
Class #6 Friday 4 February 2011
•What did we discuss last time?

1

1. NCL Graphics
2. NCO
3. Grads printing issue

• Loose Ends
• Functions versus Procedures (returns 1 value,

returns many values)
• Psi/Chi - Streamfunction, Velocity Potential
• WRAPIT, still not working, will show you later

Next time Basic statistical analysis

XY Plots
gsn_csm_xy
gsn_csm_y

gsn_csm_xy2
gsn_csm_x2y

gsn_csm_x2y2
gsn_csm_xy3

Contour plots
gsn_csm_contour

Contour over maps
gsn_csm_contour_map • gsn_csm_contour_map_ce

•gsn_csm_contour_map_polar • gsn_csm_contour_map_overlay

Vector plots
gsn_csm_vector • gsn_csm_pres_hgt_vector • gsn_csm_vector_scalar

skew-t.ncl

Special Templates and Scripts

Wind Rose

Polygons

Histograms

Skew T

16 map projections (8 here)

WRF Plots
wrf_contour • wrf_map • wrf_vector •

wrf_map_overlays • wrf_overlays
http://www.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/

NCL_examples.htm

Taylor diagram
Courtesy of

Dennis Shea and
Adam Phillips,

CGD

Taylor
Diagram

Using “shapefile” data
to add your own

lat/lon information

MJO graphic
Courtesy of Dennis

Shea/CGD

Evans plot - Created by Jason Evans of Yale University.

An Evans plot is a way to visualize spatially, two variables of
interest, one of which provides some measure of "importance".

Interpolating from a
higher resolution grid to
a lower resolution using
conservative remapping
courtesy Dennis Shea

NCAR/CGD

First two map databases built-in; high-resolution available as simple download

Introduction to NCL Graphics

NCL Graphics - the basics
• Minimum steps needed to create a plot
• How resources (plot options) work
• Special topics:

– resizing
– paneling
– annotations
– function codes (superscripts, subscripts)
– creating images for web/PowerPoint

• Exercises, example scripts, and data
• Useful documentation links

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin

 y = sin(0.0628*ispan(0,100,1)) ; 101 points

 wks = gsn_open_wks(“ps”,”test”) ; ‘test.ps’

 gsn_define_colormap(wks,“rainbow”)

 res = True ; plot options

 res@xyLineColor = “Blue” ; line color

 plot = gsn_csm_y(wks,y,res) ; no X values

end

1. Load the necessary libraries

2. Open a workstation 5. Call the graphical function

4. Set plot options1.5 Get some data!

3. Change color map

information label

contour line labels

automatic labelbar

automatic subtitles

tickmarks out &
lat/lon labels

“basic” interface: gsn_xxxx “metadata aware” interface: gsn_csm_xxxx

Introduction to NCL Graphics

Step 2:
Open graphics “workstation”

• Can be PostScript (PS/EPS), PDF, X11
window, or NCGM (new: PNG)

• Has a default color map associated with it,
but you will probably want to change this
(more later)

• Can have up to 15 multiple workstations
open

• A “frame” means a “page”

wks = gsn_open_wks(“x11”,”test”) ; X11 window

wks = gsn_open_wks(“ps”,”test”) ; “test.ps”

wks = gsn_open_wks(“png”,”wrf”) ; “wrf.00001.png”

wks = gsn_open_wks(“pdf”,”slp”) ; “slp.pdf”

wks = gsn_open_wks(“ncgm”,”cn”) ; “cn.ncgm”

Introduction to NCL Graphics

Step 3:
Change the color map (opt’l)

• Do this before drawing to the frame.

• If you use the same color map a lot,
can put in “.hluresfile” (more later)

• Can use one of the other 90+ color
maps, or create your own.

• If you don’t change the color map,
here’s what you’ll get…

gsn_define_colormap(wks,”rainbow”)

Default color table (yuck)

Better color table

http://www.ncl.ucar.edu/Document/Graphics/color_table_gallery.shtml
http://www.ncl.ucar.edu/Document/Graphics/create_color_table.shtml

Pick a better
color table…

or create
your own

Default color table

Index 1 is the
foreground color

Index 0 is the
background color

Introduction to NCL Graphics

Step 4:
Set optional resources

• Resources are the heart of your NCL
graphics code.

• There are over 1,400 resources!
• Resources are grouped by object

type.
• There are 11 “graphical” objects:

contours, labelbars, legends, maps,
primitives, streamlines, text strings,
tickmarks, titles, vectors, XY plots

titles

legend

tickmarks
and their

labels

XY plot

Examples of
graphical
objects in
an XY plot

tickmarks
contours

main title

subtitles

map

labelbar

More examples of
graphical objects

How a resource is constructed
• Starts with 2 or 3 lower-case letters based on

object it is associated with. Some examples:

“xy” - XY Plot “cn” - Contour plot
“vc” - Vector plot “ti” - Title
“tm” - Tickmark “lb” - Labelbar

• Made up of full words; first letter capitalized:
– “xyLineColor”, “cnFillOn”, “tiMainString”,

“vcRefMagnitudeF”, “gsnMaximize”
• Some have an “F” on the end to indicate a

floating point resource: “xyLineThicknessF”
• “gsn” – special resources

Introduction to NCL Graphics

• Resources are set by attaching them as
attributes to an NCL logical variable:
res = True ; can name it whatever you want
res@mpMinLatF = 30 ; decimal not necessary

• Most have default values.
• There are many types:

– res@tiMainString = “This is a title”
– res@tmXBLabelFontHeightF = 0.01
– res@cnLineLabelsOn = True
– res@xyLineColors = (/5,7,11/)

http://www.ncl.ucar.edu/Document/Graphics/Resources/

How a resource is constructed (cont’d)

Introduction to NCL Graphics

• Resources across objects are similarly named
for easier recollection:

– xyLineColor, cnLineColor, gsLineColor,
mpGridLineColor, tmBorderLineColor

– tiMainFontHeightF, tmXBLabelFontHeightF,
lbLabelFontHeightF, cnLineLabelFontHeightF

– xyDashPattern, mpPerimLineDashPattern,
lbBoxLineDashPattern, cnLineDashPattern

and so on…

How a resource is constructed (cont’d)

Introduction to NCL Graphics

Step 5:
Draw the graphics

• Call one of the gsn_csm_xxxxx functions from
the second library we loaded.

• Some examples:

xy = gsn_csm_xy(wks,x,y,res)
plot = gsn_csm_contour(wks,data,res)
plot = gsn_csm_vector(wks,u,v,res)
map = gsn_csm_vector_map(wks,u,v,res)
phgt = gsn_csm_pres_hgt(wks,data,res)

http://www.ncl.ucar.edu/Document/Graphics/Interfaces/

Introduction to NCL Graphics

Example xy1c.ncl
 gsn_csm_xy

• X values added
• Line color changed (using “named” color)
• Line thickness increased
• “long_name” attributes set
• Resource introduced:

– xyLineThicknessF - sets line thickness

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin

 x = ispan(-50,50,1) ; Create some X and

 y = sin(0.0628*x) ; Y data.

 x@long_name = “X values” ; Add long_name attributes to

 y@long_name = "Sine values” ; see what happens to plot.

 wks = gsn_open_wks("ps","xy1c") ; “xy1c.ps”

; Set some XY plot resources.

 res = True

 res@xyLineColor = “brown” ; or closest match

 res@xyLineThicknessF = 3 ; 3 times thicker

 ; default is 1

 plot = gsn_csm_xy(wks,x,y,res)

end

You can use
“named”

colors with
color

resources,
but that

color must
be in your
color table.

Default
color table

(again)
res@xyLineColor = “brown”

Closest match is used, which is the color
associated with index 8 in this case.

650 named colors:

http://www.ncl.ucar.edu/Document/Graphics/named_colors.shtml

Y axis title

X axis title

NCL tries to pick “nice” min/max
values for the axes.

What if we want to change this?

Introduction to NCL Graphics

Special topic:
“frame” procedure

• By default, main plotting functions draw the
plot and advance the frame (page).

• If you want to continue drawing on same
frame (page), then you need to turn off frame
advance.

• This can be accomplished with special
resource “gsnFrame” and special procedure
“frame”.

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin
 y1 = sin(0.1256*ispan(0,100,1))
 y2 = cos(0.0628*ispan(0,100,1)) + 2.

 wks = gsn_open_wks(“ps”,”xy”)

 res = True
 res@gsnFrame = False ; Don’t advance the frame
 plot = gsn_csm_y(wks,y1,res)
 plot = gsn_csm_y(wks,y2,res)
end

Set to False don’t
advance frame

Introduction to NCL Graphics

Example contour1d.ncl
gsn_csm_contour

gsn_define_colormap
• Color map changed
• Full color map spanned
• Main title added
• Resources introduced:

– gsnSpreadColors - if True, span full color
map when contour fill (or vector fill) turned on

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin

 tf = addfile("Tstorm.cdf","r")

 T = tf->t(0,:,:)

 T&lon@units = “degrees_east” ; Add some units

 T&lat@units = “degrees_north”

 wks = gsn_open_wks("ps","contour1d")

 gsn_define_colormap(wks,"rainbow") ; Change color map

 res = True

 res@cnFillOn = True ; Turn on contour fill

 res@gsnSpreadColors = True ; Span full color map

 res@lbOrientation = “Vertical” ; Move labelbar

 res@tiMainString = ”res@gsnSpreadColors=True” ; Main title

 plot = gsn_csm_contour(wks,T,res)

end

Better to set color map in “.hluresfile”

“rainbow”
color map

Note about filled contours
and the labelbar: contour
levels represent values

between colors.

values < 248

248 <= values < 252

300 <= values < 304

values >= 304

“rainbow”
color map
first set of
colors are

purple/
dark blue

Introduction to NCL Graphics

Example contour2d.ncl
gsn_csm_contour_map

• Contour and labelbar box lines turned off
• Only part of color map spanned
• Resources introduced:

– gsnSpreadColorStart, gsnSpreadColorEnd -
indicates portion of color map to span

– cnLinesOn - turns contour lines on/off
– lbBoxLinesOn - turns labelbar box lines on/off

• Will set these last two to False

Default:
gsnSpreadColorStart = 2

Default:
gsnSpreadColorEnd = -1

gsnSpreadColorEnd = -3

gsnSpreadColorStart = 14

. . .
 tf = addfile("meccatemp.cdf","r")
 T = tf->t(0,:,:)

 wks = gsn_open_wks("ps","contour2c")
 gsn_define_colormap(wks,"rainbow+white+gray")

 res = True
 res@gsnAddCyclic = False
 res@cnLevelSelectionMode = "ManualLevels"
 res@cnMinLevelValF = 195.0 ; Min contour
 res@cnMaxLevelValF = 328.0 ; Max contour
 res@cnLevelSpacingF = 2.25 ; Spacing

 res@gsnSpreadColors = True ; Span full color map
 res@gsnSpreadColorStart = 14 ; Start at color index 14
 res@gsnSpreadColorEnd = -3 ; Stop at 3rd color from end

 res@cnFillOn = True ; Turn on contour fill
 res@cnLinesOn = False ; Turn off contour lines
 res@lbLabelAutoStride = True ; Control labelbar labels
 res@lbBoxLinesOn = False ; Turn off lbar box lines
 res@gsnSpreadColors = True ; Span full color map

 plot = gsn_csm_contour_map(wks,T,res)

Example: 2D lat/lon arrays
• Assume file is from sea ice model: “iceh_mavg.0014-02.nc”
• Has a variable “hi” w/no coordinate arrays

Dimensions and sizes: [lat | 384] x [lon | 320]
Coordinates:
Number Of Attributes: 7
 time : 4804
 units : m
 long_name : grid box mean ice thickness
 coordinates : i j time
 _FillValue : 1e+30
 time_rep : averaged

• File does have two-dimensional lat/lon arrays
float TLON (lat, lon)
 long_name : grid center longitude
 units : degrees_east
float TLAT (lat, lon)
 long_name : grid center latitude
 units : degrees_north

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin
 f = addfile("iceh_mavg.0014-02.nc","r”)
 hi = f->hi(0,:,:) ; Ice coverage
 printVarSummary(hi) ; Note no coord arrays

 wks = gsn_open_wks(”ps","ice") ; ice.ps
 gsn_define_colormap(wks,"BlAqGrYeOrReVi200")

 res = True ; Plot mods desired

 res@sfXArray = f->TLON ; 2D lat/lon arrays, must
 res@sfYArray = f->TLAT ; be same dimensions as “hi”

 res@cnFillOn = True ; Turn on color fill
 res@mpMinLatF = 65 ; Specify min lat
 res@gsnSpreadColors = True ; Use full colormap

 plot = gsn_csm_contour_map_polar(wks,hi,res)
end

Setting sfX/YArray is
equivalent to:
hi@lat2d = f->TLAT
hi@lon2d = f->TLON

gsn_csm_contour_map_polar:
Default is northern hemisphere

. . .
begin
 f = addfile ("wrfout_d01_2003-07-15_00:00:00.nc", "r")
 p = f->P(0,:,:,:) ; Read pressure
 p = p*0.01 ; Convert to hPA
 p@units = "hPa" ; Update units attribute

 wks = gsn_open_wks("ps" ,"panel1b")
 gsn_define_colormap(wks,"BlAqGrYeOrReVi200")

 res = True ; Plot options desired
 res@gsnDraw = False ; Don't draw plots
 res@gsnFrame = False ; Don't advance frames
 res@cnFillOn = True ; Turn on color
 res@gsnSpreadColors = True ; Use entire color map
 res@lbOrientation = "Vertical" ; Vertical labelbar

 plots = new(4,graphic)
 plots(0) = gsn_csm_contour(wks,p(0,:,:),res)
 plots(1) = gsn_csm_contour(wks,p(3,:,:),res)
 plots(2) = gsn_csm_contour(wks,p(5,:,:),res)
 plots(3) = gsn_csm_contour(wks,p(7,:,:),res)

; 2 rows, 2 columns
 gsn_panel(wks,plots,(/2,2/),False)
end

2 rows x 2 columns

What’s wrong w/these plots?

res@gsnPanelRowSpec = True

gsn_panel(wks,plot, (/2,1,3/),res)

Can specify number
of plots per row.

Introduction to NCL Graphics

In review…
• Five steps to create a plot
• Use X11 window while debugging script;

move to PS/PDF later
• Hardest part are the resources: start

simple
• Organize resources for easier debugging
• Start with an existing script if possible

Introduction to NCL Graphics

Customize your graphics environment
Optional, but most highly recommended.

• Download “.hluresfile” file, put in home directory
– Changes your default background, foreground colors

from black/white to white/black
– Changes font from times-roman to helvetica
– Changes “function code” (default is a colon)
– Can be used to change default color map

• Available on your lab machines:
cat ~/.hluresfile

http://www.ncl.ucar.edu/Document/Graphics/hlures.shtml

(Come to think of it, not really that optional!)

netCDF Operators

57

netCDF Operators [NCO]
http://nco.sourceforge.net/

netCDF Operators

58

Introduction and History

• Suite of Command Line Operators
• Designed to operate on netCDF/HDF files
• Each is a stand alone executable
• Very efficient for specific tasks
• Available for various computer architectures:

– Solaris, Irix, AIX, Linux, Windows

NCO

netCDF Operators

59

Appending vs. Concatenation

• Appending is the
merging of files:

 file1 = T,U,V

 file2 = PSI,CHI

 file3 = T,U,V,PSI,CHI

• Concatenation is the
combination of variables
along a record
dimension:
• file 1 = T(0:12,:,:)
• file 2 = T(13:24,:,:)
• concatenated file = T

(0-24,:,:)

netCDF Operators

60

Hyperslabs

 Longitude
Lati

tudeLe
ve

l

 Longitude La
titu

de

Le
ve

l

 A hyperslab is a subset of data.

netCDF Operators

61

Missing Values
• NCO identifies missing data by the

_FillValue attribute. [v 3.9.2 8/2007]

• No arithmetic operations on these values.

• No longer recognizes missing_value
• Best to create netCDF with both _FillValue

and missing_value

netCDF Operators

62

ncra: record averaging

• Averages record variables across an arbitrary
number of input files

• The record dimension is retained as a
degenerate (size 1) dimension.

• Weights each record in the input files equally
• ncra 12.nc 01.nc 02.nc DJF.nc

netCDF Operators

63

ncecat: ensemble concatenator
• Concatenates an arbitrary number of input

files into a single output file. Wild characters
allowed.

• Each input file is stored consecutively as a
single record in the output file.

• Input files are glued together by the creation
of a record dimension.

• ncecat case-1.nc case-2.nc total.nc
• ncecat case*nc TOTAL.nc

netCDF Operators

64

ncrcat: record concatenator
• Concatenates record variables across an arbitrary number

of input files. Unix wild characters allowed

• Final record dimension is the sum of the lengths of the
input files.

• Input files may vary in length, but EACH must have an
UNLIMITED record dimension.

• file1.nc ({time:1:12},:,:)
• file2.nc ({time:13:24},:,:)
• ncrcat -h -O file1.nc file2.nc concat.nc
• concat.nc ({time:1:24},:,:)
• ncrcat -h -O file*.nc CONCAT.nc

netCDF Operators

65

ncdiff: differencer
• File1 - File2 = File3
• Common dimensions must be the same size.
• For anomalies, the time dimension of the

mean file must be removed.
• File2 should be a subset of File1 if they are

not identical
– ncwa -0 -a time in.nc out.nc

• ncdiff 001.nc 002.nc diff.nc

netCDF Operators

66

ncwa: weighted average
• Averages variables in a single file over

arbitrary dimensions
– options for weights, masks and normalizations

netCDF Operators

67

ncatted: attribute editor
• ncatted -a att-dsc in.nc (works on only one file at a

time)
att-dsc = att-nm, var-nm, mode, att-type, attval(order

dependent)
att-nm: The name of the attribute to edit
var-nm: The name of the variable to edit
mode: d=delete, a=append, c=create, m=mod, o=overwrite
att-type: f=float, d=double, l = long, s=short, c=char
att-val: The new value

• ncatted -a history,global,a,c,”Add text here” in.nc

netCDF Operators

68

ncks: kitchen sink
• Extracts a subset of data from an input file
• Global attributes for that output file are

overwritten.
• Variable will be overwritten if it already exists

in output file
• If record dimension is different, then ncks

will create a new record dimension.
• ncks -O -v TS,V in.nc out.nc

netCDF Operators

69

ncrename
• Renames variables (-v), dimensions (-d),

attributes (-a)

• ncrename -v p,pres –v t,T in.nc out.nc
• ncrename –a missing_value,_FillValue –a

Zaire,Congo in.nc out.nc

• ncrename –d longitude,lon –v
longitude,lon –v rh,rhum in.nc out.nc

netCDF Operators

70

ncap, ncap2
• Arithmetic processors

• ncap2 –s ‘x@valid_range=(min(x),max
(x))’ in.nc out.nc

• ncap2 -s ‘lon=lon+180.0’ in.nc out.nc

netCDF Operators

71

Options: “-A” and “-O”
• Append variables to output file if it exists
• ncks -A -v T,U,V in.nc out.nc

• Will overwrite output file if it exists
• ncks -O -v T,U,V in.nc out.nc

netCDF Operators

72

Options: “-v” and “-x –v”

• Operates on only those variables listed
• ncks -v T,U,V in.nc out.nc

• Operates on all variables EXCEPT those
listed.

• ncks -x -v CHI,PSI in.nc out.nc

netCDF Operators

73

Options: “-d” and “-h”
• Operates on a hyperslab of data
• ncks -d lon,340.,50. -d lat,10.,35. in.nc out.nc
• Real numbers indicate actual coordinate values
• Integer numbers indicate array indexes

• Override automatic appending of the global history
attribute with the NCO command issued (which can
be very long)

netCDF Operators

74

Options: “-R” and “r”

• Delete files retrieved from remote
locations after they have been processed

• Prints current version of the operator

netCDF Operators

75

Options: “-c” and “-C”
• Ensures that coordinate variables are copied

to any new files.
• This is the default.
• ncks -c -v T,U,V in.nc out.nc

• No coordinate variables are copied.
• Use this with caution, coordinate variables are

very useful.
• ncks -C -v T,U,V in.nc out.nc

