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Abstract

In order to shed some light on the apparent discrepancies between most theoretical models of
turbulent transport and experimental observations of the transport in magneticly confined plasmas,
a model for transport1 has been developed based on the concept of self-organized criticality
(SOC)2.  This model seeks to describe the dynamics of the transport without relying on the
underlying local fluctuation mechanisms.  Computations based on a cellular automata model have
found that SOC systems maintain average profiles which are linearly stable (sub-marginal) and yet
are able to sustain active transport dynamics in contrast to naive marginal stability arguments.  It is
also found that the dominant scales in the transport dynamics in the absence of sheared flow are
system scales rather than the underlying local fluctuation scales.  However the addition of sheared
flow into the dynamics leads to a large reduction of the system scale transport events and a
commensurate increase in the fluctuation scale transport events needed to maintain the constant
flux.  The dynamics of these models and the potential ramifications for transport studies will be
discussed.

I) Introduction

A new paradigm for turbulent transport1 has been suggested in order to shed some light on

the discrepancies between predictions based on local turbulent transport theory and experimental

observations.  This new paradigm is based on the concept of self-organized criticality2,3,4.  This

concept seeks to describe the general properties of the dynamics of the transport without relying on

the underlying local transport/fluctuation mechanisms.  The most simple example of such a system

is a sandpile model .  It has been found that such SOC systems maintain average profiles which are

linearly stable (sub-marginal) and yet are able to maintain active transport dynamics in contrast to

standard marginal stability arguments.  It is also found that the dominant scales in the transport

dynamics are system scales rather than the underlying local fluctuation scales.

The dynamics of such systems can be computationally investigated with a cellular automata

model of “running sandpile” dynamics.  This model allows us to investigate the major dynamical

scales and the effect of an applied sheared flow on these dominant scales.

The importance of this model is in investigating two of the difficulties standing in the way of

understanding anomalous transport in magnetically confined plasmas; the stability problem and the

scale problem  It has long been thought that some linear instability is driving turbulent fluctuations

which are causing the anomalous transport5.  A number of modes have been put forward as

candidates for dominating transport in magnetic confinement devices.  In many of these modes a

linear marginal stability condition has been assumed for the profile.  This based on the assumption

that the turbulent system would relax its driving gradient back to the linearly least unstable profile

(the marginal profile) just allowing for the drive to continue.  Among the modes that this has been

suggested for  are ballooning modes near the β limit6.  In addition  ion temperature gradient driven



modes at the marginal limit have been suggested as the dominant core transport mechanism78.

Unfortunately all of these modes suffer from the drawback that experimentally the profiles seem to

be stable to the candidate modes over much if not all of the radius9.  The second difficulty is related

to the fact that the transport from most of these modes is governed by the fluctuation scales which

is typically on the order of ion gyro radii (Gyro-Bohm scaling)10.  These fluctuation scales define

the characteristic “step size” of the turbulent diffusion leading to a confinement time that scales with

the step size.  Once again the experimental evidence is that the confinement in real magnetic

confinement devices, at least in the low confinement mode (L-mode), scales with the machine size

(Bohm scaling)10.  Interestingly, there is evidence that in the enhanced confinement modes (H

mode etc.), which have a sheared flow coincident with the transport barrier, the confinement

scaling seems to go from Bohm like to Gyro-Bohm like11.  

Counter to much intuition, it is found that robust transport dominated by system scale transport

events can occur even with a profile that is on average substantially sub-marginal.  However the

addition of sheared flow into the dynamics leads to a large reduction of the system scale transport

and a commensurate increase in the fluctuation scale transport.  This is may be consistent with the

transition from Bohm to Gyro-Bohm scaling observed in improved confinement modes.  

The remainder of the paper is organized as follows:  Section II contains the SOC model investigated

and the results from unsheared simulations.  This is followed by section III consisting of the results

due to the addition of shear to the SOC system.  Finally section IV is the conclusion and summary.

II) The running sandpile model

Because of the expense and difficulty of modeling large regions of a magnetic confinement device

and because of the difficulty of interpreting the data that one does get it is often useful to construct

the simplest model that captures the dynamics of interest.  Starting from the assumptions of the

importance of marginality to turbulent transport  and the importance of turbulent transport to

relaxation of gradients a very simple natural model presents itself.  In this model local turbulent

fluctuations are exited by the local gradient exceeding marginality, the local fluctuations in turn

relax the local gradient, transporting the excess gradient down the profile.  This sandpile SOC

model has the gradient modeled by the slope of the sandpile while the turbulent transport is

modeled by the local amount which falls when the sandpile becomes locally unstable.  The system

is driven by noise from the heating sources which in the sandpile model is represented by a random

“rain” of sand grains on the pile.  This model allows us to study the dynamics of the transport

independent of the local instability mechanism and independent of the local transport mechanism.

Because of the relative simplicity of the model we are also able to do very long time simulations and

collect reasonably large statistical samples.  

A standard cellular automata algorithm12 is used to study the dynamics of the driven sandpile.  The

domain is divided into cells which are evolved in steps.  First, “sand grains” are added to the cells

with a probability p0. Next all the cells are checked for stability against a simple stability rule and

either flagged as stable or not and finally the cells are time advanced, with the unstable cells over



turning and moving their excess “grains” to another cell with the size, distance and direction of the

fall being determined by the overturning rule.    The most simple set of rules used are:
If  Zn ≥ Zcrit

hn = hn − N f

and
hn+1 = hn+1 + N f

With hn defined as the height of cell n, Zn being the difference between hn and hn+1, Zcrit is the

critical  gradient and Nf is the amount of “sand” that falls in an overturning event (figure 1).  In

terms of the normal physical quantities we associate with turbulent systems, Zcrit is the critical

gradient at which fluctuations are unstable and grow while Nf is the amount of “gradient” that is

transported by a local fluctuation (eddy turnover for example).  

hn

Zn
Nf

Figure 1 A cartoon representation of the rules governing the sandpile dynamics.

The simulations are done with a variety of domain sizes varying from 50 by 1 (x and y, or r and θ
directions) to 800 by 100 with most of the 2-D runs being performed at 200 by 50.   The boundary

conditions for the computation domain are periodic in the y direction, open at x=L (particles that

reach the edge are lost) and closed at x=0.  Computations are typically started from a marginal state

(i.e.. Zn=Zcrit - 1) and allowed to relax to the SOC state.  The relaxation time is a function of L, p0

and Nf and in an L=200 for typical values of p0 and Nf is around 40000 time steps.  In order to

accumulate sufficient statistics the system is iterated for 105 to 107 time steps after saturation is

reached.  The main diagnostic for the sandpile model avalanche dynamics is the time history of the

number of flips (overturning events), with both the total number in the system and the number for

flips for individual y values tracked.  Additionally, local and poloidally averaged particle fluxes are

tracked at a few radial positions. Finally, the evolution of the total mass (the sum of all the grains in

the system) and the profiles are followed.  

In order to provide control results with which to compare computations with shear we have

reproduced the previously published sandpile computations(refs.) with shear free running

sandpiles.  Since the model only has four parameters, L, p0L, Nf and Zcrit we have performed

scans of each of these parameters keeping the others fixed.  The results of these scans are

summarized below after a review of the results from a “typical” case.  Let us consider a case with

L=200, p0=.005, Nf=3 and Zcrit=8.  Starting from a marginally stable profile (Z=7) the sandpile



evolves for 105 timesteps an reaches a steady state regime with the characteristic SOC profile.  The

relaxation from the marginal profile to the SOC profile can be seen(figure 2) in the time evolution of

the number of overturning sites(flips).  The SOC state is not reached until the average level of the

number of flips saturates at approximately 20000 timesteps.  
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Figure 2  A time history of the instantaneous number of overturning events (flips) showing the relaxation from a
marginal profile to a SOC profile

 The relaxation time, defined as the time to relax from marginal to the final stationary state, scales as

L2 (fig 3). This scaling is consistent with the number of steps needed to move a distance L in a

standard random walk diffusion  process
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figure 3  The time to relax from a marginal profile to the final SOC profile as a function of system size.  All other
parameters were kept constant.

Figure 4a shows the marginal profile and the average SOC profile (averaged over the last 20000

steps). It can be readily seen from the slope of the SOC profile and the number of flips occurring

after relaxation into SOC state that even with a significantly sub-marginal profile the system is able



to robustly transport the inputted flux.  This is an important characteristic of SOC systems and

should lead to a reexamination of the relevance of some of the modes discounted because the

profiles are sub-marginal..  

The slope s = dh/dx of the sandpile, while not constant with position (figure 4b) can be usefully

parameterized as constant.  The functional form is approximately s = [a - b ln(x)] (p0L)α with a ≈7-

0.6 Nf , b ≈ 0.004 + 0.05Nf, and α small.  This functional form will be discussed in a later paper.  
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figure 4a  Average sandpile profiles for a case with Nf=1 (marginal case) and Nf=3 (SOC case) with all other
parameters the same
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figure 4b The slope of a SOC profile figure 4c The SOC slope as a function of Nf

The one condition needed for the maintenance of a sub critical SOC profile rather then a marginal

profile is that Nf be greater than 1.  This is equivalent to saying that a turbulent eddy will attempt to

transport enough to level, or partially level, the local gradient in one eddy turnover (Fig 5).

figure 5 Schematic representation of an eddy flattening the gradient in one turnover time



If Nf = 1 then whenever a sand grain is dropped onto the pile it will fall all the way down to the

bottom of the pile and exit at the base.  This fall is not an organized (spatially extended) avalanche

in the sense that it will not grow as it cascades down the pile because only the local cell with the

extra grain is unstable (super-marginal).  

A time history of overturning sites in a marginal system (Nf=1) vs. a time history of overturning

sites in our prototypical SOC case (Nf=3) clearly shows this difference. In the marginal case (Fig.

6a) all to the falls are individual isolated events (except for the places where 2 sand grains where

dropped by chance in neighboring cells), while in the SOC case (figure 6b) there clearly exist

coherent avalanches of all different lengths.  These figures are time slices of a given poloidal

location with all the poloidal positions giving statistically the same result.  The black cells are cells

which are overturning at that timestep while the white cells are stable.  

x
↓

time →            time →
figure 6a figure 6b

Time histories of overturning sites: 6a is for a case with Nf=1 so there are no "organized avalanches while 6b shows
avalanches of all different lengths

In order to quantify the distribution of these avalanche events which typify the transport dynamics

of the flowing sandpile we analyze the avalanches in two different ways.  First and most simply we

construct the probability distribution function (PDF) for the total number of instantaneous flips

(overturning event)(fig. 7).  For the marginal case the PDF (figure 7a )has a mean of p0L2/2 which



is the number of grains dropped at a given timestep (p0L) times the average amount of time for a

grain to leave the system (L/2 if one grain moves one cell in one timestep).  The width

(<variance>1/2) of this PDF is just a function of the random rain rate and the distribution of the rain

in x(this is normally a flat distribution).  The PDF's for the SOC (figure 7b) cases also have  means

given by the flux into the system, p0L, times the average time for the grains to leave the system,

L/2, weighted with the amount transported in one flip, Nf, giving a mean of p0L2/2Nf .  
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figure 7a  figure 7b
Probability distribution functions (PDF's) of the flips for a case with Nf=1 (marginal) fig. 7a and for 3 different

values of p0 with N f=3 in fig. 7b.

The variance for the SOC cases seems to scale with the mean as one would expect from a Poission

distribution, var ~ p0L2/2Nf.  The details of the width and subtle corrections to the functional form

will be dealt with in another paper as for our purposes the phenomenology of the width is

sufficient.  

The second method for quantifying the avalanche dynamics is with frequency diagnostics applied to

time history of instantaneous flips (only using the saturated region).  Figure 8 Shows a typical

spectrum which can be divided into 3 regions following Hwa et al3.  
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figure 8 Frequency spectrum of flips showing the three dynamical regions typical of the running sandpile.



The first region is the high frequency end of the spectrum which follows approximately an ω-4

power law.  This region is identified as the non-interacting (or overlapping)  avalanche region, if p0

is made small enough this region completely envelops region 2 (middle to low frequencies) which

is identified as the overlapping avalanche region.  The spectral falloff in the overlapping region is

approximately ω-1 and is the region of primary interest to us.  Finally, there is region 3, the lowest

frequencies.  In this region the spectral power is relatively flat and finally rolls over at the lowest

frequencies.  This region is identified with global discharge events that have extremely long

correlation times.  It is easiest to see these discharge events by looking at the time history of the

total mass (the integrated heights).  Figure 9 shows the total mass in a case which was run for 107

time steps and encompasses perhaps 2  of the largest “global discharge events”.  It is interesting to

note that the frequency of these largest events is proportional to the rain rate (the input flux) as one

would expect for relaxation type oscillations.  This is because the rate of refilling of the pile after a

massive discharge is proportional to the input flux.  Region III is a dynamically very interesting

regime and is the region of primary interest to those using SOC model to study earthquakes.

However because this region involves time scales probably much longer then a confinement time

(which is on the order of L2 assuming transport goes one fluctuation size in one timestep) we will

only explore the high frequency end of this region .
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figure 9 A time history of the mass of a sandpile showing one or two large discharge events.

 In order to compare these cellular automata model results with analytic results1 we also construct a

diffusion coefficient D0.  D0 is constructed in the typical fashion from the avg. local flux and avg.

local gradient giving D0=<Γ>/<dh/dx>.  However, since the system is in steady state, the average

local flux through x0 is simply the average number of grains falling into the region above x0, which

is given by p0x0.  This then allows us to write  D0 as D0 = p0x0/<dh/dx>.  It is found that <dh/dx>

scales with p0x allowing a natural way to look at the diffusion by plotting D0 vs. p0x which is done

in figure 10.  It is found that D0 has a functional dependence of (p0x)β  with β ≈ .95 in the region

that p0x is less then Nf/2.  
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III) Sheared SOC model

Due in part to the existence of a shear region coincident with the transport barrier in enhanced

confinement modes there has been much interest recently in the effect of shear flows on turbulent

systems.  This interaction can take a number of forms.  The first and most  often quoted is the shear

suppression of the turbulence13.  This occurs when the shear scale length is less then the turbulent

scale length of interest and the shear rate is higher then the eddy turnover rate.  In this case the

turbulent fluctuations are decorrelated by the shear more quickly then they would be by the

turbulent interactions, consequently the turbulent amplitude and scale lengths are reduced.  Another

and sometimes more important impact of the shear flow on the fluctuation amplitude is at the linear

stabilization level.  This effect is mode dependent and is therefore not as general as the nonlinear

shear suppression but for the modes on which it is effective there can be a significant impact14.  We

will be ignoring the details of the local interaction between the shear and the fluctuations (both

linearly and nonlinearly) and concentrating on the impact of the shear on the large scale transport

dynamics.  

In order to us the sandpile model to study this  we now add a region of poloidal shear flow into the

basic model described above.  This is implemented by adding a constant poloidal flow in one

direction to the top of the sandpile and a constant flow in the other direction to the bottom.  The two

constant flow regions are then connected by a shear flow region (figure 11) with a variety of

possible shear profiles.  The modification to the rules of the system is relatively simple and can be

done in 2 ways (both of which have been tried).  First, the local "wind" can be applied to only the

falling (overturning) grains in which case as the grain moves down (the x or r direction in our

notation) the sandpile it is offset in the poloidal (y or q direction in our notation) by an amount



proportional to the local "wind speed".  Since the wind has shear the amount of the offset varies

with position.  The second method involves rotating the entire sandpile so that all of the cells at a

given x are moved by an amount proportional to the local wind speed at that location.  In the shear

region there is then differential rotation of the pile which has the same effect as the first method.

The first method is closer to the dynamics of a sand pile with a sheared wind blowing across it as

only the falling particles are effected by the wind in that case.  The second method is closer to the

sheared flow in a turbulent magnetic confinement device because both the local gradient and the

transporting quantities are advected by the sheared flow.  It should be noted the test cases were

done with both methods in which there was a constant velocity wind (no shear) to make sure that

the effects were due to the shear and not pure advection.  No effect was found in those cases.

Shear region

figure 11 Cartoon of the sheared flow in the sandpile model.

 The poloidal flow is added to the dynamics in the time advance step after moving any falling grains

to their new positions.  The impact of the shear flow is quantified by changing a shear parameter

made up of the product of both the magnitude of the shear and the size of the shear region.  

The effect of the shear on the transport dynamics can be first and most easily observed in a time

history of the overturning sites (figure 12).  The sheared region in the middle is easily differentiated

from the unsheared ends by the absence of correlated transport events (avalanches) in the shear

zone.  This can be contrasted to the unsheared SOC case shown in figure 5b.  While the difference

in avalanche dynamics is visually striking and shows clearly the decorrelation of transport events

by the shear flow, in order to quantify the changes we must use the other diagnostics.  



Figure 12  Time histories of overturning sites with a shear region in the middle.  The decorrelation of avalanches can
be seen in the shear region.

Looking once again at the PDF of the flips, one can see a marked decrease in the variance for a

running sandpile with shear when compared to one without shear (figure 13a).  This trend

continues when the shear and size of the shear zone increases (figure 13b).  This suggests that the

larger scale transport events are being suppressed by the shear and, since the total flux must remain

the same, the medium and small scale events must increase to make up the difference.  
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PDF's for a case with shear (diamonds) and without shear (squares) are shown in figure 13a.  The narrowing of the

PDF with shear is apparent.  13b show the variance (the squared width) as a function of the shear parameter.



It should be kept in mind that the number of flips is not strictly a measure of avalanche size as 3

avalanches of size 5 occurring at the same time gives the same number of flips as on avalanche of

size 15.  Therefore the decorrelation of the large scale avalanches must be made up to some degree

by multiple simultaneous small slides.  The frequency spectra make an even more compelling case

for the impact of shear on the transport dynamics of the running sandpile.  Simply comparing the

spectra for an unsheared case with a sheared case one can see a suppression of the low frequency

end of the spectrum and an increase in the high frequency end.  This can be quantified through the

mean frequency ϖ, defined as ϖ = ∫ωS(E)dω.  Figure 14 shows the variation in τd (1/ϖ) as the

shear parameter is increased.  This shows the decorrelation time of the transport decreasing as the

shear parameter increases.  
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figure 14  The decorrelation time as a function of the shear parameter.

Once again it is important to note that this effect is a completely different than the shear suppression

of turbulence.  In this model the turbulent amplitude is not being effected at all, it is only the

correlated transport events which are being modified.  Therefore this decorrelation time is not the

standard turbulent decorrelation time but rather a new quantity, a transport decorrelation time.  In

the shearfree case the transport decorrelation time is longer than L2 while in the sheared case the

decorrellation time becomes shorter than L2.  

The next logical questions to ask are, if the transport events are being decorrelated, what is the

impact on the diffusion coefficient and does this build up a transport barrier.  The answers to the

both of these questions are somewhat subtle. The diffusion coefficient Deff changes functional form

(figure 10) leading to an increase in the diffusion coefficient for small p0x and a decrease for large

p0x. The new form is Deff =
P0 x

a + bP0x
  This change in functional form is consistent with the change

in dynamics suggested by analytic work on the Burgers equation model by Diamond and Hahm1

for SOC. However the actual functional forms disagree, which may not be surprising given that

one model is continuous while the other is discreet.  In the asymptrotic limit of large p0x there is

very good agreement between the model and the analytics.  The analytic form of the diffusion



coefficient goes from infrared divergent (D ∝ kr-1) in the shear free case to independent of kr (D

∝kr0 ) in the sheared flow case with kr being 1/the radial scale length x.  The asymptotic limit (x

→∞) of the diffusion coefficients in the sand pile model show the same dependence going to a

constant with shear and kr-0.98 without.  In the model as presented up to this point, the inclusion of

shear either can cause a transport barrier, a steepening of the gradient with the coincident  decrease

in the diffusion coefficient, or an anti-transport barrier in which the gradient is further reduced and

the diffusion coefficient (as defined) is therefore increased.  In the asymptotic limit as pox gets large

the diffusion coefficient becomes smaller then the unsheared case and a transport barrier develops.

The slope of the sandpile with shear is shown in figure 15.  The shear region can be clearly seen

with an  increase in the slope in the shear region.  It should be kept in mind that the two other

effects of shear on turbulent transport, the shear suppression of turbulence and the increased

stability of the mode, are not included in this model.  These will be briefly dealt with latter.
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Figure 15 The slope of a sandpile with shear.  The marginal slope would be 7. In the regions without shear the SOC
slope is less than marginal, however in the region with shear a large increase in the slope can be seen.

As discussed before, sheared flow can have multiple effects on turbulent transport.  In the sand pile

model the overturning events are the turbulent fluctuations driving the transport, therefore since

shear can reduce the turbulence amplitude, in the sandpile paradigm Nf, the amount moved in an

overturning, should be effected by the shear.  Similarly, because sheared flow often has an effect

on the linear stability of a mode, shear should have an impact on Zcrit the marginal stability level.  If

we include in the sandpile model a reduction in Nf proportional to the shear and an increase in Zcrit

also proportional to the shear one obtains a confluence of effects on the gradient, and therefore the

diffusion also, due to the shearing effects that add up to more then the sum of the individual

changes (figure 16).  The inclusion of these 2 additional effects is not meant to be self consistent

rather a demonstration that the real impact of shear on transport is likely to be enhanced by the

combination of effects.  
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Figure 16 The slope of a sandpile with shear: one case (circles) without the linear effects and the other case
(diamonds) with the linear effects.

IV) Conclusions

Within the constraints of a cellular automata model of critical gradient dynamics (the running

sandpile model) it is found that:

1) Robust transport can occur with profile which are on average sub-marginal.  This may be

relevant to the experimental observations that over much of the radius the profile appears to be

marginal or sub-marginal to most of the modes suspected of dominating transport.  The deviation

of the average slope from marginality is proportional to the amount that gets locally transported Nf.

2) Transport events, avalanches, are found on all size and time scales in the running system.  The

coherence of large transport events can make the transport scale with the system size even though

the local transport mechanism is much smaller scale.  

3) The addition of sheared flow to the running sandpile has a major impact on the transport

dynamics.  The dominant scales seem to move from system size to smaller scales.  

4) With moderately strong driving the inclusion of shear can cause the formation of a “transport

barrier” (a region with decreased diffusivity).  However in this model, which does not include any

of the standard shear effects such as linear stabilization and suppression of turbulence, very weak

driving can led to an increased diffusivity in the shear region.  When the other impacts of shear are

included in an ad hoc manner the shear region always exhibits a decreased diffusivity with the

coincident transport barrier.  

The possibility of transport which is largely independent of the nature of the local instability and

further more can occur even with average gradients which are sub-marginal should lead to the

reevaluation of some modes which may have been discount due to the profiles.  Because of the



dynamics of the transport is not closely tied to the local dynamics (the instability driving the

fluctuations), this type of model would suggest a universality in transport even when the

instabilities are different(i.e. across machines).  Shear decorrelation of transport events provides a

universal mechanism by which shear can impact on transport without needing the details of the

local instability.  While it is unlikely that this decorrelation of transport events is the entire answer it

does provide interesting avenues to explore both experimentally and theoretically.
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