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APPENDIX

Brief Review of Vector Algebra

A.0  Introduction

Vector algebra is used extensively in computational mechanics. The student must thus

understand the concepts associated with this subject. The current review of vector algebra is not

intended to be exhaustive, but only to present some concepts applicable to computational

mechanics.

• Definition : scalar quantity

A scalar quantity is one possessing only magnitude; scalars add algebraically.

• Definition : vector quantity

A vector quantity is one possessing both magnitude and direction; vectors add according to

the Parallelogram Law (or to the Triangle Rule).  Geometrically a vector is represented by a

directed line segment.

♣  Notation : To distinguish them from scalars, vectors will be denoted by lowercase symbols;
i.e., the vector v is represented by either of  the symbols { v } , v , or  v  .

A.1  Types  of  Vectors

• Definition : unit vector

Any vector whose magnitude is equal to one is called a unit vector.

• Definition : zero vector

Any vector whose magnitude is equal to zero is called a zero or null vector and is denoted

by 0 or { 0 }.
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• Definition :  resultant

The resultant of a system of (two or more) vectors is the single vector which will replace

the system and have the same effect on a body as the original system.

A.2  Vector  Addition

For simplicity the subject of vector addition is presented in conjunction with vectors in the

plane.  The concepts, however, apply equally in three-dimensional space.

• Vector  Addition  Using  the  Parallelogram  Law

The resultant  r  of two vectors  a  and  b  is the diagonal of the parallelogram for which  a

and  b  are adjacent sides.  In symbols

a

b

r
r  =  a  +  b

Figure A.1

• Vector  Addition  Using  the  Triangle  Rule

To determine the resultant of vectors a  and  b, begin by placing the tail of one vector at the

tip (arrow end) of the other.  The resultant is then obtained by drawing a line from the tail

end of the first vector to the tip of the second.

a

b

r
r  =  a  +  b

Figure A.2
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•  Comment :  The resulting triangle comprises one half of the parallelogram shown above; from

this we see the relation between the two approaches.

•  Comment :  Vector addition is commutative; i.e.,   a + b = b + a

•  Comment :  Vector addition is associative;  i.e.,   a + (b + c) = (a + b) + c 

A.3  Difference  of  Two  Vectors

The difference  d  between the vectors  a  and  b  is obtained by adding the negative of  b  to

a;  i.e.,

a + (– b) = a – b                                    (A.1)

d
a

b

– b

a

b

d

Figure A.3
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A.4  Product  of  a  Scalar  and  a  Vector

The product of a scalar  k  and a vector  v  is the vector  kv  whose magnitude and direction are

determined by the magnitude and sign of  k.  For example:

v

k = 1

kv

kv

kv

kv

k < – 1

k > 1

– 1 <  k < 0

0 <  k < 1

Figure A.4

If  m  and  n  represent scalars and  v  and  w  represent vectors, it follows that

(m + n) v = m v + n v                                   (A.2)

m (v + w)  =  mv + mw                                  (A.3)

m (nv) = n (mv) = mnv                              (A.4)

A.5  Rectangular  Components  of  a  Vector

For the right-handed rectangular Cartesian coordinate system shown, denote the angles which a

vector makes with the positive x-, y-, and z-axes by θx, θy , and θz , respectively.  Since these

angles are always measured from the positive side of the axes, they will always lie in the range 0 

θ  180 degrees.
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v

x y

z

Figure A.5

The magnitude of a vector in three dimensions is given by

v   =  v  =  vx
 2  +  vy

 2  +  vz
 2                                 (A.5)

where the scalar components or direction numbers of  v are

vx  =  v cos θx  ,     vy  =  v cos θy  ,     vz  =  v cos θz                        (A.6)

The angles θx , θy , and  θz are called the direction angles of  v; the quantities cos θx , cos θy ,

and  cos θz are called the direction cosines of  v .  Substituting the above equations into the

expression for the magnitude of  v  gives

cos θx
 2

  +  cos θy
 2

  +  cos θz
 2

  =  1                              (A.7)

which shows that only two of the direction cosines are independent.

The vector  v  may be written in terms of its scalar components in the following manner:

v  =  vx i  +  vy j  +  vz k                                                 (A.8a)

= v  cos θx i  +  cos θy j  +  cos θz k                       (A.8b)

where i , j and k represent unit vectors parallel to the x, y and z-coordinate axes, respectively. The

vector v is thus expressed as a product of a scalar (its magnitude v ) and a unit vector directed

along its line of action.
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A.6  Addition  of  Vectors  by  Summing Rectangular Components

The resultant r of several vectors may be obtained by resolving the vectors into scalar

components and then summing the respective components. This approach to vector addition is

carried out in the following manner: For simplicity, consider the addition of only two vectors a and

b. The approach used is, however, completely general and is easily extended to the case of more

than two vectors.  For the following vector sum

r  =  a  +  b                                                          (A.9)

express each vector in terms of scalar components multiplying unit vectors; i.e.,

rx i  +  ry j  +  rz k  =  ( ax i  +  ay j  +  az k )  +  ( bx i  +  by j  +  bz k )              (A.10a)

=  ( ax +  bx ) i  +  ( ay +  by ) j  +  ( az +  bz ) k                    (A.10b)

From the above expressions it follows that

rx  =  ( ax +  bx )  ,   ry  =  ( ay +  by )  ,   rz  =  ( az +  bz )               (A.11)

Next consider the exercise of summing  n  vectors.  A typical vector is written in the form:

vm  =  vxm i  +  vym j  +  vzm k                                     (A.12)

where  m  = 1, 2, ......, n .  Extending the previous findings leads to the following relations:

rx  =  vxm

m = 1

n

  ,   ry  =  vym

m = 1

n

  ,   rz  =  vzm

m = 1

n

                            (A.13)

and

 r   =  r  =  rx
 2 +  ry

 2  +  rz
 2                                     (A.14)

The directions cosines of  r  are given by:

cos θx  =  
rx

r
  ,   cos θy  =  

ry

r
  ,   cos θz  =  

rz

r
                            (A.15)
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A.7   Scalar  (Dot)  Product

• Definition : scalar product

The scalar or dot product of two nonzero  vectors  a  and  b  is a number given by

a  •  b  =  a  b  cos α  =  ab cos α                                     (A.16)

where  α  represents the included angle between the two vectors a and  b .

α
a

b

Figure A.6

The scalar product may be viewed as either:

i) the projection  (a cos α)  of  a  in the direction of  b multiplied by the magnitude of  b ; or

ii) the projection  (b cos α)  of  b in the direction of  a multiplied by the magnitude of  a.

The following relations hold for scalar products:

 a • b  =  b • a                                              (commutative law)

a • ( b + c )  =  a • b  +  a • c                                   (distributive law)

  m ( a • b )  =  ( ma ) • b  =  a  +  ( mb )                (where  “m”  is a scalar)

Since the unit vectors are orthogonal (i.e., oriented at right angles to each other), it follows

that

i • i  =  j • j  =  k • k  =  1                                               (A.17a)
and that

i • j  =  j • k  =  k • i  =  0                                               (A.17b)

Consider the vectors

a  =  ( ax i  +  ay j  +  az k )     and     b  =  ( bx i  +  by j  +  bz k )           (A.18)
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Using the distributive law of scalar products in conjunction with the above relations between unit

vectors, it follows that

a  •  b  =  ax bx  +  ay by  +  az bz                                    (A.19)

A.8   Vector  (Cross)  Product

The vector or cross product of two non-parallel vectors a and b is a vector  p ; i.e.,

p  =  a  x  b                                                  (A.20)

The magnitude of  p is equal to the product of the magnitudes of  a and b and the sine of their

included angle  α ; i.e.,

p   =  p  =  a  b  sin α  =  ab sin α                                (A.21)

The line of action of  p is perpendicular to the plane containing  a and b (see Figure A.7).

p

a

b

Figure A.7

The sense of  p  is  given by the right hand rule. The geometric interpretation of the vector

product is : the magnitude of the vector product p is equal to the area of the parallelogram which

has a and b for sides.

The following relations hold for vector products:

a x ( b + c )  =  a  x  b  +  a  x  c                              (distributive law)

m ( a x  b )  =  ( m a ) x  b  =  a  x  ( m b )          (where “m” is a scalar)

NOTE: vector products are not commutative; i.e.,   a  x  b     b  x  a

NOTE: vector products are not associative;  i.e.,   a  x  ( b  x  c )    ( a  x  b )  x  c
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Since the unit vectors are orthogonal (i.e., oriented at right angles to each other), it follows that

i x i  =  j x j  =  k x k  =  0                                        (A.22a)

i x j  =  k ,   j x k  =  i ,   k x i  =  j                                  (A.22b)

j x i  =  – k ,   k x j  =  – i ,   i x k  = – j                          (A.22c)

Consider the vectors

a  =  ax i  +  ay j  +  az k        and        b  =  bx i  +  by j  +  bz k                      (A.23)

Using the distributive law of vector products in conjunction with the above relations between unit

vectors, it follows that

a  x  b  =  ( ay bz – az by ) i  +  ( az bx – ax bz ) j  +  ( ax by – ay bx ) k               (A.24a)

=   

i j k

ax ay az

bx by bz

                                                         (A.24b)

Thus, the value of the cross product of two vectors can be obtained by evaluating the above third-

order determinant.

                                                                                                                                                            
EXAMPLE A.1 : Application of the vector product to a triangular area

Consider the parallelogram associated with  three co-planer points.

1 2

3

( x1 , y1 )

( x2 , y2 )

( x3 , y3 )
y

x
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Let

v1  =  ( x2 – x1 ) i  +  ( y2 – y1 ) j                                     (1)
and

v2  =  ( x3 – x1 ) i  +  ( y3 – y1 ) j                                    (2)

The area 2A of the above parallelogram is equal to the cross product between  v1 and  v2 ; i.e.,

2A   =  v1  x  v2  =  

i j k

( x2 – x1 ) ( y2 – y1 ) 0

( x3 – x1 ) ( y3 – y1 ) 0

                               (3a)

=   ( x2 – x1 )( y3 – y1 )  –  ( x3 – x1 )( y2 – y1 )   k                           (3b)

=   x1 ( y2 –  y3 )  +  x2 ( y3 –  y1 )  +  x3 ( y1 – y2 )   k                      (3c)

Thus, the area of the triangular region is one-half of the above quantity. This result will be used

in Chapter 9 in the discussion of interpolation functions associated with triangular elements.

♦
                                                                                                                                                            

A.9  Scalar  and  Vector  Fields

• Definition : gradient

The gradient of the function f = f (x, y, z) at the point (a, b, c) is defined to be

∇  f  =  
f

x
 i  +  

f

y
 j  +  

f

z
 k                                              (A.25)

where each of the partial derivatives is evaluated at the point (a, b, c).

• Definition : vector field

A function which assigns a vector to each point in some region in the plane (or in space) is

called a vector field.
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• Definition : scalar field

A function which assigns a number to each point in some region in the plane (or in space)

is called a scalar field.

• Definition : divergence

Let  f  =  p i  +  q j  +  r k  be a vector field in space. The scalar field

p

x
  +  

q

y
  +  

r

z

is called the divergence of f (also written as div f ).

♣  Notation :

Let  ∇    ≡   
x

 i   +   
y

 j   +   
z

 k  . The divergence of f is thus written as

∇  • f   ≡   
p

x
   +   

q

y
   +   

r

z
                                       (A.26)

• Definition : curl

Let  f  =  p i  +  q j  +  r k  be a vector field in space. The function which assigns to each

point the vector

i j k

x
 

y
 

z
 

p q r

is called the curl of f. It is denoted by curl f  or by  ∇  x f.

♠ Theorem : Green’s theorem

Let Ω be a convex region in the plane and let Γ  be its boundary (swept out counter
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clockwise). Assume that the functions P and Q have continuous partial derivatives

throughout Γ. Then

 
P

x
  +  

Q

y
Ω

 dA  =  P dy
Γ

  –  Q dx                                (A.27)

♠ Theorem : Divergence theorem

Let Ω be a convex region in space and let Γ be its surface. Let f be a vector field in space.

Then

∇  •  f
Ω

 dV  =  f  • n  ds
Γ

                                   (A.28)

where n represents the unit outward normal.

♠ Theorem : Stokes’ theorem

Let S be part of the surface of a convex region in space and let C be its boundary curve. At

each point of S let n be the unit outward normal to S. Let C be oriented by the right-hand

rule. Let f be a vector field in space. Then

∇  x  f  • n
S

 dA  =  f  • T  ds
C

                               (A.29)

Stokes’ theorem relates the tangential component T of  a vector field along a closed curve to

the normal component of the curl over a surface.

A.10   Mapping

• Definition : mapping

A mapping is defined as a function which assigns to a point in the plane a point in the

plane; i.e.,

F (u, v)  =  (x, y)                                              (A.30)

In Eq.  (A.30) F represents the mapping function; (u, v) denotes the “input point”; and, (x,

y) denotes the “output point”.
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• Definition : Jacobian

Let x = f (u, v) and  y = g(u, v) describe a mapping from the u – v plane to the x – y plane.

The function

f

u
 

g

v
  –  

f

v
 

g

u
  =  det  

f

u
 

f

v
 

g

u
 

g

v
 

                                 (A.31)

is called the Jacobian of the mapping.
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A.11  Exercises

Exercise A.1

Let a and b denote vectors and u and v denote scalars. Using indicial notation and tensor
calculus, show that:

1) ∇ (u + v)  =  ∇ u  +  ∇ v   or   grad (u + v)  =  grad u  +  grad v

2) ∇ • (a + b)  = ∇ • a  +  ∇ • b   or   div (a + b)  =  div a + div b

3) ∇ x (a + b)  = ∇ x a  +  ∇ x b   or   curl (a + b)  =  curl a + curl b

4) ∇ • (ua)  =  (∇ u) • a  +  u (∇ • a)

5) ∇ x (ua)  =  (∇ u) x a  +  u (∇ x a)

6) ∇ • (a x b)  =  b • (∇ x a)  –  a • (∇ x b)

7) ∇ x (a x b)  =  (b • ∇ ) a  –  b(∇ • a)  –  (a • ∇ )b  +  a (∇ • b)

8) ∇  (a • b)  =  (b • ∇ ) a  +  (a • ∇ )b  +  b x (∇ x a)  +  a x (∇ x b)

9) ∇ • (∇ u)  =  ∇ 2 u

10) ∇ x (∇ u)  =  0

11) ∇ • (∇ x a)  =  0

12) ∇ x (∇ x a)  =  ∇ (∇ • a)  –  ∇ 2 a

Exercise A.2
Given the vectors  a = < 1, 3 > and  b = < 3, 4 > , calculate

a) a • b   and  cos (a, b) .
b) a x b

Exercise A.3

Given  f  =   x1  2   +   x2  2 , calculate ∇  f . What is the divergence of the vector ∇  f   ?

A.12   Suggested Reading

1. S. K. Stein, Calculus and Analytic Geometry, McGraw-Hill, New York, NY, 1977.
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