
Class #15  Monday 7 March 2011

What did we cover last time?
•Hypothesis Testing Types

•Nonparametric Tests
•Resampling
•Permutation Test
• Bootstrap Test 

•Statistical Forecasting
• Linear regression algorithm
• Goodness of fit

•ANOVA
•Residual examination

•Numerical Recipes

1 2Loose End on Correlation and x on y and y on x Regs
(D) Goodness of fit measures (Section 6.2.4) cont..

 Second measure of regression fit is R2 coefficient 
of determination. 

 

  
 

3Chapter 5 Statistical Forecasting
 5.2 Linear Regression continued...
 (H) Multiple Linear Regression
 One predictand (y) & many predictors  (x’s) 

 regression constant and regression parameters.
 Parameters are found by minimizing the sum of 

the squared distance. solve k+1 simultaneous eqns

4 (H) Multiple Linear Regression cont...
 Summarize results in an ANOVA table

 SST use EQ 6.12, SSR use E Q 6.13, and SSE is   
SST-SSR. Sample variance of residuals (MSE).

 Use same methods for looking at residuals as for 
case with one predictor. 



5 (H) Multiple Linear Regression cont...
Derived predictor variables (Sec 6.2.9)
   Potential Predictors, also their transformed 

versions (derived predictors) can be used, 
 Research Forecast versus Operational Forecast 

setting. What are the differences? 
 Transformations choices endless, square, square 

root, reciprocal, sine, cosine, convert to binary,
 Example 6.3, Final R2 is 99.56%, graph of 6.26 matches data well!

LINEAR REGRESSION 199

320  

330  

340  

350

75 150 225 3000

Time, months

C
O

2 
co

nc
en

tra
tio

n,
 p

pm

FIGURE 6.11 A portion (1959–1988) of the Keeling monthly CO2 concentration data, with linear
(dashed) and quadratic (solid) least-squares fits.

However, examination of a plot of the residuals versus time for this linear regression
would reveal a bowing pattern similar to that in Figure 6.6d, with a tendency for positive
residuals at the beginning and end of the record, and with negative residuals being more
common in the central part of the record. This can be discerned from Figure 6.11 by
noticing that most of the points fall above the dashed line at the beginning and end of
the record, and fall below the line toward the middle. A plot of the residuals versus the
predicted values would show this tendency for positive residuals at both high and low
CO2 concentrations, and negative residuals at intermediate concentrations.

This problem with the residuals can be alleviated (and the regression consequently
improved) by fitting a quadratic curve to the time trend. To do this, a second predictor
is added to the regression, and that predictor is simply the square of the time variable.
That is, a multiple regression with K = 2 is fit using the predictors x1 = t and x2 = t2.
Once defined, x2 is just another predictor variable, taking on values between 12 and
3602 = 129600. The resulting least-squares quadratic curve is shown by the solid line in
Figure 6.11, and the corresponding regression statistics are summarized in Table 6.4b.

Of course the SST in Tables 6.4a and 6.4b are the same since both pertain to the same
predictand, the CO2 concentrations. For the quadratic regression, both the coefficients
b1 = 0!0501 and b2 = 0!000136 are substantially larger than their respective standard
errors. The value of b0 = 312!9 is again just the estimate of the CO2 concentration at t= 0,
and judging from the scatterplot this intercept is a better estimate of its true value than
was obtained from the simple linear regression. The data points are fairly evenly scattered
around the quadratic trend line throughout the time period, so residual plots would exhibit
the desired horizontal banding. Consequently, an approximate 95% prediction interval of
±2

√
MSE = 4!1ppm for CO2 concentrations around the quadratic regression would be

applied throughout the range of this data.
The quadratic function of time provides a reasonable approximation of the annual-

average CO2 concentration for the 30 years represented by the regression, although we
can find periods of time where the point cloud wanders away from the curve. More
importantly, however, a close inspection of the data points in Figure 6.11 reveals that
they are not scattered randomly around the quadratic time trend. Rather, they execute
a regular, nearly sinusoidal variation around the quadratic curve that is evidently an
annual cycle. The resulting correlation in the residuals can easily be detected using the
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Table 6.4c indicates that, together with the linear and quadratic predictors included
previously, these two harmonic predictors produce a very close fit to the data. The
resulting prediction equation is

!CO2"= 315#9
$0#1137%

+0#0501
$0#0014%

t+0#000137
$0#0000%

t2− 1#711
$0#0530%

cos
(
2&t
12

)
+ 2#089

$0#0533%
sin

(
2&t
12

)
' (6.26)

with all regression coefficients being much larger than their respective standard errors.
The near equality of SST and SSR indicate that the predicted values are nearly coincident
with the observed CO2 concentrations (compare Equations 6.12 and 6.13a). The resulting
coefficient of determination is R2 = 39783#9/39961#6 = 99#56%, and the approximate
95% prediction interval implied by ±2

√
MSE is only 1.4 ppm. A graph of Equation 6.26

would wiggle up and down around the solid curve in Figure 6.11, passing rather close to
each of the data points. ♦

6.3 Nonlinear Regression
Although linear, least-squares regression accounts for the overwhelming majority of
regression applications, it is also possible to fit regression functions that are nonlinear
(in the regression parameters). Nonlinear regression can be appropriate when a nonlinear
relationship is dictated by nature of the physical problem at hand, and/or the usual
assumptions of Gaussian residuals with constant variance are untenable. In these cases
the fitting procedure is usually iterative and based on maximum likelihood methods
(see Section 4.6). This section introduces two such models.

6.3.1 Logistic Regression
One important advantage of statistical over (deterministic) dynamical forecasting meth-
ods is the capacity to produce probability forecasts. Inclusion of probability elements
into the forecast format is advantageous because it provides an explicit expression of the
inherent uncertainty or state of knowledge about the future weather, and because prob-
abilistic forecasts allow users to extract more value from them when making decisions
(e.g., Thompson 1962; Murphy 1977; Krzysztofowicz 1983; Katz and Murphy 1997). In
a sense, ordinary linear regression produces probability information about a predictand,
for example by constructing a 95% confidence interval around the regression function
through application of the ±2

√
MSE rule. More narrowly, however, probability forecasts

are forecasts for which the predictand is a probability, rather than the value of a physical
meteorological variable.

Most commonly, systems for producing probability forecasts are developed in a
regression setting by first transforming the predictand to a binary (or dummy) variable,
taking on the values zero and one. That is, regression procedures are implemented after
applying Equation 6.25 to the predictand, y, rather than to a predictor. In a sense, zero and
one can be viewed as probabilities of the dichotomous event not occurring or occurring,
respectively, after it has been observed.

The simplest approach to regression when the predictand is binary is to use the
machinery of ordinary multiple regression as described in the previous section. In the
meteorological literature this is called Regression Estimation of Event Probabilities
(REEP) (Glahn 1985). The main justification for the use of REEP is that it is no more

6Chapter 5 Statistical Forecasting
 5.3 Nonlinear Regression (nonlinear in regression 

parameters)
 (A) Logistic Regression
 Probability Forecasts, predictand is binary
 Regression Estimation of Event Probabilities 

(REEP), uses multiple linear regression, 
computationally inexpensive. 

 Logistic Regressions fit

 pi predicted value, 
 looks like s-curve, maximum likelihood solution 

iteratively. Chi or log-likelihood significance tests. 
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computationally demanding than the fitting of any other linear regression, and so has been
extensively used when computational resources have been limiting. The resulting pre-
dicted values are usually between zero and one, and it has been found through operational
experience that these predicted values can usually be treated as specifications of probabil-
ities for the event !Y = 1". However, one obvious problem with REEP is that some of the
resulting forecasts may not lie on the unit interval, particularly when the predictands are
near the limits, or outside, of their ranges in the training data. This logical inconsistency
usually causes little difficulty in an operational setting because multiple-regression fore-
cast equations with many predictors rarely produce such nonsense probability estimates.
When the problem does occur the forecast probability is usually near zero or one, and
the operational forecast can be issued as such.

Two other difficulties associated with forcing a linear regression onto a problem with
a binary predictand are that the residuals are clearly not Gaussian, and their variances are
not constant. Because the predictand can take on only one of two values, a given regression
residual can also take on only one of two values, and so the residual distributions are
Bernoulli (i.e., binomial, Equation 4.1, with N = 1). Furthermore, the variance of the
residuals is not constant, but depends on the ith predicted probability pi according to
(pi#$1−pi#. It is possible to simultaneously bound the regression estimates for binary
predictands on the interval (0, 1), and to accommodate the Bernoulli distributions for
the regression residuals, using a technique known as logistic regression. Some recent
examples of logistic regression in the atmospheric science literature are Applequist et al.
(2002), Buishand et al. (2004), Hilliker and Fritsch (1999), Lehmiller et al. (1997),
Mazany et al. (2002), and Watson and Colucci (2002).

Logistic regressions are fit to binary predictands, according to the nonlinear equation

pi =
exp$b0+b1x1+· · ·+bKxK#

1+ exp$b0+b1x1+· · ·+bKxK#
= 1

1+ exp$−b0−b1x1− · · ·−bKxK#
% (6.27a)

or

ln
(

pi
1−pi

)
= b0+b1x1+· · ·+bKxK& (6.27b)

Here the predicted value pi results from the ith set of predictors (x1%x2% ' ' ' %xK# of n such
sets. Geometrically, logistic regression is most easily visualized for the single-predictor
case (K = 1), for which Equation 6.27a is an S-shaped curve that is a function of x1.
In the limits, b0 + b1x1 → +# results in the exponential function in the first equality
of Equation 6.27a becoming arbitrarily large so that the predicted value pi approaches
one. As b0 + b1x1 → −#, the exponential function approaches zero and thus so does
the predicted value. Depending on the parameters b0 and b1, the function rises gradually
or abruptly from zero to one (or falls, for b1<0, from one to zero) at intermediate
values of x1. Thus it is guaranteed that logistic regression will produce properly bounded
probability estimates. The logistic function is convenient mathematically, but it is not
the only function that could be used in this context. Another alternative yielding a very
similar shape involves using the Gaussian CDF for the form of the nonlinear regression;
that is, pi =($b0+b1x1+· · · #, which is known as probit regression.

Equation 6.27b is a rearrangement of Equation 6.27a, and shows that logistic regression
can be viewed as linear in terms of the logarithm of the odds ratio pi/$1− pi#, also
known as the logit transformation. Superficially it appears that Equation 6.27b could be
fit using ordinary linear regression, except that the predictand is binary, so the left-hand
side will be either ln(0) or ln$##. However, fitting the regression parameters can be

7 (A) Logistic Regression continued...
 Ex 6.4 
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EXAMPLE 6.4 Comparison of REEP and Logistic Regression
Figure 6.12 compares the results of REEP (dashed) and logistic regression (solid) for some
of the January 1987 data from Table A.1. The predictand is daily Ithaca precipitation,
transformed to a binary variable using Equation 6.25 with c = 0. That is, y = 0 if the
precipitation is zero, and y= 1 otherwise. The predictor is the Ithaca minimum temperature
for the same day. The REEP (linear regression) equation has been fit using ordinary least
squares, yielding b0 = 0!208 and b1 = 0!0212. This equation specifies negative probability
of precipitation if the temperature predictor is less than about −9!8"F, and specifies
probability of precipitation greater than one if the minimum temperature is greater than
about 37!4"F. The parameters for the logistic regression, fit using maximum likelihood,
are b0 =−1!76 and b1 = 0!117. The logistic regression curve produces probabilities that
are similar to the REEP specifications through most of the temperature range, but are
constrained by the functional form of Equation 6.27 to lie between zero and one, even
for extreme values of the predictor.

Maximizing Equation 6.29 for logistic regression with a single "K = 1# is simple
enough that the Newton-Raphson method (see Section 4.6.2) can be implemented easily
and is reasonably robust to poor initial guesses for the parameters. The counterpart to
Equation 4.73 for this problem is
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]

−





n∑
i=1

(
p2i −pi

) n∑
i=1

xi
(
p2i −pi

)

n∑
i=1

xi
(
p2i −pi

) n∑
i=1

x2i
(
p2i −pi

)





−1



n∑
i=1

"yi−pi#

n∑
i=1

xi"yi−pi#


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where pi is a function of the regression parameters b0 and b1, and depends also on
the predictor data xi, as shown in Equation 6.27a. The first derivatives of the log-
likelihood (Equation 6.29) with respect to b0 and b1 are in the vector enclosed by the
rightmost square brackets, and the second derivatives are contained in the matrix to be
inverted. Beginning with an initial guess for the parameters "b0$b1#, updated parameters
"b∗0$b

∗
1# are computed and then resubstituted into the right-hand side of Equation 6.31

for the next iteration. For example, assuming initially that the Ithaca minimum temper-
ature is unrelated to the binary precipitation outcome, so b0 = −0!645 (the log of the
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FIGURE 6.12 Comparison of regression probability forecasting using REEP (dashed) and logistic
regression (solid) using the January 1987 data set in Table A.1. The linear function was fit using least
squares, and the logistic curve was fit using maximum likelihood, to the data shown by the dots. The
binary predictand y = 1 if Ithaca precipitation is greater than zero, and y = 0 otherwise.

  REEP > 37.4 probability greater than 1. 
 logistic regression is constrained to stay between 

0-1, likelihood ratio test suggests sig at 1%

8 (B) Poisson Regression 
 Predictand consists of counts - y’s are nonnegative 

numbers. Also, poorly described by gaussian. 
 Poisson distribution is a good probability model 

for count data. 

 µ can be determined as a nonlinear function of 

the predictors. ln insures nonnegative Poisson 

mean. 

 Fit parameters using Poisson log-likelihood. Solve 

iteratively
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observed odds ratio, for constant p= 15/31) and b1 = 0; the updated parameters for the
first iteration are b∗0 =−0!645−"−0!251#"−0!000297#−"0!00936#"118!0#=−1!17, and
b∗1 = 0− "0!00936#"−0!000297#− "−0!000720#"118!0# = 0!085. These updated param-
eters increase the log-likelihood from −21!47 for the constant model (calculated using
Equation 6.29, imposing b0 = −0!645 and b1 = 0), to −16!00. After four iterations the
algorithm has converged, with a final (maximized) log-likelihood of −15!67.

Is the logistic relationship between Ithaca minimum temperature and the probability of
precipitation statistically significant? This question can be addressed using the likelihood
ratio test (Equation 5.19). The appropriate null hypothesis is that b1 = 0, so L"H0# =
−21!47, and L"HA# = −15!67 for the fitted regression. If H0 is true then the observed
test statistic $∗ = 2%L"HA#−L"H0#&= 11!6 is a realization from the '2 distribution with
( = 1 (the difference in the number of parameters between the two regressions), and the
test is 1-tailed because small values of the test statistic are favorable to H0. Referring to
the first row of Table B.3, it is clear that the regression is significant at the 0.1% level. ♦

6.3.2 Poisson Regression
Another regression setting where the residual distribution may be poorly represented by
the Gaussian is the case where the predictand consists of counts; that is, each of the
y’s is a nonnegative integer. Particularly if these counts tend to be small, the residual
distribution is likely to be asymmetric, and we would like a regression predicting these
data to be incapable of implying nonzero probability for negative counts.

A natural probability model for count data is the Poisson distribution (Equation 4.11).
Recall that one interpretation of a regression function is as the conditional mean of the
predictand, given specific value(s) of the predictor(s). If the outcomes to be predicted
by a regression are Poisson-distributed counts, but the Poisson parameter ) may depend
on one or more predictor variables, we can structure a regression to specify the Poisson
mean as a nonlinear function of those predictors,

*i = exp%b0+b1x1+· · ·+bKxK&+ (6.32a)

or

ln"*i#= b0+b1x1+· · ·+bKxK! (6.32b)

Equation 6.32 is not the only function that could be used for this purpose, but framing
the problem in this way makes the subsequent mathematics quite tractable, and the
logarithm in Equation 6.32b ensures that the predicted Poisson mean is nonnegative.
Some applications of Poisson regression are described in Elsner and Schmertmann (1993),
McDonnell and Holbrook (2004), Paciorek et al. (2002), and Solow and Moore (2000).

Having framed the regression in terms of Poisson distributions for the yi conditional
on the corresponding set of predictor variables xi = ,x1+x2+ - - - +xK., the natural approach
to parameter fitting is to maximize the Poisson log-likelihood, written in terms of the
regression parameters. Again assuming independence, the log-likelihood is

L"b#=
n∑

i=1

,yi"b0+b1x1+· · ·+bKxK#− exp"b0+b1x1+· · ·+bKxK#.+ (6.33)

where the term involving y! from the denominator of Equation 4.11 has been omitted
because it does not involve the unknown regression parameters, and so will not influence



9 (B) Poisson Regression continued... 
  Example 6.5 Tornado count in NY state 59-88 

versus Ithaca July temperatures
 Weak relationship seemingly

 For both methods significant at 10% and .07 so 

similar results for the two methods.  
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the process of locating the maximum of the function. An analytic maximization of
Equation 6.33 in general is not possible, so that statistical software will approximate the
maximum iteratively, typically using one of the methods outlined in Sections 4.6.2 or
4.6.3. For example, if there is a single (K = 1) predictor, the Newton-Raphson method
(see Section 4.6.2) iterates the solution according to
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[
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where %i is the conditional mean as a function of the regression parameters as defined in
Equation 6.32a. Equation 6.34 is the counterpart of Equation 4.73 for fitting the gamma
distribution, and Equation 6.31 for logistic regression.

EXAMPLE 6.5 A Poisson Regression
Consider again the annual counts of tornados reported in New York state for 1959–1988,
in Table 4.3. Figure 6.13 shows a scatterplot of these as a function of average July
temperatures at Ithaca in the corresponding years. The solid curve is a Poisson regression
function, and the dashed line shows the ordinary least-squares linear fit. The nonlinearity
of the Poisson regression is quite modest over the range of the training data, although the
regression function would remain positive regardless of the magnitude of the predictor
variable.

The relationship is weak, but slightly negative. The significance of the Poisson regres-
sion usually would be judged using the likelihood ratio test (Equation 5.19). The maxi-
mized log-likelihood (Equation 6.33) is 74.26 for K = 1, whereas the log-likelihood with
only the intercept b0 = ln"&y/n#= 1'526 is 72.60. Comparing (∗ = 2"74'26−72'60#=
3'32 to )2 distribution quantiles in Table B.3 with * = 1 (the difference in the number of
fitted parameters) indicates that b1 would be judged significantly different from zero at
the 10% level, but not at the 5% level. For the linear regression, the t ratio for the slope
parameter b1 is −1'86, implying a two-tailed p value of 0.068, which is an essentially
equivalent result.
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FIGURE 6.13 New York tornado counts, 1959–1988 (Table 4.3), as a function of average Ithaca July
temperature in the same year. Solid curve shows the Poisson regression fit using maximum likelihood
(Equation 6.34), and dashed line shows ordinary least-squares linear regression.
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5.4 Predictor Selection 
 (A) Why Important? Pitfalls (Sec 6.4.1)
 Example 6.6 An overfit regression
 Too many predictors for total winter snowfall in 

Ithaca in 1980 to 1986
US Federal deficit
# personnel in US Air Force
Sheep population in US in 1000’s
Average SAT score of college bound students
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The primary difference between the Poisson and linear regressions in Figure 6.13 is in
the residual distributions, and therefore in the probability statements about the specified
predicted values. Consider, for example, the number of tornados specified when T= 70! F.
For the linear regression, ŷ = 3!92 tornados, with a Gaussian "e = 2!1. Rounding to
the nearest integer (i.e., using a continuity correction), the linear regression assuming
Gaussian residuals implies that the probability for a negative number of tornados is
#$%−0!5− 3!92&/2!1' = #$−2!10' = 0!018, rather than the true value of zero. On the
other hand, conditional on a temperature of 70! F, the Poisson regression specifies that the
number of tornados will be distributed as a Poisson variable with mean (= 3!82. Using
to this mean, Equation 4.11 yields Pr)Y < 0*= 0, Pr)Y = 0*= 0!022, Pr)Y = 1*= 0!084,
Pr)Y = 2*= 0!160, and so on. ♦

6.4 Predictor Selection

6.4.1 Why is Careful Predictor Selection Important?
There are almost always more potential predictors available than can be used in a statistical
prediction procedure, and finding good subsets of these in particular cases is more difficult
than we at first might imagine. The process is definitely not as simple as adding members
of the list of potential predictors until an apparently good relationship is achieved. Perhaps
surprisingly, there are dangers associated with including too many predictor variables in
a forecast equation.

EXAMPLE 6.6 An Overfit Regression
To illustrate the dangers of too many predictors, Table 6.5 shows total winter snowfall at
Ithaca (inches) for the seven winters beginning in 1980 through 1986 and four potential
predictors arbitrarily taken from an almanac (Hoffman 1988): the U.S. federal deficit (in
billions of dollars), the number of personnel in the U.S. Air Force, the sheep population
of the U.S. (in thousands), and the average Scholastic Aptitude Test (SAT) scores of
college-bound high-school students. Obviously these are nonsense predictors, which bear
no real relationship to the amount of snowfall at Ithaca.

Regardless of their lack of relevance, we can blindly offer these predictors to a
computer regression package, and it will produce a regression equation. For reasons that
will be made clear shortly, assume that the regression will be fit using only the six winters

TABLE 6.5 A small data set to illustrate the dangers of overfitting. Nonclimatological data were taken
from Hoffman (1988).

Winter
Beginning

Ithaca
Snowfall (in.)

U.S. Federal
Deficit ($×109)

U.S. Air Force
Personnel

U.S. Sheep
(×103)

Average
SAT Scores

1980 52!3 59!6 557969 12699 992

1981 64!9 57!9 570302 12947 994

1982 50!2 110!6 582845 12997 989

1983 74!2 196!4 592044 12140 963

1984 49!5 175!3 597125 11487 965

1985 64!7 211!9 601515 10443 977

1986 65!6 220!7 606500 9932 1001

11 Example 6.6 An overfit regression continued...
 Regress to fit winters 1980-1985, which is the 

developmental or training sample, equation:
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beginning in 1980 through 1985. That portion of available data used to produce the
forecast equation is known as the developmental sample, dependent sample, or training
sample. For the developmental sample of 1980–1985, the resulting equation is

Snow = 1161771−601!7"yr#−1!733"deficit#+0!0567"AF pers!#

−0!3799"sheep#+2!882"SAT#!

The ANOVA table accompanying this equation indicated MSE= 0!0000, R2 = 100!00%,
and F ="; that is, a perfect fit!

Figure 6.14 shows a plot of the regression-specified snowfall totals (line segments)
and the observed data (circles). For the developmental portion of the record, the regression
does indeed represent the data exactly, as indicated by the ANOVA statistics, even though
it is obvious from the nature of the predictor variables that the specified relationship is not
meaningful. In fact, essentially any five predictors would have produced exactly the same
perfect fit (although with different regression coefficients, bk# to the six developmental
data points. More generally, any K = n−1 predictors will produce a perfect regression
fit to any predictand for which there are n observations. This concept is easiest to see for
the case of n= 2, where a straight line can be fit using any K = 1 predictor (simple linear
regression), since a line can be found that will pass through any two points in the plane,
and only an intercept and a slope are necessary to define a line. The problem, however,
generalizes to any sample size.

This example illustrates an extreme case of overfitting the data. That is, so many
predictors have been used that an excellent fit has been achieved on the dependent data,
but the fitted relationship falls apart when used with independent, or verification data—
data not used in the development of the equation. Here the data for 1986 has been reserved
for a verification sample. Figure 6.14 indicates that the equation performs very poorly
outside of the training sample, producing a meaningless forecast for negative snowfall
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FIGURE 6.14 Forecasting Ithaca winter snowfall using the data in Table 6.5. The number of predictors
is one fewer than the number of observations of the predictand in the developmental data, yielding
perfect correspondence between the values specified by the regression and the data for this portion of
the record. The relationship falls apart completely when used with the 1986 data, which was not used
in equation development. The regression equation has been grossly overfit.

 ANOVA table MSE=0.000, R2=100%, perfect fit.
 easy to picture for n=2,

get a line, and 100%
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beginning in 1980 through 1985. That portion of available data used to produce the
forecast equation is known as the developmental sample, dependent sample, or training
sample. For the developmental sample of 1980–1985, the resulting equation is

Snow = 1161771−601!7"yr#−1!733"deficit#+0!0567"AF pers!#

−0!3799"sheep#+2!882"SAT#!

The ANOVA table accompanying this equation indicated MSE= 0!0000, R2 = 100!00%,
and F ="; that is, a perfect fit!

Figure 6.14 shows a plot of the regression-specified snowfall totals (line segments)
and the observed data (circles). For the developmental portion of the record, the regression
does indeed represent the data exactly, as indicated by the ANOVA statistics, even though
it is obvious from the nature of the predictor variables that the specified relationship is not
meaningful. In fact, essentially any five predictors would have produced exactly the same
perfect fit (although with different regression coefficients, bk# to the six developmental
data points. More generally, any K = n−1 predictors will produce a perfect regression
fit to any predictand for which there are n observations. This concept is easiest to see for
the case of n= 2, where a straight line can be fit using any K = 1 predictor (simple linear
regression), since a line can be found that will pass through any two points in the plane,
and only an intercept and a slope are necessary to define a line. The problem, however,
generalizes to any sample size.

This example illustrates an extreme case of overfitting the data. That is, so many
predictors have been used that an excellent fit has been achieved on the dependent data,
but the fitted relationship falls apart when used with independent, or verification data—
data not used in the development of the equation. Here the data for 1986 has been reserved
for a verification sample. Figure 6.14 indicates that the equation performs very poorly
outside of the training sample, producing a meaningless forecast for negative snowfall
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FIGURE 6.14 Forecasting Ithaca winter snowfall using the data in Table 6.5. The number of predictors
is one fewer than the number of observations of the predictand in the developmental data, yielding
perfect correspondence between the values specified by the regression and the data for this portion of
the record. The relationship falls apart completely when used with the 1986 data, which was not used
in equation development. The regression equation has been grossly overfit.

 In 1986 the 
relationship falls apart.
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 5.4 Predictor Selection  continued ...
 (A) Why Important? Pitfalls (Sec 6.4.1) continued..
 Lessons drawn from Example 6.6

 Choose physically meaningful potential 
predictors. So for our Nenana ice classic, what 
should we choose? 

 Test on sample data not involved in 
development (1/4, 1/3 or 1/2 data on reserve). A 
large difference in performance will make you 
think. 

 Need large developmental sample to get stable 
relationship.  Learn from trial and error! 


