CHAPTER 8
Insolation Control of Monsoons

Ruddiman uses correlations between
monsoon history and Milankovitch
orbital variations to illustrate their
powerful roles in Earth’s climate.



“Monsoon”
seasonally reversing wind regime
accompanied by changes in precipitation

Calcutta in July
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We are now 7.5 billion people,

http://www.worldometers.info/world-population/

and many of us live in regions affected by the monsoons




date of onset of summer monsoon
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“giant cousin of an onshore breeze”



Nowadays, monsoon Is used to
describe seasonal changes In
atmospheric circulation and
precipitation associated with the
asymmetric heating of land and sea.

Burkina Faso




Usually, the term monsoon Is used to refer
to the rainy phase of a seasonally-changing
pattern, although technically there Is also a
dry phase (winter monsoon).
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Regions where monsoonal rainfall is important

India, Bangladesh, Pakistan, Nepal, Tibet: South Asian Monsoon
(summer)

SE India and Sri Lanka: Northeast Asian Monsoon (autumn)

Phillipines, Indochina, China, Korea, Japan (South Asian
Monsoon (summer)

northern Australia: Indo-Australian Monsoon (summer)
subSaharan Africa: African monsoon (summer*)

northern Mexico & SW USA: Mexican or N American Monsoon
(summer)



northern Mexico, southwestern USA (North
American Monsoon)

precipitation in
Santa Fe
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Monsoons are a big deal sociopolitically

The South Asian Monsoon accounts for 80%
of the rainfall in India and Pakistan.
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Mean 1995—2006 Precipitation (mm)
Based on NOAA/CPC RFE Climatology Method
May 1 — September 30
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mean rainfall amount (mm) for the monsoon season (1
May — 30 September) in West Africa. Period 1995—

2006. Based on NOAA/CPC Climatology Method Rainfall Estimates. Africa
Rainfall Climatology (CPC ARC) Series.
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Mean 1995—2006 Precipitation {mm)
Based on NOAA/CPC RFE Climatology Method
May 1 — September 30
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Map showing mean rainfall amount (mm) for the monsoon season (1 May — 30
September) in West Africa. Period 1995-2006. Based on NOAA/CPC Climatology
Method Rainfall Estimates. Africa Rainfall Climatology (CPC ARC) Series.
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"Lake Mega-Chad"

(light blue area limited by a
blue dotted line)
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Lake Chad provides water to more
than 20 million people.

Wikipedia 2013
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Lake Chad today....

Journal Geophysical Research
2001
Coe and Foley:

~ »n 3 o s

2001

“...30 percent decrease took place in the lake between 1966 and 1975.
[rrigation only accounted for 5 percent of that decrease, with drier
conditions accounting for the remainder. ..irrigation demands
increased four-fold between 1983 and 1994, accounting for 50 percent
of the additional decrease in the size of the lake. “



orbital monsoon hypothesis: changing
solar insolation affects the strength
and extent of monsoon systems

.
; Y

John Kutzbg;_ch Rudolf Ferdinand Spitaler

Professor Emeritus Austrian Astronomer
Center for Climatic Research 1849-1946

University of Wisconsin



Monsoon Climate of the Early Holocene: Climate Experiment
with the Earth’s Orbital Parameters for 9000 Years Ago

I conducted a sensitivity
experiment by using solar radiation val-
ues for 9000 years B.P. in a low-resolu-
tion general circulation model in place of

modern values. The model is global in
extent and permits simulation of the re-
gional atmospheric circulation and sur-
face climates. Ocean surface tempera-
ture and land albedo must be specified.

JouN E. KuTZBACH
Center for Climatic Research and
Department of Meteorology, University
of Wisconsin, Madison 53706




precession of
eccentricity ~ obliquity equinoxes

Resulting cycles @ | O0,000 41 ,OOO 23 ,OOO Y1



At 9000 years B.P. obliquity was
24.23° (the modern value is 23.45°), peri-
helion was 30 July (the modern value i1s 3
January), and eccentricity was 0.0193
(the modern value is 0.0167); these fac-
tors combine to produce solar radiation
differences for J uly that exceed 7 percent
and 25 to 35 W/m? over a broad band of
latitudes (6) (Table 1). .







Table 1. Latitudinal distribution of solar radi-
ation for July 9000 years B.P. compared to
modern values.

— —_— ey

Solar radiation (W/m?)

Lati-
tude 2000 Mod-

years .
B.P. crh

522
496
498
513
516




Height differences AA (9000
yvears B.P. minus the present): (@) over land
and ocean, (solid line) over land, and (dashed
line) over ocean. Negative differences indi-
cate decreased height (lower pressure) at 9000
years B.P. compared to the present. Model
standard deviations (based on independent
modern simulations) are typically 5 to 10 m.




Over the African-Eurasian land mass
both the low-level cyclonic inflow of air
and the high-troposphere anticyclonic
outflow of air are stronger at 9000 years
B.P. than at present. At the surface,
increased southwesterly winds carry
moisture into West Africa and India.

Northern hemisphere summer

30°
20°

10°

.
s )

40°'W 30° 20° 10° O ° o 20°




Table 2. Simulated surface temperature and precipitation for June to August averages and
annual averages for Northern Hemisphere land, Southern Hemisphere land, and the global
average of land and ocean for 9000 years B.P. compared to modern values. The difference
between 9000 years B.P. and the present is denoted by A. The significance level (S.L.) is
determined from the ratio of A to the model standard deviation.

Surface temperature Precipitation (cm/day)

95000

9000 S.1
Mod-
Spcﬂ,e average years ern . :?':-’*_: vears

B.P. (K) BP

B.P.

°C) (°C)

June to August
Northern Hemisphere, land  24.5 0.7 I 0.04
Southern Hemisphere, land 2. ) 0.3 0.47 0.45 0.02
Global, land and ocean . S 5 0.35 0.35 0




CHAPTER 8
Insolation Control of Monsoons

Ruddiman uses correlations between
monsoon history and orbital variations
to illustrate their powerful role in Earth’s

climate.

What’s the geological evidence?
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Fragmentary record from early Pleistocene

J.D. Kingston et al. | Journal of Human Evolution 53 (2007) 487—503
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Regional pluvials intermittently coincide with precessional radiation highs

Mid-Pleistocene Development of Onset of Northern
Revolution Walker Circulation Hemisphere glaciation
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Detailed part of record shows pluvials coincided
with precession cycle ca. 23 ka
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ore recent geological evidence for
ilankovitch effects on monsoons

Michael Ondaatje

Read by Christopher Cazenove
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Afrlcan Lake Levels, 9,000 yr BP vs. Present Today, perihelion
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occurs in northern
hemisphere winter but
at 10,000 years ago
(half of a precession
cycle) it occurred in
northern hemisphere
summer, and summer
radiation over North
Africa was about 7%
higher than it 1s today
(Berger, 1988;
Kutzbach, 1981)

45°E Data are from the Oxford Lake Level Database

(COHMAP members, 1988, Street-Perrott ef al.,

Green Sahara Afrlcan Humid Perlods Paced by Earth's Orbital Changes 1989) updated with lake-level reconstructions

By: Peter B. deMenocal & Jes

o

a E. Tierney © 2012 Nature Educatio

generated in the last twenty years (Tierney et al.

Citation: deMenocal, P. B. & Tierney, J. E. (2012) Green Sahara: African Humid Periods Paced by Earth's Orbital Changes. Nature Education Knowledge 3(10):12



480

470

460

450

-120

-100¢t

-80¢t . . . )
0 5000 10000 15000 20000

(A) Summer Insolation, 20 N (W/m?)

AN

(B) African Lake Levels

(C) Niger River Outflow 5'®

[ (D) ODP Site 658 Dust flux

{1
N s

(E) Lake Tanganyika &[] 12

aaaaaa

Years Before Present

Figure 2

(a) Change 1n seasonal (summer)
insolation for North Africa (20°N)
and paleoclimate records of the
African Humid Period: (b) African
lake level status (updated Oxford
Lake Level Database; COHMAP
members, 1988, Street-Perrott ef al.,
1989, Tierney et al., 2011), (¢) Niger
River outflow inferred from

0180 warerr (Weldeab et al., 2005);
(d) Ocean Drilling Program (ODP)
Site 658 dust flux (deMenocal et al.,
2000, Adkins et al., 2006); (e) Lake
Tanganyika oD of leaf waxes (0D, ,,;
Tierney et al., 2008).
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regions
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rainfall

Northern hemisphere summer
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Sapropel (a contraction of ancient

Greek words sapros and pelos, meaning
putrefaction and mud, respectively) 1s a
term used in marine geology to describe
dark-coloured sed1ments that are rich in
organic matter. —

Pt()lemals9 Cyrenalca https://Wwwzl{u.nl/staff/FJHilg.e’-rl/O‘ i
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8-9 my old, uplifted marine sediment, Sicily

Sapropels are dark-coloured shale-like
sediments rich 1n organic matter (>2%
organic C)



Depths greater than 300 m became anoxic ca.
9500 BP and remained so until ca. 6000 BP

Algero- e
<%= Provencal/ Tyrrhenian
. S Balearic Sea -

Strait of Basin . s
Gibrakar . q
\f Skrait

L Aboran Sea of Sicily »

Latitude

lonian Sea
-~

Levantine Sea

Nile Delta '

| |
10 30

Longitude

See interesting web page maintained by Eelco J. Rohling
:www.noc.soton.ac.uk/soes/staft/ejr/DarkMed/dark-title.html
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Lake Chad today....

Journal Geophysical Research
2001
Coe and Foley:

~ »n 3 o s

2001

“...30 percent decrease took place in the lake between 1966 and 1975.
[rrigation only accounted for 5 percent of that decrease, with drier
conditions accounting for the remainder. ..irrigation demands
increased four-fold between 1983 and 1994, accounting for 50 percent
of the additional decrease in the size of the lake. “



Nonlinearities 1n orbital forcing of
monsoon rainfall in the Sahel

526 Foley and others

Figure 1. Vegetation cover and
precipitation patterns of Africa.
- Patterns of precipitation (ex-

4 pressed as annual means, in units
of mm/y) are tightly correlated
with patterns of vegetation cover.
Northern Africa is dominated by
the Sahara, the largest hot desert
on the planet today. The transi-
tion between the Sahara and the
savannas to the south occurs in
o the Sahel zone (outlined in black).
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Grassland/Steppe
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Dense Shrub
Decideous Forest

Evergreen Forest

Foley et al., Regime shifts in the Sahel, Ecosystems (2003)



Regime Shifts in Northern Africa 527 Foleyetal (2003)
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Mediterranean

Sahara desert
and desert scrub

Grass

Tree savannah

Rain ‘orest

Adapted from J. F. Griffiths,
Climates of Africa [Amsterdam:
Elsevier, 1972].
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Regime Shifts in Northern Africa 531
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over the Sahel. Zeng and others (1999) used a simplified
C III|I|I.'-.:| A LTI --.;'-Iln.-r-.'— wean—land model to investigate
the mechanisms behind long-term climate variability in
the Sahel region. They found that a model configured to
represent only atmosphere—ocean coupling (B) did not
match the observed record of predpitation (A). Only

Annual rainfall anomaly (mm)

when vegetation dynamics and land-surface feedbacks

FOley et al (2003) were induded in the model (C) did the model capture the
long-term variations in rainfall observed in the Sahel
Figure redrawn from Zeng and others (1999%))




An additional complication....

orbital forcing from precession =3 Mmonsoon rains

AR

fire regime E vegetation/surface feedbacks

Copyright © Jacques Jangoux



The Global Extent and Determinants of Savanna and Forest as
Alternative Biome States

A. Carla Staver, et al.

Science 334, 230 (2011);

DOI: 10.1126/science.1210465

Fig. 4. Distributions of
biome types across sub-
Saharan Africa, South
America, and Southeast

Asia/Australia. Biome ‘r

types are defined as areas i \ i

where climate (i) deter- s i Y "? \ ‘

ministically supports low L kg " - '-"'-% Sy

tree cover (low rainfall,
high seasonality); (i) sup-
ports biome bistability
(intermediate rainfall,
mild seasonality), current-

ly savanna; (jii) supports Deterministic low tree cover

biome bistability, current- Bistable, currently low tree cover
ly forest; and (iv) deter- Bistable, currently forest
ministically supports forest B Deterministic forest

(high rainfall).

globally discontinuous. Climate influences tree cover globally but, at intermediate rainfall (1000 to
2500 millimeters) with mild seasonality (less than 7 months), tree cover is bimodal, and only fire
differentiates between savanna and forest. These may be alternative states over large areas, including




Precession cycle brings several
thousand years of increased summer radiation
every 23 ka.
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changes in winter monsoon are irrelevant for

moisture balance in the Sahel because
winters are dry there anyway
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Again,
note the
lack of
any
wintertime
response
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23,000-year
precession of
eguinoxes shows
up strongly Iin
monsoons of other
regions
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Fujian province, China
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Anton et al (2010) Quaternary Science Reviews



Chinese cave del*®O record is the
new darling of paleoclimatologists

mMorth GRIP del 18) walues plotted in the GICC05 time scale of Svensson et al. (2006), Andersen et al. (2006), and Fasmussen et al. (2007

Hulu

North GRIP
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Green lines show del
130 1n calcite
cave deposits.

The del 8O variations
correlate with
precession-driven
peaks 1n midsummer
solar insolation 1n
each polar
hemisphere.



Insolation Control of Monsoons by the
23,000-year, precession of the
equinoxes, Milankovitch cycle

Ruddiman uses monsoon history to
illustrate the powerful role of orbital
variations in controlling Earth’s climate.



orbital monsoon hypothesis: changing
solar insolation affects the strength
and extent of monsoon systems
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