Monday 11 September, 2017

10:30-11:30
Class#06
Topics for the hour
Announcements
e Review

e | ongwave Radiation

e Radiative Model of Atmosphere

e Albedo and what it is sensitive to

e Clouds and how they impact earths surface

http://www2.gi.alaska.edu/~bhatt/Teaching/ATM694.fall2017/
ATMGEO694.htm



Review

e shortwave radiation

¢ l]ongwave radiation

e Solar radiation at the TOA, at surface of earth?
¢ albedo, earth’s albedo

* Emission temperature



What are these?
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Slide from Neelin, 2011. Climate Change and Climate Modeling, Cambridge UP

Sfc, Radiation Absorbed at Sfe.

After Kiehl and Trenberth, 1997, Bull. Amer. Meteor. Soc.



Emission Temperature

Temperature at which a planet needs to
emit in order to achieve energy
balance.

Solar radiation absorbed = planetary
radiation emitted

_ 4 c=5.67x10°Wm>K™*
E, =€eol

*ER is the total rate of energy emission from the object at all frequencies
in Watts/m=.

e £ is emissivity, a number between 0 & 1 telling us how good a
blackbody we have (1=best)

* 0 is the Stefan-Boltzman constant

e T is emission temperature

e Compare spectra of Sun and Earth



Emission Temperature of Earth

Sebk Solar n S .
equ&t ko —O(I—OC ) — 67;
Terrestrial 4 P

LB
out. 242 W/m?
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~ 255K =—18C

I = 4\/(1367/4)(1—0.3)
0)

Factor of 1/4 comes from the ratio of shadow area of sphere
to the surface area of a sphere (5t Rg?/4 1w Rg?)

Hmmm... Emission Temperature is much less than observed
Surface temperature of Earth (~288K)?7?? WHY??

Physical way in which molecules interact with radiation



How molecules interact with radiation - Briefly

Why do certain gases interact
with radiation?

When radiation impinges on a
molecule, it can excite the molecule,
either by vibrating or rotating it.
Molecules of a particular kind of gas
have a different shape from
molecules of another type of gas,
and so are excited by radiation in
different ways.

CO,

Depends on the frequency - which molecules get excited.



Normalized Spectra of Sun and Earth (same heights)
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with equal areas. Conditions are typical of mid-latitudes and for a solar elevation of 40 ° or for ‘

a diffuse stream of terrestrial radiation.



Layer Model of the Atmosphere

*Recall bare rock model had
an emission temperature of
255 K, much cooler than
real temperature of 288 K.

e Atmosphere is transparent
to visible light (solar)

e Solar energy all reaches
the surface and converts
into Terrestrial radiation and
emits upward.

e Terrestrial radiation (LW) is
absorbed in atmosphere
and emitted upwards and
downwards




Band Saturation Effect

* Outgoing IR spectrum
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Radiative Equilibrium Model

Each layer of atmosphere that is almost opaque for longwave
radiation can be approximated as a blackbody so it absorbs all
the incident terrestrial radiation and emits at its own

temperature.

Layers of blackbodies
.................................................. %...L.%y.far. 1
oT,
T L
Transparent tossolar: Yot gn N0 o GT2La_yer 2
i
B
ol
; Surface

Fig. 3.10 Diagram of simple two-layer radiative equilibrium model for the atmosphere—Earth sys-

tem, showing the fluxes of radiant energy.
Hartmann, 1994
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Develop Radiative Model

________________________________________________ i ALTOA:

Surface

Fig. 3.10 Diagram of simple two-layer radiative equilibrium model for the atmosphere—Earth sys-
tem, showing the fluxes of radiant energy.

Key to developing equations: Absorbed = Emitted

Energy Balance in Layer 1: GTz4 = 26714
. B , . 4 4 4
nergy Balance in Layer 2: 071 + GTS, = 2GTz
S
Energy Balance at Surface: ~0(1— 4 4
(1-a,)+0l, =01,

Solar augmented by atmospherii radiation
12



Simple Radiative Equilibrium Model Analysis

Surface T 4

Fig. 3.10 Diagram of simple two-layer radiative equilibrium model for the atmosphere—Earth sys- S
tem, showing the fluxes of radiant energy.

A model of n layers has this relationship:

3

(

\

So
4

(I-a,)

0

n=0, T,=255K then T ,=255K

4
I = \/ n+ 1T, n=1,1=255K then T =303k
n=2, T ,=255K then T.=335K

\

g1 §Q(1'0‘ ) O'T4
5 bk (4L.2) 12 B Solve for surface temperature,
] work out the math yourselves

=37*

e

Surface too hot... Radiative equilibrium not great approximation for
surface temperature since heat removed by sensible and latent fluxes are

ignored here.



Shortcomings of the Radiative Equilibrium Model

Pg 62-63 Hartmann
Add a thin upper layer to model at stratosphere and a thin layer next to

surface. Solve our model for T at each level getting:

T

10 |

Altitude (km)

4 ‘1
300 350

200 250
Temperature (K)

Fig. 3.11 Plot of temperature profile obtained from the simple two-level atmosphere radiative equi-

librium model.

R-E model gives large temperature difference between surface and the
thin layer of atmosphere above it. Need to add heat transpogt Irgtlue t01994
artmann,

conductive and convective heat transport.
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8% accurate
for solar
zenith angles

less than 40

late in the day,
clear sky, glare
effect most
evident in clear
sky!

[Cook 2013]

Albedo and zenith angle

(b)
g e

8%
reflected

: 120 150 180° 150
Figure 5.6 The planctary albedo (%)
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Albedo over water depends angle of incidence & cloud
cover: Surface albedo insensitive to zenith angle if
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ter surface on solar zenith angle and cloud cover. [Data

« Under clear skies albedo increases as O increases
» Clouds scatter incident solar so it is no longer a paraliel
beam, so albedo changes with © are smaller as clouds cover

increases.

16



Clouds and Climate, Key question for climate change...

Liquid droplets or
Ice particles

* water amount

e droplet size/shape
All impact how
clouds interact with
solar and terrestrial
radiation.

Cloud liquid water
content - total mass of
cloud water in
vertical column of
unit surface area

Hartmann, 1994
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Model Calculations of cloud albedo and absorption
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Fig. 3.13 The dependence of (a) cloud albedo and (b) cloud absorption on cloud liquid water path
and solar zenith angle. Values are given in percent. [ From Stephens (1978). Reprinted with permission
from the American Meteorological Society.]

Model calculations

1. albedo increases
clouds thicken and increase in albedo slows down

2. Absorption decreases at high zenith angles-more reflected so
less can be absorbed
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Albedo influenced by Droplet Size: as droplet size
decreases the albedo increases
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Fig. 3.14 The dependence of planetary albedo on the size of cloud droplets. [From Slingo and
Schrecker (1982). Reprinted with permission from the Royal Meteorological Society.]

albedo increases as droplet size decreases for 3 different cases
where liquid water levels kept fixed

Why should this be the case? (larger surface area for the same mass!)

Hartmann, 1994
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Role of Clouds in Energy Balance

« Measure radiative fluxes from
satellites, both solar and
terrestrial.

http://asd-www.larc.nasa.gov/erbe/erbssat.gif

A
All - = cloud-free : :
conditions ~ 7 conditions Difference of averages is
cloud radiative forcing - effect
LW T l sw T l of clouds on the radiative

i ij Z budget
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Clouds act to cool the Earth’s Energy Budget

Table 3.3
W/m?2 Average Cloud Free Cloud Forcing
OLR 234 266 +31
Absorbed
Solar 239 288 -48
Radiation

+5

(uncertainty) *¥22 -7

Net Radiation

Albedo 30% 15% 15%

*Clouds increase albedo (15->30) which decreases absorbed by 48.
* OLR held in by clouds increases by 31
* Net is a cooling of atmosphere by 17 W/m?2, which means...
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High Clouds (%), tops above 400hPa

ISCCP High Cloud Amount
1983-1990

HODATA O 5 10 15 20 25 30 35 40 45 50 55 60 BS5 70

Percent
 Largest values in 3 tropical convection centers & ITCZ.

* Midlatitude regions

http://depts.washington.edu/uwpcc/remote sensing/cloud sst.html

Close to Fig 3.21a, Hartmann, 1994
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Low Cloud Areas (%), tops lower than 680hPa
Annual ISCCP C2 Inferred Stratus Cloud Amount

HODATA O 10 20 30 40 S0 60 70 &0

. Stratus, strato-cumulus & fog. “"*"

* Midlatitude regions

http://depts.washington.edu/uwpcc/remote sensing/cloud sst.html

Similar to Fig 3.21b, Hartmann, 1994
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Net Cloud Radiative Forcing, depends on type of cloud!
Annual ERBE Net Radiative Cloud Forcing

Note scale

NO DATA -0 -70 -50  -40  -30 -20  -10 0 10 20 30 40

* Negative forcing of marine bouindary layer clouds, block solar
radiation and cool surface
* LW cloud forcing reduces OLR, so clouds warm surface

http://depts.washington.edu/uwpcc/remote sensing/cloud sst.html
Similar to Fig 3.22c, Hartmann, 1994

24



