Class #15 Monday 7 March 2011 1
What did we cover last time?
eHypothesis Testing Types
eNonparametric Tests
eResampling
e Permutation Test
e Bootstrap Test
e Statistical Forecasting
e Linear regression algorithm
e Goodness of fit
¢ ANOVA
eResidual examination

eNumerical Recipes
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% 5.2 Linear Regression continued...

% (H) Multiple Linear Regression

% One predictand (y) & many predictors (x’s)

y=b,+bx +bx,..+b.x, (624)

* regression constant and regression parameters.
% Parameters are found by minimizing the sum of
the squared distance. solve k+1 simultaneous eqns

82 (e )? 82 (y, —a-bx, )? .
R =-2) (v, —a-bx)=0(65a)
i=1

da da

aE (ei )2 aE (yi —a- bxl )2 n
i=1 i=1 = _22 [xl (yl. —-a- bxl)] =0 (65b)

b ab

Loose End on Correlation and x on y and y on x Regs 2
(D) Goodness of fit measures (Section 6.2.4) cont..
* Second measure of regression fit is R? coefficient

of determinatizon_. SSR SSE

RP=222_1-222 (6.16)
SST SST
JO:M—?;;AO‘Z‘:—G :I Nenana_data ”:OZM(;;;;QB
Nenana_dat S0.148 - M1 | -0.0050205
R?| 0.050947 Rzl 0.050947
% (H) Multiple Linear Regression cont... 4

% Summarize results in an ANOVA table

TABLE 6.3 Generic Analysis of Variance (ANOVA) table for multiple linear regression.
Table 6.1 for simple linear regression can be viewed as a special case, with K = 1.

Source df SS MS
Total n—1 SST

Regression K SSR MSR = SSR/K F = MSR/MSE
Residual p—K—1 SSE MSE=SSE/@-K-1)=¢%

% SST use EQ 6.12, SSR use E Q 6.13, and SSE is
SST-SSR. Sample variance of residuals (MSE).

% Use same methods for looking at residuals as for
case with one predictor.



* (H) Multiple Linear Regression cont... 5

*Derived predictor variables (Sec 6.2.9)
% Potential Predictors, also their transformed

versions (derived predictors) can be used,

* Research Forecast versus Operational Forecast
setting. What are the differences?

* Transformations choices endless, square, square

root, reciprocal, sine, cosine, convert to binary,
* Example 6.3, Final R2is 99.56%, graph of 6.26 matches data well!
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6.11 A portion (1959-1988) of the Keeling monthly CO, concentration data, with linear
n|— 6.26
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ind quadratic (solid) least-squares fits. [CO,] = 315.9+0.0501t +0. 000137t>—1.711 cos
(0.1137)  (0.0014) (0.0000) (0.0530)

% (A) Logistic Regression continued... 7
* Ex 6.4
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FIGURE 6.12 Comparison of regression probability forecasting using REEP (dashed) and logistic
regression (solid) using the January 1987 data set in Table A.l1. The linear function was fit using least
squares, and the logistic curve was fit using maximum likelihood, to the data shown by the dots. The
binary predictand y = 1 if Ithaca precipitation is greater than zero, and y = 0 otherwise.

% REEP > 37.4 probability greater than 1.
* logistic regression is constrained to stay between
0-1, likelihood ratio test suggests sig at 1%
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* 5.3 Nonlinear Regression (nonlinear in regression
parameters)

* (A) Logistic Regression

* Probability Forecasts, predictand is binary

* Regression Estimation of Event Probabilities

(REEP), uses multiple linear regression,
computationally inexpensive.

* Logistic Regressions fit

111(1pi ):b0+blx1+--~—|—bKXK. (6.27b)
— P

* pi predicted value,
% looks like s-curve, maximum likelihood solution
iteratively. Chi or log-likelihood significance tests.

% (B) Poisson Regression 8
* Predictand consists of counts - y’s are nonnegative
numbers. Also, poorly described by gaussian.
* Poisson distribution is a good probability model
for count data. et
PriX =tz — 5 =0,1,2,.(4.1D)
X.

* U can be determined as a nonlinear function of
the predictors. [n insures nonnegative Poisson
mean.

* Fit parameters using Poisson log-likelihood. Solve
iteratively



* (B) Poisson Regression continued... 9
% Example 6.5 Tornado count in NY state 59-88
versus Ithaca July temperatures

* Weak relationship seemingly
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FIGURE 6.13 New York tornado counts, 1959-1988 (Table 4.3), as a function of average Ithaca July
temperature in the same year. Solid curve shows the Poisson regression fit using maximum likelihood
(Equation 6.34), and dashed line shows ordinary least-squares linear regression.

% For both methods significant at 10% and .07 so
similar results for the two methods.

% Example 6.6 An overfit regression continued... 11
* Regress to fit winters 1980-1985, which is the
developmental or training sample, equation:
Snow = 1161771 — 601.7(yr) — 1.733(deficit) +0.0567 (AF pers.)

—0.3799(sheep) + 2.882(SAT).
* ANOVA table MSE=0.000, R2=100%, perfect fit.

* easy to picture for n=2, ..
get a line, and 100%

* In 1986 the
relationship falls apart.
*
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FIGURE 6.14 Forecasting Ithaca winter snowfall using the data in Table 6.5. The number of predictors
is one fewer than the number of observations of the predictand in the developmental data, yielding
perfect correspondence between the values specified by the regression and the data for this portion of
the record. The relationship falls apart completely when used with the 1986 data, which was not used

in equation development. The regression equation has been grossly overfit.
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%5.4 Predictor Selection
* (A) Why Important? Pitfalls (Sec 6.4.1)
% Example 6.6 An overfit regression
% Too many predictors for total winter snowfall in
Ithaca in 1980 to 1986

*US Federal deficit

*# personnel in US Air Force

*Sheep population in US in 1000’s

*Average SAT score of college bound students

TABLE 6.5 A small data set to illustrate the dangers of overfitting. Nonclimatological data were taken
from Hoffman (1988).

Winter Ithaca U.S. Federal U.S. Air Force U.S. Sheep Average

Beginning Snowfall (in.)  Deficit ($ x 10) Personnel (x10°) SAT Scores
1980 52.3 59.6 557969 12699 992

1981 64.9 579 570302 12947 994

1982 50.2 110.6 582845 12997 989

1983 74.2 196.4 592044 12140 963

1984 49.5 1753 597125 11487 965

1985 64.7 2119 601515 10443 977

1986 65.6 220.7 606500 9932 1001
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% 5.4 Predictor Selection continued ...

% (A) Why Important? Pitfalls (Sec 6.4.1) continued..

* Lessons drawn from Example 6.6
% Choose physically meaningful potential
predictors. So for our Nenana ice classic, what
should we choose?
* Test on sample data not involved in
development (1/4, 1/3 or 1/2 data on reserve). A
large difference in performance will make you
think.
* Need large developmental sample to get stable
relationship. Learn from trial and error!



