Class #8 Wednesday 9 February 2011

What did we cover last time?

- Description & Inference
- Robustness & Resistance
- Median & Quartiles
- •Location, Spread and Symmetry (parallels from classical statistics: Mean, Standard Dev., Skewness)
 - •Location (Median, Trimean, Trimmed mean)
 - Spread (IQR, MAD, Trimmed variance)
 - Symmetry (Yule-Kendall index)
- Graphical Techniques
 - Stem and Leaf
 - •Box plot
 - Histograms
 - Cumulative Frequency Distributions

2.2.3 Reexpression (Ref: Wilkes 3.4)

Transform data to:

- Reveal data features
- Adjust the distribution of data
- Variance stabilizing (reduce dependence of one variable on another)

Power Transformations
 Standardization

1. Power Transformations

Power Transformations

- Use for unimodal data
- Make data more symmetric
- 'Order statistics' will have one-to-one correspondence

2. Standardized Anomalies

Used to work with two types of data which have very different variability

- Example: Seasonality in data. Temperature variability is larger in winter than summer.
 Example: Perform cluster analysis on Temperature and Precipitation data to determine climate divisions.
- Example: North Atlantic Oscillation
- **Standardize or Normalize of Anomalies** to remove influence of location and spread.

$$z = \frac{x - \overline{x}}{s_x} = \frac{x'}{s_x} \quad 3.21$$

Fairbanks Weather, 2006

Date

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/season.JFM.nao.gif

2.2.4 EDA for Paired Data (Ref: Wilkes 3.5)

00			Table3.4			\bigcirc
	L i 👖	I II II- I		Щ 🔽	A	
	x1	y1	x2	y2	E	0
0	0	0	2	8		
1	1	3	3	4		-
2	2	6	4	9		- 11
3	3	8	5	2		-11
4	5	11	6	5		-11
5	7	13	7	6		-11
	9	14	8	3		-11
	12	15	9	1		-11
8	16	16	10	7		- 11
10	20	16	20	17		-11
10						-11
12						- 11
13						- 11
14						- 11
15						-U
16						-
17					14	Y
Row: 13	Column : 2					

Scatter Plots

Pairs of data are plotted against each other. Useful to see relationship between variables.

Pearson (Ordinary) Correlation Coefficient

$$r_{xy} = \frac{Cov(x,y)}{s_x s_y} = \frac{\frac{1}{(n-1)} \sum_{i=1}^n \left[(x_i - \overline{x})(y_i - \overline{y}) \right]}{\left[\frac{1}{(n-1)} \sum_{i=1}^n \left[(x_i - \overline{x}) \right]^2 \right]^{\frac{1}{2}} \left[\frac{1}{(n-1)} \sum_{i=1}^n \left[(y_i - \overline{y}) \right]^2 \right]^{\frac{1}{2}}} = \frac{\sum_{i=1}^n \left[x_i y_i \right]}{\left[\sum_{i=1}^n \left[x_i \right]^2 \right] \left[\sum_{i=1}^n \left[y_i \right]^2 \right]} \quad 3.22$$

* Not Robust (possibly nonlinear relationships)
* Not Resistant since sensitive to outliers
* Properties (between -1 and 1, Square of coefficient explains proportion of variability, does not give physical causality)

x'

Spearman Rank Correlation

* More robust than Pearson's correlation and it is calculated using ranked data.
* Represents the strength of the monotone relationship (not linear relationship).

Kendall Tau test

* More robust and resistant than Pearson's correlation

* Calculate by determining concordant and discordant pairs from all possible pairs of x_i and y_i, which is n(n-1)/2

* The pairs (3,8) and (7,83) are concordant, latter has both larger numbers. The pairs (3,83) and (7,8) are discordant. Identical pairs contribute half to both.

$$\tau = \frac{N_c - N_D}{n(n-1)/2}$$

Serial Correlation

* Measure of persistence in a time series! Very important in Meteorology for forecasting.
* Can also be calculated for greater lags

$$r_{1} = \frac{\sum_{i=1}^{n} \left[(x_{i} - \overline{x}_{-})(x_{i+1} - \overline{x}_{+}) \right]}{\left(\left[\sum_{i=1}^{n-1} \left[(x_{i} - \overline{x}_{-}) \right]^{2} \right] \left[\sum_{i=2}^{n} \left[x_{i} - \overline{x}_{+} \right]^{2} \right] \right)^{\frac{1}{2}}} \quad 3.30$$

Autocorrelation Function

* The correlations at multiple lags put together constitutes the Autocorrelation function.
* Autocovarience is an alternative way to display (construct by multiplying by variance).

Autocorrelation Plots 2-D

*Useful to try to figure out sequence of events.
* Ocean lead atmosphere in tropics while atmosphere leads in midlatitudes.

FIG. 3. The 500-mb height correlations with the lag +2 SST SVD expansion coefficient, based on intraseasonal data: (top) 500-mb heights leading SST by 2 weeks, (middle) simultaneous, and (bottom) 500-mb heights lagging SST by 2 weeks. Contour interval = 0.2, with negative contours dashed and the zero contour darkened. Dark (light) shading indicates correlations >0.4 (<-0.4).

Deser and Timlin, 1998

Correlation Matrix

Contains all possible combinations
Properties of matrix
Uses of matrix

Correlation Map

COLD EPISODE RELATIONSHIPS DECEMBER - FEBRUARY

*ENSO index
correlated with
temperature and
precipitation
around the world.

COLD EPISODE RELATIONSHIPS JUNE - AUGUST

