What processes have controlled Earth’s
climate at time scales of millions to billions of
years?

Earth is 4.5 billion years old



To this point:

1) Earth’s greenhouse effé;c't ’_‘iS‘ p"owfe rful.




At present, roughly 30% of the incoming solar radiation is

reflected back to space by the clouds, aerosols, and the
surface of Earth.

Without naturally occurring greenhouse gases,
Earth's average temperature would be near O°F

(or -18°C) instead of the much warmer 59°F
(15°C).



processes underlying Earth’s radiation budget
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comparison with Venus

0.8 albedo

96% of atmosphere is CO,

greenhouse effect



2) Volcanism can strongly affect Earth’s
climate over shorter time scales (years to
centuries) but not over longer time scales
(millennial to millions of years)




No feedback mechanism

1) The other C reservoirs blunt the effects of changes involcanism

2) Climate happens above ground, and
volcanism is driven by processes deep in
Earth’s interior.

...which means there is no basis
for a thermostat involving
volcanism.




Chemical Weathering Hypothesis:

Does silica-mineral weathering control the
global thermostat?




based on the Urey Reactions
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Th e U rey Rea CtiO n S (the chemical weathering hypothesis)

weat hcring

CO, + CaSiO, CaCO, + S10,
€«
x'nel:u'nm‘phlsm

wczlthering

CO, + MgSiO, MeCO, + Si0,

€
mctamr;)rphlsm

Urey, H. C,, 1952, The Planets, Their Origin and Development: New Haven, Yale Univ,
Press, 245 p
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s this (the Chemical Weathering Hypothesis)
the crucial, global thermostat?
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But there must be more to it than simply rock
weathering....the Earth is tectonically dynamic.

2
4

o




Chapter 5. Plate Tectonics and Long-Term Climate




We are looking for Earth’s thermostat.

co, + What Else?
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How do plate tectonics interact with silicate
weathering to affect climate?




weathering
A0 | [ v > .S
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Tectonics as a contributing factor to
Earth’s long-term climate
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Could the geographic positions of tectonic
plates determine the timing of ice ages?

1. Where were the plates when
glaciation occurred?

2. Do global climate models support

the idea that plate positions make a
difference to global climate?
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3.3 g/cm3



Where will
you find
bedrock rich
In Ca-Si
minerals?
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Himalaya:

B lots of calc-
i silicate rocks



Tectonics create
topography,

which creates
opportunities for
silicate mineral
weathering.

thickness of the Earth's crust (km)



Cratons, shields: ancient crystalline rocks forming
stable interiors of continental plates:

TR

S
fgh

Tectonic stability, scarce calc-silicate bedrock
= low rates of CO, sequestration

Canadian shield (red)
formed 2 billion years old
during the Archaean




Today......12 tectonlc plates
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most plates are combinations of continental and oceanic crust
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Convergent margins: continental/oceanic plates or
oceanic/oceanic
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continent — continent collisions: rare in Farth’s history

thickness of the Earth's crust (km)




Magnetostratigraphy:
chronostratigraphic technique used to date
sedimentary and volcanic rocks

]
Normal magnetic
polanty

Reversed magnetic

Lithosphere / Magma

characteristic remnant magnetization: the polarity of Earth’s
magnetic field at the time of deposition.



Why the age of the sea floor is of interest
here:

a)Dated magnetic lineations on seafloor can
be used to reconstruct former plate
positions

b) and we can use them to estimate past
rates of sea floor spreading



Why the age of the sea floor is of interest
here:

a)Dated magnetic lineations on seafloor can

be used to reconstruct former plate \
Polar position H

positions
and BLAG H

b) and we can use them to estimate past
rates of sea floor spreading

BLAG H
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The Polar Position Hypothesis

When the continents bunch together at
the poles, they provide a place for ice
sheets to develop.

When they move off the poles, the ice
age ends.
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Several global glaciations

occurred during the past 550
my

What caused them?



forget
greenhouse
gases and
blame it on

continental
drift (?)
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Gondwana melds with northern
continents to form Pangaea
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We had continental glaciation at these times:
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Between 425
and 325 mya,
continents lay
at the South

j Pole, but no

South America

ice sheets
formed.
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Gondwana breaking up:
Despite South Pole remaining near/on Antarctica,
continental glaciation did not start there until the Miocene.
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So far, there is evidence both for
and against the Polar Position
Hypothesis




Ruddiman concludes:
) | There must be more to it than simply the
Polar Position Hypothesis.

P It seems to have worked at some times
~ but not at others.




But does continental arrangement really

matter for Earth’s climate?
What happens if we combine the Polar Position Hypothesis with a
general circulation model of Earth in the time of Pangaea?
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in modeling Pangaea’s climate is
simplifying its geography

g

Pangaea in model grid

Figure 4-10b
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Geology; May 1989; v. 17; no. 5; p. 457-460; DOI: 10.1130/0091-7613(1989)017<0457:SCVOTS>2.3.CO;2

Seasonal cycle variations on the supercontinent of Pangaea
Thomas J. Crowley, Willilam T. Hyde, and David A. Short



2cnd boundary condition decision: Where
was sea level?

(this has obvious implications for extent of Pangeaea
and continentality of its climates)




39 boundary-condition decision: What was
Pangaea’s topography?




Fourth assumption: How much CO, was in
Pangaea’s atmosphere?
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The modelers decided that because there was
frost-sensitive vegetation growing in Pangaea
to 40 d N and S and that there were no
continental ice sheets, CO, levels must have
been hlgh 1650 ppm (X present)

Dimetrodon, predatory synapsid Pangaean ancestor? gingko tree
mammal-like-reptile of Pangaea



Model output:

Predicts
widespread
aridity in
interior of
Pangaea

B Annual soil moisture (cm) > 8

Figure 4-12
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Geological evidence
supports aridity

More salt deposited
on Pangaea ca 200
mya than at any other
time in Earth’s history.



Predictions of extreme continentality

Winter hemisphere

Summer hemisphere
Seasonal temperatures (°C) > 30 0-30 <O

Figure 4-14
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Winter hemisphere

Pangaea probably
Summer hemisphere .
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GCMs can only create the super-monsoonal /
continental climate if they combine elevated CO,
levels with the clumped continental position.

red beds




CONCLUDE

Can the positions of tectonic plates
determine the timing of ice ages?

Yes, but only in conjunction with
changes in CO, levels (greenhouse
effects)




Polar changes + 27777

. Meganeura, dragonfly ancestor
with 75-cm wingspan,
Carboniferous

So we are back to this question: How can you change CO,
levels over millions of years?



Where we are:
CO, is a crucial driver of Earth’s climate

Volcanic hypothesis: rejected as sole process

Silicate-weathering hypothesis: highly likely to be
Important

Polar-position hypothesis: rejected as sole cause, but may

contribute
NEXT

The BLAG hypothesis



[AMERICAN JOURNAL OF SciENcE, VoL, 283, SEPTEMBER, 1983, P. 641-683)

American Journal of Science

SEPTEMBER 1983

THE CARBONATE-SILICATE GEOCHEMICAL CYCLE
AND ITS EFFECT ON ATMOSPHERIC CARBON
DIOXIDE OVER THE PAST 1060 MILLION YEARS

ROBERT A. BERNER,* ANTONIO C. LASAGA,**
and ROBERT M. GARRELS* **




BLAG Hypothesis: spreading-rate hypothesis

“Changes in the rates of sea-floor spreading
have controlled rates of recycling of carbon
from rock reservoir to atmosphere, and
these changes have affected Earth’s climate.”



The BLAG (spreading-rate) Hypothesis
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negative feedback to warming, not to seafloor spreading
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CO,
is recycled from
crust to
atmosphere at
margins of
converging
plates and at
mid-oceanic
ridges



And....we know from paleomagnetic studies of the
sea floor that spreading rates vary widely across
the Earth today.

Today, Pacific ridge is spreading 10x faster than the mid-Atlantic ridge.
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Melting and transformation in subduction
zones

CaCO3 & SiO2 +volcanism == CaSiO3 + CO2

ocean sediment new silicate rock greenhouse effects
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10’s of millions years to billions? of years

Seafloor
spreading

Figure 4-19
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We are looking for Earth’s thermostat.

Co, + What Else?




How do plate tectonics interact with silicate
weathering to affect climate?




CaSiO; + H,CO,

Silicate Carbonic acid
bedrock in soils

Weathering
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Earth’s Climate: Past and Future, Second Edition
© 2008 W.H.Freeman and Company

ca+2

Si*4_HCO,~

Ca*2 sjt+4
HCO,~

lons dissolved

in river water

Transport
in rivers

Si0, + CaCO,

Shells of
ocean plankton

Depo

Depth (km)

The BLAG hypothesis:

e Mariana —.
Island Arc

Seamounts
Mariana

Trench /=% ¢

\tﬁdf‘[— Plate _—:“
N

Vertical Exaggeration 10.8:1

z .“I.‘ Island arc crust, induding Basaltic crust, induding

-~ -t . {«

A5 rocks from contemporary old crust on the Pacific
volcanism and from older, Plate and young arust

rifted, volcanic arcs formedin the back-arc

Cross-Section Sketch of Mariana Arc

(After Hussong and Fryer, 1981)



Ruddiman:
The oldest oceanic crust is only ca. 170 my old.

So we cannot evaluate BLAG earlier in Earth’s
history (e.g., Pangaean climate).




Ruddiman:

Furthermore, about % of the oceanic crust older than
50 my old has been lost, so we are limited as to when
we can get accurate estimates of spreading rates.



