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What did we cover last time?
eHypothesis Testing Types
eStudent’s t-test - practical equations
eEffective degrees of freedom
eParametric Tests
¢Chi squared test
e Kolmogorov-Smirnov
eNonparametric Tests
e Classical
e Wilcoxen-Mann-Whitney
e Kolmogorov-Smirnov
e Wilcoxen signed-rank test for paired samples
eField Significance Testing

TABLE 55 Counts of cloud-to-ground lightning for experi 3

4.3 Nonparametric Tests cont... memﬁwmmw"g-gj;:;

*(B1) Permutation Tests cont. .. e o usums
*Example 5.9 Lightning data ex&mple . ks s
*Apply L-scale statistic: e
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% 5.27 - half the average difference (absolute value)
between all possible pairs in a sample size n.

% Compare seeded & unseeded by A diff or ratio.

% Choose A(seeded)/A(unseeded), 1 same distribution
* Choice of L-scale stat is arbitrary and for
illustrative purposes.

% Null hypothesis, the samples have the same L-scale
% Sample 10,000 of 1,352,078 possible. (23!)/[12! 11!]
% L-scale 0.188 in observed case

4.3 Nonparametric Tests cont...

%*(B) Resampling tests
*Construct synthetic data, resample data (aka
Randomization or Monte Carlo tests) in manner
consistent with Null Hypothesis
*Construct artificial values of test statistic from
the original data
% Computer does resampling for you

% (B1) Permutation Tests
% Natural generalization of Wilcoxen-Mann-
Whitney test (Recall lightning example, pool data,
Rank, sum for each group)
* Here you, pool two groups and randomly sample
to get one U statistic, then calculate significance,
repeat this 10,000 times, get distribution of U’s

4.3 Nonparametric Tests cont...

%*(B1) Permutation Tests cont..

*Example 5.9 Lightning data example cont...

% 0.188 is smaller than all but 49 of the 10,000
cases, so the null hypothesis is rejected.

% 49 out of 10,000 then p=0.0049 (1-tail) or 0.0098
(2 tailed) s
* Bimodal distribution

* the 358 outlier is cause é
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FIGURE 5.7 Histogram for the null distributi ofdwmuoofthel.scalesforhghmmgcoumsof

seeded vs. unseeded storms in Table 5.5. The observed ratio of 0.188 is smaller than all but 49 of
the 10,000 permutation realizations of the ratio, which provides very strong evidence that the lightning
mmbyseededswnnswaslesvmubleﬂmnbyunmdednum ‘This null distribution is bimodal
because the one outlier (353 strikes on 9/12/66) produces a very large L-scale in whichever of the (w0
partitions it has been randomly assigned.




5 4.3 Nonparametric Tests cont... 6

4.3 Nonparametric Tests cont...
%(B2) Bootstrap Test %(B2) Bootstrap Test cont...
* Used when you have one-sample setting X Example continued... six is 0.537 for observed
* Key difference: Resampling with replacement > 10,000 bootstrap estimates, histogram below
(slips of paper in hat analogy) X (1-a)% confidence interval, is ng*a/2, values are

) 0.41 and 0.65 on histogram.
X Example 5.10: Use on Ithaca January precip =

600 - |

(1933-82) with the statistic stdev of log x: sinx,
arbitrary, with n=50 is 0.537.
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FIGURE 5.8 Histogram of ng = 10, 000 bootstrap estimates of the standard deviation of the logarithms
of the 19331982 Ithaca January precipitation data. The sample standard deviation computed directly
from the data is 0.537. The 95% confidence interval for the statistic, as estimated using the percentile

method, is also shown. /
4.3 Nonparametric Tests cont... 7 4.3 Nonparametric Tests cont... 8
%*(B2) Bootstrap Test cont... *(B2) Bootstrap Test cont...
% Bootstrap can be used for two or more samoles XExample 5.11 continued: Bootstrap ni=12 (seeded)
but kept P ¢ q led. f lp' E and n2=11 (unseeded). ng=10,000, Figure 5.9 shows
5u5 fepd'?ﬁpara € a? resamtp et , TOr €xampte: tq the distribution of A(seeded)/A(unseeded).
-5 for difference of means test. XGrey arrow, 95%
()C1 - x2) - E[x, - x,] (55) confidence limits from
= —_ _ . 0.08 to 0.75
A 1/2
[Var(x, - x,)] - Getting 1 has a low
X Estimate the sampling distribution of the test probability. _
statistic directly Example 5.11: Ratio of L-scales for ; HOhWOUlS be rejected
lightning strikes for seeded and unseeded. at the JLavel.
* . . . - greater than 1 for 33
Null hypothesis- All aspects of the lightning cases s0.can reject at : !
between the seeded and unseeded are the same. 1% levels also WA m:zscmﬁ:
FIGURE 59 Bootstrap distribution  for: the. ratio of L-scales- for: lightning strikes- in seeded and
unseeded | storms;. Tablé: 5353 Th: ration is- greater: than' 1| for! only: 33+ of 10,000 bootstrap samples.
indicating that 'a null hypothesis-of equal 1-scalés-would ibe rejected. Also shown (grey arrows) is the

95% confidénce interval ffor the ratio, which ranges from 0.08~0.75: :




Discussion Exercise: Problem 5.10 Wilks 9

5.10. A published article contains a statistical analysis of historical summer precipitation data in
relation to summer temperatures using individual ¢ tests for 121 locations at the 10% level.
The study investigates the null hypothesis of no difference in total precipitation between
the 10 warmest summers in the period 1900-1969 and the remaining 60 summers, reports
that 15 of the 121 tests exhibit significant results, and claims that the overall pattern is
therefore significant. Evaluate this claim.

Chapter 5 Statistical Forecasting continued 1
% 5.2 Linear Regression (A) Calculate Regressions

% Linear relationship between 2 variables, x
independent variable(predictor) and y dependent
variable (predictand).

* Criteria 1: Minimize squared error, easy to
compute but vulnerable to outliers.

% Other criteria: Least absolute deviation (LAD),
does not have a theoretical basis so it is an iterative

process.
y=a+bx (6.2)

€ =) - 5’(7@') (6.3)
% Each data pair will have a residual e.

y,=y(x)+e, =a+bx+y(x;) (64)

Chapter 5 Statistical Forecasting 10
%5.1 Background

% Weather and climate forecasting has a statistical
basis as there are many things not in our models...
% Classical Methods - no input from NWP (Numerical
Weather Prediction) models or fluid dynamical
models. Prominent before NWP.

% Other Method - Use in conjunction with NWP,
enhance numerical forecasts with statistics.
Important to get forecast for a city as opposed to a
grid point.

% Much of statistical weather forecasting is based
on linear regression based on the least squares
principle.

5.2 Linear Regression continued .. 12
* Minimize the function and get b and a.
Do -0 -»] aX[xy]- D5 D
b = 4=l - — _i=l i=1 i=12 (6.7a)
Ste-or|  Spr-[3s)
i=1 i=1 i=1
a=y-bx (6.7b) : AR

b=ﬂ°w=':—z/‘/'

i jon. The regression line, § = a+bx. s

FIGURE 6.1 Schematic illustration of simple linear regression. PR e
chosen as the one minimizing some measure of the Vﬂ“ﬂlh differences residuals) betwee g
and the line. In least-squares r_egmssmn that lllel;::'«l vertical distances.
shows the residual, e, as the difference betweett s
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% 5.2 Linear Regression continued..

% (B) Distribution of Residuals

* Typically assume that the errors are independent
random variables with zero mean

n

Ye=0 (68)

i=1
% Look at error
variance, they scatter
about some mean
value (0 in this case).
Conditional (less
spread with known x)
and Unconditional in
Fig. 6.2.

(B) Distribution of Residuals continued ... 15
% SSR- Regression sum of squares in 2 forms,
regression line with small slope with contribute little
to SSR. ssR=N[5(x)-¥] (6.13a)

i=1

SSR =[x, -X] =b> ¥ x} - n¥’ (6.13b)

i=1 i=1

* SSE - Sum of squared differences between residual
and it’s mean (which is 0).
n

SSE=Y ¢l (6.14)
i=1

{iyf- ny’ -b’ [ixf- nx’ ]} (6.15)

1 1
n-214 ~

n-2

2
Se—

[SST - SSR] =

(B) Distribution of Residuals continued ... 14
* Residual Variance, divide by n-2 since 2 parameters

n

1 2 1 w ~ 2
2261:0 (6.9) s3=nj§[yi_y(xi)] -0 (6.10)

n—253

2
s, =

% More usual way to calculate residual variance

SST =SSR+ SSE (6.11)

% SST (sum of squares) - Variation in predictand (y) is
partitioned into variation due to regression and that
due to residuals.

SST = Y[y =31 = Y yi-ny> (6.12)
i=1

i=1

(C) Analysis of Variance (ANOVA) (Section 6.2.3) 16
* Get this information with regression analysis and
comes in this typical table form.

* Total is somewhat redundant and often omitted.
% MS - mean squared column, Total is just SST/(n-1)
or sample variance of predictand.



Chapter 5 Statistical Forecasting 17
* 5.2 Linear Regression continued

* (D) Goodness of fit measures (Section 6.2.4)

* Components of ANOVA table can be used to
calculate goodness of fit.

% MSE (Mean squared error) important as it tells us
accuracy of forecast results. Fig. 6.3a, SSR and SST
nearly the same ==> good fit. Fig6.3b SSR=0.

(a) (b)

(E) Sampling distribution of Regression Coefficients 17
(Section 6.2.5)

Residual variance gives estimates of sampling
distribution of regression coefficients.

* Assume sampling distributions are gaussian for a
and b.
* For Intercept t.=a (6.17a)

n
2
S
i=1

Se ni
n [ -0
* For slope El
w,=b (6.18a)

SL‘

Sl - f)]zr

i=1

1/2

o, = (6.17h)

o, = (6.18b)

(D) Goodness of fit measures (Section 6.2.4) cont.. 18
* Second measure of regression fit is R? coefficient
of determination.

g =R __55E (6.16)
SST SST

* Proportion of the predictand variance
(proportional to SST) that is described by the
regression (SSR).

Note: R is the correlation between x and y!

% Third measure is F ratio MSR/MSE, increases with
strength of regression. Can use F test as a measure
of significance for regressions.

(E) Sampling distribution of Regression Coefficients 20
(Section 6.2.5) cont...

*Estimated slope and intercept are not independent
and have the correlation:

r,,=———— (6.19D)

* Valid for linear regression only. Regression
programs also often output t and p values.

* Example 6.1 is a simple worth-looking-at example
of how the ANOVA table results help evaluate a
regression coefficient.



(F) Examining Residuals (Section 6.2.6) 21
eExamine Residuals for consistency, don’t just take the
computer’s word for it! Not easy when done for gridded data.

o case of heteroscedasticity - non-constant residual variance.
Remedy by ln transformation, which reduced bigger values more.
If RHS more fanned then use y*2 to increase bigger values.

Fig. 6.4 not
transformed

Fig. 6.5 is In

FIGURE 6.4 Hypothetical linear regression (a), and plot of the resulting residuals against the predicted

values (b), for a case where the variance of the residuals is not constant. The scatter around the regression tran SfO rm ed
Jine in (a) increases for larger values of x and y, producing a visual impression of fanning in the residual
plot (b). A transformation of the predictand is indicated. y /4—-——-—-—3——~—

' (@ (b)
*Scatter plot residual vs

predictor, x Fig6.6.

* Q-Q plots helpful to see
if residuals are Gaussian Fig : e s
6.7. MORE STUFF ... )

In (y)

(G) Prediction Intervals (Section 6.2.7) 22
Want confidence intervals around forecast values!

* 95% limit is y =+2s_ good for a Gaussian
distribution with a large number of n

* But real will be a bit higher since predictand

mean and regression slope impacted by sampling
variations. Also, future values used in equation will
increase the variance.

1 (x,-x)

E(x -x)

*term 2- uncertainty from using sample size of n to estimate
predictand mean, decreases as n increases.

*term 3- uncertainty from slope estimation, predictions far from
center of data less certain

% Pages 195-6 of section discusses how to put confidence
intervals on the regressions.

s =5 1+ (6.22)



