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What did we cover last time?
¢ Discrete distributions
e Binomial (N and p)
e Geometric
¢ Negative Binomial
e Poissons
e Statistical Expectation
e Continuous distributions
eGaussian
eCentral Limit Theorem
e Conditional Distribution
eGamma Distribution
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*(E) Extreme Value Distribution

* Describes behavior of largest of m values.

* Example: Table 4.7, 1951-1970, max precip (m=365)
* Extreme Types Theorem - the largest of m
independent values , from a fixed distribution
(General Extreme Value, GEV) will follow a known
distribution as m increases.

* 3 parameters, location ({),scale (B) & shape (k).

f(x)=%[l+’((x_;)]_ exp{—[l+’((xT_C)]_ },1+K(x—§)/ﬁ>0 (4.54)
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* Get parameters using Maximum Likelihood or L-
moments. (choice depends on sample size)
* 3 special distribution cases of GEV

3.4 Continuous Distributions cont...

% (D) Beta Distribution

* Distributions from 0-1
% Examples: Relative
Humidity, cloud amount,
probability, & sea ice

* p and q, 2 parameters,

p=q symmetric,
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3.4 Continuous Distributions cont...
*(E) Extreme Value Distribution cont...
* 3 special distribution cases of GEV
* 1) Gumbel (Fisher-Tipett Type I)
*limiting case for k==>0
* use for extreme data drawn from
distributions with well behaved tails
(exponential)
* Can estimate parameters using Method of
moments
% 2) Freshet (Fisher-Tipett Type Il)
* k>0
* Have ‘heavy tails’, PDF decreases slowly for
large values of x. The tail does not fall off as

fast as for a Gaussian distribution.
Aside: Levy distribution, a stable distribution with heavy tails.
(Stable means converges to self CLT).
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*(E) Extreme Value Distribution cont...
* 3 special distribution cases of GEV cont...
* 3) Weibull (Fisher-Tipett Type Ill)

* k<0

* Fit with Maximum Likelihood or L-Moments

% The Weibull model (alpha =2) closely mirrors

the actual distribution of hourly wind speeds at
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*(F) Mixture Distribution

% Use for Bimodal data, ENSO ex.

0.08

VAV
* Weighted average of a 5= N ; \
distribution, can combine any & ° / Lo
number, usually same type g .. N

FO0) =, () + (1= w) f,(x) (4.63) T s 0 s 0o ow o

% mean is weighted average

% variance more complex

* Fit with Maximum likelihood

* Gaussian most common but use
two exponentials for nonzero
daily precipitation.

% Ex: Two bivariate Gaussians,
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3.4 Continuous Distributions cont... 6

% (E) Extreme Value Distribution cont...
* Strong motivation for studying stats of extremes
* GEV requirements not always met (i.e. data
collection changes over time, different causes of
extreme rain) so check to make sure best to use.
* How to choose extremes?
* Value in one year a max for another
* Alternate: Pick n max out of total years (peak-
over-threshold (POT) method). Serial correlation -
take care of this.
* Extreme Probabilities as ‘Average Return Periods’,
The CDF (F(x)) and avg sampling frequency (w),
BOARD, Go through Ex 4.10 1

R(x)=———(4.62
(x) a)[l—F(x)]( )

3.5 Qualitative Methods of Goodness of Fit s
There exist quantitate methods for choice of distribution!
% (A) Superposition :
* Simple, plot the sample
values histogram & overlay
the distribution & just make
sure you have scaled properly.
% PDF integral must be 1

Tornados

| Ithaca January rainfall
Gamma preferable



3.5 Qualitative Methods of Goodness of Fit ¢

% (B) Quantile-quantile plots
% Scatter plot, data value and it’s estimate from
quantile function of the fitted function (scaled).

% Perfect fit then all
points fall on
diagonal.

* large values
underestimated

% Gamma better
than Gaussian
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% (A) Likelihood Function cont...
% BOARD - how to solve...

% (B) Newton-Raphson Method

% Gaussian MLEs were easy to calculate, usually

calculate iteratively. Calculate roots.

% BOARD - example and how to solve...

* Example 4.12 Gamma Function
a-1

floy= SIS ex0CalP) -y gy oca38)

pr(a)

% (C) Expectation-Maximization (EM) Method

* Use for more than 3 parameters, more of an idea

than a formulaic process. Book points to references
for details on process.
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% (A) Likelihood Function

%Seeks values of parameters that maximize the
Likelihood function.

* Bayesian: Most probable values of parameters
given the data.

*Likelihood function for Gaussian with n obs. is:

(x-u)’
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% Looks like PDF for a Gaussian, so confusing!
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3.7 Statistical Simulation 12

* Statistical Simulation: Generate ‘seemingly’
random numbers based on given PDF, EX: SAT forcing
for an ocean model.

% Random number generator: really pseudo-random

% (A) Uniform Random number generation

* Generate random uncorrelated samples between
0and 1.

% How does this work? BOARD,



3.7 Statistical Simulation
% (B) Nonuniform Random number generation

*
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