-month total 
anomaly of 2019 was clearly the largest (of either sign) of the 41-year record. 
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Figure 9. June–August total precipitation (blue bars) and 2 m air temperature for each year, 1979–
2019, based on the ERA5 reanalysis over the gridded analysis domain defined in Figure 1. 

 
Figure 10. SPEI index values for June, July and August of each year, 1979–2019, based on the ERA5 
reanalysis over the gridded analysis domain defined in Figure 1. 

3.2. Attribution and Future Projections 
Because air temperature and precipitation are the primary determinants of the SPEI, 

we begin the attribution analysis by summarizing the CESM-LENS simulations of 2 m air 
temperature and precipitation in comparison with ERA5 over the historical period. Figure 
11 shows the medians and ranges of the yearly June–August values of these variables over 
1979–2019 for ERA5 (left column), the 41 CESM-LENS yearly values averaged over all 39 
ensemble members (second column), and the 41 × 39 CESM-LENS values for all years of 
all ensemble members (third column). It is apparent that the CESM tends to be cooler and 
drier than ERA5 over the historical period. The required bias-correction by quantile-map-
ping is described below. It is also apparent from the middle two columns of Figure 11 that 
the ensemble averaging narrows the range of CESM’s temperature and precipitation, but 
that the full set of 41 × 39 yearly values provides a larger sample for assessing frequencies 
of occurrence of extreme summers. Finally, column 4 of Figure 11 shows that CESM pro-
jects a future that is significantly warmer and wetter than the historical period over the 
domain of the analysis. The CESM distributions of the ensemble averages for 1979–2019 
show no overlap with 2040–2080 in the case of temperature, and only a very slight overlap 
in the case of precipitation (columns 2 and 4 of Figure 11). This result is consistent with 
other studies of future trends in the Arctic, specifically with regard to the greater strength 
and earlier emergence of the temperature signal compared to the precipitation signal [32]. 
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Figure 11. Comparison of ERA5 and CESM temperature and precipitation for 1979–2019. Box and 
whiskers shown for ERA5, CESM present ensemble average, and CESM present all ensembles for 
(a) June–August averaged 2-m air temperature (°C) and (b) June–August total precipitation (mm). 
The plots show median values, second and third quartile ranges (boxes) and maximum/minimum 
values (whisker limits). 

Figure 12a,c shows the yearly range of summer temperature and precipitation over 
the 1920–2100 period in the CESM-LENS ensemble, together with the ERA5 values for the 
1979–2019 reference period. In this case, the summer temperature is plotted as the Sum-
mer Warmth Index, defined as the sum of the monthly mean temperatures (°C) above 0 
°C. The cool and dry biases of the CESM relative to ERA5 are again apparent over the 
1979–2019 reference period. In order to use the CESM-LENS output in an attribution anal-
ysis keyed to the ERA5 historical record, the distributions of ERA5 values were quantile-
mapped to distributions of the CESM-LENS over the 1979–2019 reference period. In this 
way, the changing likelihoods of the 2019 values can be determined from the CESM-LENS 
output for the past and future decades, as shown in Figure 12b,d. Consistent with the 
historical data-based summaries in Section 4, the probabilities of 2019’s summer temper-
ature were essentially zero prior to 2000, while the probabilities of precipitation as low as 
in 2019 were less than 5% in every decade from the 1920s onward. For the future, the 
probability of summer temperatures as warm as 2019 increases dramatically in the mid-
21st century, reaching close to 100% by the 2080s. By contrast, the chances of a precipita-
tion amount as low as in 2019 become even smaller, reaching essentially zero by mid-
century. 
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Figure 12. CESM-LENS simulations of Summer Warmth Index (a) and Total Summer Precipitation 
(c) over the period 1920–2100. Corresponding values from ERA5 for the period 1979–2019 are 
shown before (red) and after (blue) adjustment by quantile-mapping. Probability of occurrence of 
the value equivalent to the 2019 extreme value of the Summer Warmth Index (b) and Total Sum-
mer Precipitation (d). 

4. Discussion 
The trends towards higher summer temperatures and increased summer precipita-

tion represent opposing influences on wildfire susceptibility in southern Alaska. The SPEI 
discussed earlier provides a metric to integrate these opposing effects on surface wetness. 
Therefore, SPEI values were computed from the monthly output of the CESM-LENS sim-
ulations and the ERA5 reanalysis. In ERA5, the lowest cumulative SPEI for JJA for the 
1979–2019 period occurred in 2019 and is −5.02. The CESM ensemble-averages of the 41-
year minima are −3.66 for the PI and −3.17 for 1979–2019, though by 2070 values closer to 
2019 ERA5 are reached in CESM (Figure 13). The CESM data were not bias-corrected to 
the ERA5. Rather, CESM PI SPEIs were ranked and ensemble-averaged to construct min-
imum SPEI that were used as the baseline for comparison to the 1979–19 and 2040–80 
periods for calculating probabilities of exceedance. The averaged CESM PI simulation has 
lower SPEI compared to CESM 1979–2019 (Figure 14) so there are few ensemble members 
in which the present-day JJA values of the SPEI exceed the corresponding monthly PI 
extremes (Table 1). However, the number of exceedances increases by 2040–2080 for JJA 
SPEI for ensemble-average comparisons and is even higher when individual ensemble 
members are considered. Exceedance probabilities for individual months are also shown 
in Table 1 for reference, but the persistent three months of hot dry conditions were key for 
the observed extreme fire season. Since SPEI is a normalized index, the 1979–2019 distri-
butions for ERA5 and CESM look very similar with the exception of the extreme low ERA5 
values and the higher ERA5 variability since ERA5 represents a single realization. Ensem-
ble-average distributions from CESM for JJA SPEI (Figure 14) highlight that the CESM 
1979–2019 is close but shifted slightly to the right of the PI distribution, whereas the CESM 
2040–2080 has shifted to the left of the PI. Figure 15 displays a box plot of SPEI for all the 
ensemble members comprising 1979–2019 CESM. There are three ensemble members that 

a) b)

c) d)
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reach SPEI values lower than the PI ensemble average. The CESM climate’s internal vari-
ability dominates over anthropogenic forcing until later in the century. 

 
Figure 13. CESM SPEI values spanning 1920–2100 from the historical and RCP 8.5 simulations of 
one LENS ensemble member. SPEI is unitless. 

 
Figure 14. Distribution CESM SPEI values based on all CESM ensemble members. Distributions 
are shown for the preindustrial (blue), present (1979–2019, red) and future (2040–2080, orange). 
Corresponding ERA5 distribution for 1979–2019 is shown by dotted red line. 

 
Figure 15. Median values, second and third quartile ranges (boxes), maximum and minimum val-
ues (whisker limits) for each CESM ensemble member. Dots are outlier values. Corresponding 
ranges for CESM ensemble averages over different time periods and for ERA5 shown using col-
ored boxes at right. 
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Table 1. ERA5 2019 SPEI values for JJA (cumulative), and monthly from June–August. CESM PI 
ensemble average lowest SPEI values for JJA cumulatively and individual months. The probability 
of exceeding PI SPEI averaged for each ensemble for the periods 1979–2019 and 2040–2080 is 
shown below. The range of probabilities among the 39 ensembles is shown in brackets. 

 
ERA5 
2019 

CESM: 
PI CESM: 1979–2019 CESM: 2040–2080 

  
Lowest 

SPEI 
Average Probability of Exceedances of CESM’s PI Ex-

treme by Ensemble Members (Range across Ensembles) 

SPEI 
JJA −5.02 −3.66 0.44% (4.9–0%) 4.9% (17–0%) 

SPEI 
June −1.52 −1.71 2.1% (7–0%) 13.2% (27–0%) 

SPEI 
July −1.75 −1.59 1.9% (4.9–0%) 8.9% (12–0%) 

SPEI 
Aug. −1.75 −1.71 2.4% (5–0%) 6.5% (9.8–2.5%) 

The salient result in Table 1 is that the probabilities of exceedances of preindustrial 
extremes of the SPEI increase later in the century, reaching 13.2% in June and 4.9% in the 
summer season average, indicating that the wildfire risk will increase in the coming dec-
ades. For June, the projected increase ranges among ensemble members from 0 to 27%, 
while the corresponding range for the summer season average is 0 to 17%. The projected 
increases for July and August are 8.9% (range: 0–12%) and 6.5% (range: 2.5–9.8%), respec-
tively. It is noteworthy that the projected change dampens between June to August, per-
haps in the form on increased season-ending rains. These projected changes are all sub-
stantially larger than the corresponding changes from the PI to the recent decades (1979–
2019), which are 0.5% for the summer average, 2.1% for June, 1.9% for July and 2.4% for 
August. The fact that the recent changes are positive but much smaller than the projected 
future changes leads to the conclusion that the signal of anthropogenic forcing is emergent 
but not yet a major contributor to the wildfire risk in Southcentral Alaska. In contrast, 
Partain et al. [18] found that anthropogenic forcing has increased the risk of an event like 
the 2015 Interior Alaska fire season by 34–64% in an attribution analysis using BUI. South-
central Alaska has climatologically cooler and wetter summers than Interior Alaska (i.e., 
compare Cook Inlet to Central Interior climate divisions in [1]), therefore it is not surpris-
ing that there is a weaker anthropogenic signal than in the Interior. 

The future CESM SPEI values arise within the context of projected higher precipita-
tion and higher temperatures (Figures 11 and 12). Because the trends toward wetter and 
warmer conditions favor opposing changes in the SPEI, the projected decrease in the SPEI 
with more frequent negative extremes indicates that temperature rise is the more im-
portant driver. A notable caveat of this analysis is the SPEI’s dependence on the formula-
tion of PET. PET estimates for Alaska can vary significantly with the choice of the PET 
formulation [33], especially when temperature and precipitation trends push PET in op-
posite directions. 

5. Conclusions 
For the areas of Southcentral Alaska affected by the 2019 wildfires, the cumulative 

June–August ERA5 SPEI was the lowest of the post-1979 period. The result was an unu-
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sually prolonged fire season with more than $70 million in suppression costs, unprece-
dented degradation of air quality with largely unknown health impacts, and economic 
losses including the disruption of tourism activities during the peak summer season. A 
comparison of climate model simulations of the preindustrial and present-day (1979–
2019) periods shows that anthropogenic forcing has not yet increased the likelihood, rela-
tive to the preindustrial, of extremely low SPEI values and, by implication, the conditions 
favoring the 2019 wildfires in Southcentral Alaska. However, the model results for future 
decades show an emergent signal of more frequent negative extremes of the SPEI and 
hence an increased risk of severe wildfire years. 

The projected changes presented here are based on a single-model ensemble under 
the RCP 8.5 forcing scenario, which is at the high end of the emission scenarios used in 
the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change 
[34]. Output from this and other models used in AR5 shows that the changes projected for 
Alaska under weaker forcing scenarios are qualitatively similar but quantitatively weaker 
than under RCP 8.5 (e.g., [16], see also https://www.snap.uaf.edu/tools/community-
charts). The changes of temperature and precipitation projected for most locations in 
Alaska scale almost linearly with the projected change in global temperature, which in 
turn varies monotonically with the magnitude of the RCP forcing. While greenhouse gas 
emissions have generally been following the RCP 8.5 scenario over the past decade, the 
projected probabilities of exceedance reported here should be reduced accordingly if a 
weaker forcing scenario is assumed. 

This study provides a glimpse into a potential future with increased risk of late sea-
son wildland fire in highly populated Southcentral Alaska, where 75% of Alaska’s 734,000 
denizens live [35]. Wildland fire is a natural part of the boreal ecosystem so while fires 
cannot be prevented, their impacts can be managed through diligent preparation to min-
imize loss of property and lives. Studies like this can serve as evidence that community 
leaders can use to incentivize residents to invest in developing fire-safe strategies such as 
removing flammable items from around their homes and having an escape plan in in-
creasingly fire-prone areas. Increased communication with the public on fire-safe strate-
gies is timely. For example, a recent public service communication about the McKinley 
Fire demonstrates the positive outcomes that resulted from fire-safe improvements [36]. 
The results obtained here also serve to inform decision-support for managing firefighting 
resources. Specifically, based on the projections that fire years like 2019 will become more 
common in the future, managers must ensure that firefighters and equipment are availa-
ble in southern Alaska later in the season than previously. 
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