Class #11 Monday 21 February 2011

What did we cover last time?

- Discrete distributions
 - Binomial (N and p)
 - Geometric
 - Negative Binomial
 - Poissons
- Statistical Expectation
- Continuous distributions
 - Gaussian
 - Central Limit Theorem
 - Conditional Distribution
 - Gamma Distribution

3.4 Continuous Distributions cont...

*****(E) Extreme Value Distribution

- ***** Describes behavior of largest of m values.
- ***** Example: Table 4.7, 1951-1970, max precip (m=365)

* Extreme Types Theorem - the largest of m independent values , from a fixed distribution (General Extreme Value, GEV) will follow a known distribution as m increases.

***** 3 parameters, location (ζ), scale (β) & shape (κ).

 $f(x) = \frac{1}{\beta} \left[1 + \frac{\kappa(x-\zeta)}{\beta} \right]^{1-1/\kappa} \exp\left\{ - \left[1 + \frac{\kappa(x-\zeta)}{\beta} \right]^{1-1/\kappa} \right\}, 1 + \kappa(x-\zeta) / \beta > 0 \quad (4.54)$

* Get parameters using Maximum Likelihood or Lmoments. (choice depends on sample size)

* 3 special distribution cases of GEV

3.4 Continuous Distributions cont... PDF²

*(D) Beta Distribution

***** Distributions from 0-1

* Examples: Relative
Humidity, cloud amount,

probability, & sea ice

- * p and q, 2 parameters,
- p=q symmetric,

1

3

- * Use method of moments (get mean & var from sample).
- * Can shift the limits [0,1] to [x,y].

4

3.4 Continuous Distributions cont...

- *(E) Extreme Value Distribution cont...
- * 3 special distribution cases of GEV
 - # 1) Gumbel (Fisher-Tipett Type I)
 #limiting case for κ==>0
 - * use for extreme data drawn from distributions with well behaved tails (exponential)

* Can estimate parameters using Method of moments

* 2) Freshet (Fisher-Tipett Type II)* κ>0

* Have 'heavy tails', PDF decreases slowly for large values of x. The tail does not fall off as fast as for a Gaussian distribution.

Aside: Levy distribution, a stable distribution with heavy tails. (Stable means converges to self CLT).

3.4 Continuous Distributions cont...

*****(E) Extreme Value Distribution cont...

- * 3 special distribution cases of GEV cont...
 - # 3) Weibull (Fisher-Tipett Type III)
 - **₩** κ<0
 - * Fit with Maximum Likelihood or L-Moments
 - * The Weibull model (alpha =2) closely mirrors the actual distribution of hourly wind speeds at

Density

3.4 Continuous Distributions cont... *****(F) Mixture Distribution

***** Use for Bimodal data, ENSO ex. * Weighted average of a distribution, can combine any number, usually same type $f(x) = xf_1(x) + (1 - w)f_2(x)$ (4.63)

- * mean is weighted average
- ***** variance more complex
- * Fit with Maximum likelihood
- ***** Gaussian most common but use two exponentials for nonzero daily precipitation.

***** Ex: Two bivariate Gaussians, costs since many parameters to estimate.

5

7

3.4 Continuous Distributions cont...

*****(E) Extreme Value Distribution cont...

- * Strong motivation for studying stats of extremes
- * GEV requirements not always met (i.e. data collection changes over time, different causes of extreme rain) so check to make sure best to use.
- ***** How to choose extremes?
 - * Value in one year a max for another
 - * Alternate: Pick n max out of total years (peakover-threshold (POT) method). Serial correlation take care of this.

* Extreme Probabilities as 'Average Return Periods', The CDF (F(x)) and avg sampling frequency (ω),

BOARD, Go through Ex 4.10

$$R(x) = \frac{1}{\omega[1 - F(x)]} (4.62)$$

3.5 Oualitative Methods of Goodness of Fit a

There exist quantitate methods for choice of distribution!

*****(A) Superposition

***** Simple, plot the sample values histogram & overlay the distribution & just make sure you have scaled properly. * PDF integral must be 1

Tornados

3.5 Qualitative Methods of Goodness of Fit 🦻

*****(B) Quantile-quantile plots

* Scatter plot, data value and it's estimate from quantile function of the fitted function (scaled).

- * Perfect fit then all points fall on diagonal.
- * large valuesunderestimated* Gamma better
- than Gaussian

3.6 Parameter fit using Maximum Likelihood 11

- *****(A) Likelihood Function cont...
- ***** BOARD how to solve...

*(B) Newton-Raphson Method

- ***** Gaussian MLEs were easy to calculate, usually calculate iteratively. Calculate roots.
- *** BOARD** example and how to solve...
- * Example 4.12 Gamma Function

$$f(x) = \frac{(x / \beta)^{\alpha - 1} \exp(-a / \beta)}{\beta \Gamma(\alpha)}, \quad x, \alpha, \beta > 0(4.38)$$

*****(C) Expectation-Maximization (EM) Method

* Use for more than 3 parameters, more of an idea than a formulaic process. Book points to references for details on process.

3.6 Parameter fit using Maximum Likelihood 10

*****(A) Likelihood Function

*****Seeks values of parameters that maximize the Likelihood function.

***** Bayesian: Most probable values of parameters given the data.

*Likelihood function for Gaussian with n obs. is:

$$\Lambda(\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \prod_{i=1}^{n} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] (4.67)$$

***** Looks like PDF for a Gaussian, so confusing!

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], -\infty < x < \infty \quad (4.23)$$

3.7 Statistical Simulation

12

- *** Statistical Simulation:** Generate 'seemingly' random numbers based on given PDF, EX: SAT forcing for an ocean model.
- ***** Random number generator: really pseudo-random

*(A) Uniform Random number generation

- * Generate random uncorrelated samples between 0 and 1.
- ***** How does this work? **BOARD**,

3.7 Statistical Simulation

13

*****(B) Nonuniform Random number generation

₩