ATM 645 Math Review

Fall 2014

Given out: Tuesday Sep 9, 2014

Due: Friday Sept 19, 2014

- 1. Let $\vec{A} = \nabla \phi = 8x\hat{i} + 3y^2\hat{j}$. If you know that $\phi(1,1) = 8$ and $\phi(0,1) = 4$, derive a functional expression for $\phi(x,y)$.
- 2. Prove the vector identities in (a)-(c) letting $\vec{V} = u\hat{i} + v\hat{j} + w\hat{k}$ and

$$\nabla = \frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k} :$$

- a) $\nabla \bullet (\nabla \times \vec{V}) = 0$
- b) $(\vec{V} \bullet \nabla)\vec{V} = (\frac{1}{2})\nabla(\vec{V} \bullet \vec{V}) \vec{V} \times (\nabla \times \vec{V})$
- c) $\nabla \bullet (f\vec{V}) = f(\nabla \bullet \vec{V}) + \vec{V} \bullet \nabla f$
- 3. Demonstrate that $\vec{A} \bullet (\vec{B} \times \vec{C}) = -\vec{B} \bullet (\vec{A} \times \vec{C})$
- 4. Using the horizontal wind vector

$$\vec{u}(x,y,z,t) = \left[C \sin\left(\frac{2\pi}{L}x\right) + \frac{C}{4000}y \right] \hat{i}$$

where C=10m s⁻¹ and L=1 x 10^6 m

- a) Plot the \hat{i} component of \vec{u} for $-1000 \, km \le x \le 1000 \, km$ at y=-500, 0, and 500 km.
- b) Calculate $\frac{\partial \vec{u}}{\partial x}$
- c) Plot $\frac{\partial \vec{u}}{\partial x}$ for $-1000 km \le x \le 1000 km$
- d) Describe the relationship between \vec{u} and $\frac{\partial \vec{u}}{\partial x}$ shown in the plots from parts a)

and c). Is this consistent with your understanding of the physical meaning of $\frac{\partial \bar{u}}{\partial x}$?