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Recurrence quantification analysis (RQA) is a powerful tool to study dynamical systems and to

help us understand and characterize the underlying physics when a transition occurs. The idea is

based on the fact that, given sufficiently long time lapses, every dynamical system returns to states

arbitrarily close to those it had in the past. This fundamental property of dynamical systems is

called recurrence. In this work, we analyze, using the RQA technique, the recurrence properties of

time series obtained from a series of numerical simulations of a dissipative-trapped-electron-mode

(DTEM) turbulence model in near-marginal conditions where a transition in the nature of turbulent

transport was observed as a subdominant diffusive channel strength is increased from zero [J. A.

Mier et al., Phys. Plasmas 15, 112301 (2008)]. The results of the RQA analysis clearly show that

the degree of determinism and complexity of the dynamics closely follows the degree of

non-diffusiveness in the observed transport. VC 2011 American Institute of Physics.

[doi:10.1063/1.3599437]

I. INTRODUCTION

The understanding of plasma turbulence and the associ-

ated cross-field transport in magnetic confinement fusion

devices has been a matter of continuous investigation for

many years. A vast amount of theoretical studies and experi-

mental evidence1–3 points to turbulence as the main phenom-

enon responsible for dominating radial transport and

degrading confinement. In spite of the vast literature existing

on this topic, it is also apparent that new understanding about

the dynamics may sometimes be obtained by looking at the

data from a non-standard point of view. The current work

must be understood from this perspective. We test a new

approach to characterize turbulence based on the concept of

recurrence, introduced first by Poincaré in 1890 (Ref. 4) for

conservative systems while studying the three body problem

and the chaotic behavior of its orbits. In his work, he men-

tioned that in volume-preserving flows with bounded orbits

only, the system recurs infinitely many times as close as one

wishes to its initial state. Although turbulent systems do not

fulfill these requirements, one can still follow the evolution

of the system state and search for recurrences in data

obtained from simulations or experiments. Then, associa-

tions can be sought between the observed features of these

recurrences and the underlying dynamics of turbulence

known (or suspected) to be active in the system. These recur-

rences can be quantified by means of the visualization of

phase space trajectories through recurrence plots5–7 (RPs).

RPs are graphical representations of binary, symmetric mat-

rices, codifying the times when two different states of the

system are close enough (neighbors) in phase space. Using

recurrence quantification analysis (RQA), a great amount of

information about the dynamics can be extracted and statisti-

cally quantified from such matrices. RPs have been used

extensively in the last two decades to gain some understand-

ing about the nonlinear dynamics of complex systems. For

example, it has been applied to disciplines so diverse as the

life science,8–10 earth science,11–13 astrophysics,14,15 chemical

reactions,16 economical dynamics,17–19 and, very recently, to

experimental data from fusion plasmas.20,21

In this work, we use the RQA technique to characterize

changes in global transport dynamics of a near-marginal turbu-

lent state relevant to fusion plasmas. In particular, the data that

we will analyze correspond to simulations of dissipative-

trapped-electron-mode (DTEM) turbulence in cylindrical ge-

ometry and near-marginal conditions. In previous papers,22,23

we used them to show that a transition in the character of the

radial turbulent transport occurs between the self-organized

critical (SOC) state typical of near-marginal regimes and a

rather diffusive-like situation as the strength of a subdominant

diffusive transport channel is increased from zero. Indeed, the

avalanche-like transport that dominates the dynamics in the for-

mer case turns into a much more randomized, diffusive channel

in spite of the fact that most of the transport is still occurring

through the DTEM turbulent channel. This interplay between

different channels is of interest in the case of tokamaks

because, in addition to a near-marginal channel associated with

some mode [say, ion-temperature-gradient mode turbulence

(ITG), electron-temperature-gradient mode turbulence (ETG),

or DTEM], other supercritical turbulent modes or even neo-

classical diffusion should be expected to be active. In this pa-

per, we proceed to examine further the characteristic features

of this transition by means of the RQA technique.

The remainder of the paper is organized as follows: In

Sec. II, we review the basis of RPs and the methodology
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used to extract information on system dynamics RPs through

RQA. In Sec. III, the DTEM model used in the study as well

as some previous relevant results are recapped. In Sec. IV,

the results of the RQA analysis are discussed. Section V pro-

vides an explanation of how dynamics changes from corre-

lated to anticorrelated at intermediate diffusivities. Finally,

some conclusions are drawn in Sec. VI.

II. RECURRENCE PLOTS AND DIAGNOSTICS

RPs were introduced in 1987 by Eckmann et al.24 to vis-

ualize the recurrences of the phase space trajectories of dy-

namical systems. The possible states of the system are

represented as elements of that d-dimensional phase space,

~xðtÞ ¼ x1ðtÞ; x2ðtÞ;…; xdðtÞð Þ, and the vectors ~xðtÞ define a

trajectory in the phase space.

In general, when dealing with experimental measure-

ments or numerical data, we find that not all relevant compo-

nents are available in order to compose the corresponding

state vector. Instead, we get scalar time series of one quan-

tity, ui ¼ uðiDtÞ, where i ¼ 1;…;N, being Dt the sampling

frequency and N the number of (discrete) entries. In this

case, the phase space can be reconstructed by the time delay

method

~ui ¼
Xm

j¼1

uiþðj�1Þs êj; (1)

where m is the embedding dimension, s is the time delay,

and êj are unit vectors perpendicular to each other

(êi � êj ¼ di;j). The RP is then constructed by forming the re-

currence matrix,

Ri;jðeÞ ¼ H e� k ~ui �~uj k
� �

i; j ¼ 1;…;N; (2)

where Hð�Þ is the Heaviside function and k � k is a norm. The

RP is then graphically represented by assigning different col-

ors for the two different values its binary entries can take

(e.g., black dots for Ri;j ¼ 1 and white ones for Ri;j ¼ 0), the

former ones corresponding to recurrences. Diagonal lines

represent moments in which the system state passes close to

its initial value after a certain time. Vertical (and horizontal)

lines represent, on the other hand, lapses of time during

which the system does not change much. Quantifying the

amount of time (or the probability) that the system spends in

these regimes can be a useful (nonlinear) tool to analyze and

characterize the dynamics of the system. In order to go

beyond the mere visual impression, several measures of

complexity quantifying the shape and size of structures in

RPs have been proposed,25 constituting the so-called recur-

rence quantification analysis. The first and simplest measure

is the recurrence rate (RR), which is the ratio of the number

of recurrent points to the total number of points. Regarding

diagonal lines, it is usual to define the determinism (DET)

from the histogram of diagonal lines of length l, P(l). DET
gives the ratio of the number of recurrent points in the diago-

nal lines to all recurrent points, being close to unity if the

behavior is deterministic (or predictable) and approaching

zero when random behavior dominates the dynamics. Based

on the probability density pðlÞ ¼ PðlÞ=Nl of finding a

diagonal line of length l, we can also define the Shannon En-
tropy (ENTR) of the system, which reflects the complexity of

the RP regarding diagonal lines. It will be maximum, if the

probability of finding diagonals of any allowed length is the

same, and equal to zero, if only one length exists. In the

same way as DET, but based instead on the histogram of ver-

tical lines P(v), it is defined the laminarity (LAM) of the sys-

tem as the ratio of the number of recurrent points forming

vertical lines to all recurrent points. LAM quantifies the

occurrence of laminar states or, in other terms, states that do

not vary much in time. Finally, the average vertical length
(AVL) or trapping time is a measure of the amount of time

the system remains quiet or is trapped in a given state.

III. REVIEW OF PREVIOUS MARGINAL DTEM
TURBULENCE RESULTS

A. DTEM model

The turbulent model and its numerical implementation

used is the same already described elsewhere.22,23 The rele-

vant turbulent mode is the dissipative trapped electron

mode.26,27 The simulations consider a deuterium plasma con-

fined in a periodic cylinder of radius a ¼ 0:5 m. To define the

position inside the cylinder, we use cylindrical coordinates

(r; h; Z), being r the radius normalized to a, h the poloidal

angle, and Z the axial position, related to the toroidal angle

Z ¼ /R0. The plasma is confined by a magnetic field with an

axis value of B ¼ 1 T and a safety factor qðrÞ ¼ 1:3þ 0:5 r2.

To derive the equations of the model,26 ions are treated as a

cold fluid, whilst the electrons are considered under the adia-

batic approximation, except for trapped electrons. Its detailed

derivation can be found elsewhere.26,27 The final model has

two equations that describe the evolution of the fluctuating

and the surface-averaged ion densities, ~niðr; h;/Þ and �niðrÞ,
both normalized to their respective axis values. The equation

for the fluctuating component is

d~ni

dt
� q2

s

dr2
?~ni

dt
þ V�n

1

r

@~ni

@h
þ Deff

1

r2

@2~ni

@h2
� c2

s

�i
r2
k~ni

� LnDeff $?
1

r

@~ni

@h

� �
� ẑ

� �
� $?~ni ¼ 0: (3)

In this equation, times are normalized to ion cyclotron fre-

quency, Xi ¼ 5� 107 rad=s, and lengths are normalized to

minor radius a. The coefficient of the second term is the ion

Larmor radius, qs ¼ cs=Xi, where cs �
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
is the sound

speed, Te is the electron temperature, and mi is the ion

mass. The third term represents the diamagnetic drift,

being V�n � csqs=Ln the diamagnetic velocity and

LnðrÞ � �ni d�ni=drj j�1
the characteristic density scale length.

The fourth term represents the drive for the drift waves due

to trapped electrons, where Deff is a negative diffusivity

introduced by the phase shift, d ¼ khDeff=V�n, between fluc-

tuating density and fluctuating potential, which depends on

the wave-number kh. The fifth term provides parallel damp-

ing for ions, being �i the ion collision frequency. The last

term comes from the E� B drift convection non-linearity.

The equation for the surface-averaged density �ni is,23
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which is solved simultaneously with the fluctuating one. The

first term of the right-hand side is the source needed to drive

the system towards local instability. It is composed of two

pieces:28 a term constant in time, S0ðrÞ, chosen so that the

steady-state ion density profile in the absence of the non-lin-

earity is parabolic and a random part, ~Sðr; tÞ, both in time

and radius, with zero average and independent of the angular

coordinates. The following term on the right-hand side repre-

sents the diffusive subdominant channel, which is treated as

a tunable quantity in order to study the effect on near-mar-

ginal dynamics of and increasing Dext. The last term, in

which the bracket stands for surface-averaging, represents

the coupling between the density fluctuations and the mean

profile. Note that there is also a coupling in the reverse direc-

tion: any local change in �ni affects the fluctuations via the

density scale length, LnðrÞ, which is hidden in the diamag-

netic and nonlinear terms in Eq. (3).

Regarding the simulations, they have been carried out with

the KITE (Ref. 29) code. The initial density profile is always

chosen parabolic �niðrÞ ¼ ni0ð1� r2Þ, being ni0 ¼ 1019 m�3

the ion density at r¼ 0. The temperature profile is �TeðrÞ ¼
Te0ð1� r2Þ2, with Te0 ¼ 2:5 keV the electron temperature at

r¼ 0. Table I shows the values of the rest of the parameters

used at the center of the computational box (� 0:63 a). The

radial grid resolution is Dr¼2�10�3a. The temporal step

size of these simulations is XiDt¼10, which for a deuterium

plasma with B¼ 1 T becomes Dt’10�6 s¼1ls. Modes with

resonant surfaces in the range 0:3< r=a<0:8 have been

included. We include 190 Fourier components in these calcu-

lations, which is low compared with the number needed in

studies of supercritical turbulence. However, in the near-

marginal conditions in which carry out the simulations, trans-

port is dominated by profile relaxation processes. Therefore,

we do not need many Fourier modes on each flux surface.

B. Recap of previous DTEM results near marginal
conditions: Influence of subdominant diffusion

Near-marginal dynamics can be studied by starting a

simulation with a density profile well above the critical

profile and evolving the mean profile simultaneously with

the fluctuations.22,23 In these conditions, a local dynamical

cycle is activated in which modes are first locally excited

(when the profile locally crosses the instability threshold),

then transport is induced to bring the profile again back to

stability, and the modes are finally stabilized after this is

achieved. When this happens, the profile must satisfy locally

that LnðrÞ 	 Lcrit
n ðrÞ, being LnðrÞ the density length scale at

radial position r and Lcrit
n ðrÞ the non-linear critical density

length scale at the same radial position, below which turbu-

lence is active. The cycle can then start again in neighboring

locations as a result of the flattening of the local profile, and

radial avalanches are then triggered, that characterize the

transport dynamics in this regime.28

To investigate the nature of the dynamics in this regime,

we construct a time series that we called the instantaneous
turbulent activity, or g(t), that counts at how many locations

in the radial grid the local profile exceeds the nonlinear insta-

bility threshold. In the case of the DTEM model, the instabil-

ity criterion22 at a given time ti and for a certain radial

position rj is given by �Lnðrj; tiÞ < �Lcrit
n ðrjÞ, being �Lnðrj; tiÞ the

density length scale at radial position rj and time ti. The criti-

cal surface-averaged density scale length is constructed by

computing �Lcrit
n ðrÞ ¼ �ncrit

i d�ncrit
i =dr

� ��1
, using the critical pro-

file �ncrit
i obtained by allowing the system first to evolve to a

stable state after switching off the source term ~S in the sur-

face-averaged density equation.22

The analysis of g(t) has taught many things about the na-

ture of the dynamics in the past, a summary of which follows.

We have used it in the past to investigate also the effect of

including a subdominant diffusive channel in addition to the

avalanche-like transport mechanism previously described.

Fig. 1 shows examples of the entire signal g(t) for three differ-

ent regimes: (a) Low diffusion Dexta
�2X�1

i ¼ 10�9, (b) inter-

mediate diffusion Dexta
�2X�1

i ¼ 3� 10�8, and (c) high

diffusion Dexta
�2X�1

i ¼ 10�6. The signals are different to the

naked eye and if we concentrate on small portions we see that

as diffusion increases, signals seem to fluctuate over shorter

time scales. This trend can be established by calculating the

temporal decorrelation time of the different records and

checking that they decrease with increasing Dext. The inter-

pretation is easy. In the absence of the subdominant diffusion,

avalanches dominate and are not limited in size as long as

they fit inside the system. The same principle also makes that

their duration in the g(t) records can extend for any value

between the turbulence decorrelation time and the typical par-

ticle confinement time. For that reason, long-term correlations

are established, which can be detected as power-laws in the

autocorrelation function tails or, more easily, as Hurst

exponents30 larger than 1=2 for the g(t) series. For the low

diffusive case, Fig. 1(a), a value of H � 0:7 is found in the

self-similar region, whose temporal limits range from the tur-

bulence decorrelation time to the longest times in the simula-

tion. This high value of H is a measure of the strong

correlation between avalanches. At the largest diffusivity,

Dexta
�2X�1

i ¼ 10�6, H becomes 0.5 for the longer timescales,

signaling that transport is uncorrelated at that point, exhibiting

diffusive-like dynamics in spite of the fact that most of it is

still transported through the turbulent channel.

TABLE I. Values of the parameters used in the numerical calculations at

the center of the computational box.

Parameter Value

Ion gyroradius qs=a ¼ 8� 10�3

Ion sound velocity cs=aXi ¼ 9� 10�3

Diamagnetic velocity V�n=aXi ¼ 1:5� 10�4

Magnetic shear length Ls=a ¼ 22

Temperature scale length LT=a ¼ 0:24

Density scale length Ln=a ¼ 0:48

Ion collision frequency �i=Xi ¼ 1:25� 10�5

Trapped electron collision frequency �eff=Xi ¼ 1:25� 10�2

Drive strength Deff=a2Xi ¼ 1:3� 10�5
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The explanation for this change in the transport dynam-

ics was already proposed elsewhere,23 as well as its rele-

vance for magnetically confined fusion plasmas. As the

background diffusivity increases, it helps to bring the profiles

back to critical more rapidly. The turbulent activity becomes

then agitated more frequently, which accounts for the reduc-

tion of the autocorrelation time. At the same time, this

enhanced activity reduces the amount of time that the mem-

ory provided by the imprint of previous avalanches in the

profiles survives, reducing both the range of scales and the

strength of the temporal correlation between successive

events. At large enough diffusivities, the correlation simply

disappears and transport becomes effectively diffusive,

although still dominated mostly by turbulence. In Sec. IV,

we proceed to examine the very same g(t) signals using the

RQA techniques, to see if we can unveil some other aspects

of the hidden nonlinear dynamics.

IV. APPLICATION OF RQA TO THE DTEM TURBULENT
ACTIVITY TIME SERIES

We focus now on the analysis of g(t) using the RQA

technique. All the calculations have been performed by fix-

ing the recurrence rate so that we can compare meaningfully

RPs obtained from regimes with disparate timescales and dy-

namics, as it is expected when varying the subdominant dif-

fusive channel in the DTEM simulations. We will thus

consider two points as recurrent points if their distance in the

reconstructed attractor lies within the smaller RR distances

between any couple of recurrent points of the corresponding

temporal window. The value chosen for the recurrence rate

is 5% all throughout this paper. We also use the Euclidean

L2-norm to calculate the distances (see Eq. (2)). Regarding

the two remaining parameters needed in the calculations, s
and m, we use the autocorrelation function of each g(t) to

estimate s, and the false nearest neighbors (FNN) algorithm

to choose a proper value for m.

A. Time delay value

The value of the time delay can be roughly estimated as

the value of the temporal decorrelation time of the input sig-

nal.31,32 Physically, this makes sense because we are interested

in mesoscale dynamics anyway, since avalanches and correla-

tions between avalanches are established beyond the turbu-

lence decorrelation time. In our case, the decorrelation time is

the largest for the less diffusive case, Dexta
�2X�1

i ¼ 10�9,

s � 1000 Dt, so we will use this value (s ¼ 1000 Dt ’ 1 ms)

for the rest of the calculations, and the temporal windows will

be of length 25 s ¼ 2:5� 104 Dt ’ 2:5� 10�2 s:

B. Embedding dimension value

A sound election of the embedding dimension m is cru-

cial because if it is too small, one cannot unfold the geome-

try of the attractor in the reconstructed space; if one uses a

too high embedding dimension, most numerical methods

characterizing the basic dynamical properties can produce

unreliable or spurious results. This can be understood from

the fact that an RP computed with any embedding dimension

can be derived from an RP without embedding25 (m¼ 1).

Specifically, the recurrence matrix for any given embedding

dimension, R
ðmÞ
i;j , can be written in terms of the recurrence

matrix without embedding, R
ð1Þ
i;j ,

R
ðmÞ
i;j ¼

Ym�1

k¼0

R
ð1Þ
iþks;jþks: (5)

Thus, the entry at ði; jÞ in R
ðmÞ
i;j consists of information

at times ðiþ ks; jþ ksÞ, where k ¼ 0; 1;…;m� 1. If the

value of the RR (or e) is large enough, spurious recurrence

points can appear along (vertical and=or diagonal) lines

ðiþ ks; jþ ksÞ for k ¼ 0; 1;…;m� 1 which may adulterate

the results by giving unreliably high values in both DET and

LAM. On the other hand, if the number m of time-delay

coordinates in Eq. (1) is too small, then two time-delay vec-

tors~ui and~uj may be close to each other due to the projection

rather than to the inherent dynamics of the system. When

this is the case, points close to each other may have very dif-

ferent time evolution and actually belong to different parts of

the underlying attractor.

The FNN algorithm33–35 is widely used to estimate the

correct number of time-delay coordinates. Basically, we find

the nearest neighbor of each vector, Eq. (1), with respect to

some norm (here, L2-norm). Denoting the nearest neighbor

of ~ui by ~un
i , we then compare the subsequent coordinates of

both ~ui and ~un
i . That is, if ~ui ¼ fui; uiþs;…; uiþðm�1Þsg and

~un
i ¼ fun

i ; u
n
iþs;…; un

iþðm�1Þsg, we compare uiþms and un
iþms. If

FIG. 1. Time records of g(t) for three different regimes: (a) low external dif-

fusion, (b) intermediate external diffusion, and (c) high external diffusion.
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the distance juiþms � un
iþmsj is large (compared to the dis-

tance between ~ui and ~un
i ), the points ~ui and ~un

i are close just

by projection. They are false nearest neighbors and they will

be pulled apart by increasing the dimension m. If the distan-

ces juiþms � un
iþmsj are predominantly small, then only a

small portion of the neighbors are false and m is a sufficient

embedding dimension. In the FNN algorithm, the neighbor is

declared false if

juiþms � un
iþmsj

k~ui �~un
i k

> Rt; (6)

where Rt is a given threshold.

Fig. 2 shows that a proper embedding is provided by

choosing m 	 4, which keeps the fraction of FNN below

2%. For our signals, a nearest neighbor is considered a FNN

if the left-hand-side in Eq. (6) exceeds 15 (i.e., Rt ¼ 15).

Moreover, for values of the embedding dimension greater

than 4, the averaged value of the left hand side (LHS). of Eq.

(6) barely depends on diffusion.

C. RQA results

Let’s discuss the results next. Fig. 3 depicts three RPs

corresponding to three different regimes based on the value

of the external diffusivity. For very small diffusion (a),

recurrent points are grouped forming clusters with clear di-

agonal and vertical structures. However, as diffusion

increases, the number of isolated points begins to increase

while the number of clusters begins to decrease [see

Figs. 3(b) and 3(c)]. This means that randomness (lack of re-

currence) begins to enter into the dynamics. For the highest

values of diffusion, Fig. 3(c), we get a rather erratic land-

scape, very much resembling those obtained for uncorre-

lated, stochastic systems: many isolated points or at most

small groups of points, conforming an homogeneous pic-

ture.11 These qualitative observations are in agreement with

our previous analysis. Once again, we remark that in all

cases turbulence dominates radial transport. We proceed to

discuss next the quantitative measurements introduced in

Sec. II. The differences observed in the visual inspection of

the RPs with varying Dext suggest a different degree of deter-

minism as the subdominant diffusivity is varied. Fig. 4

shows the temporal average (over 20 temporal windows) of

DET (a), LAM (b), ENTR (c), and AVL (d) along the satu-

rated, steady-state phase of the simulation for increasing val-

ues of diffusion. Error bars stand for standard deviation

when averaging.

There is a decrease in DET by almost a factor of 3 [see

Fig. 4(a)] as diffusion goes from 10�9a2Xi to 3� 10�5a2Xi.

The physical interpretation of these results is probably related

to the decrease in the number of avalanches and their mutual

correlation in time. Avalanches involve a rather reproducible

dynamic cycle (Sec. III B) of overcoming a local threshold

and relaxing the profile which contributes to increase the

degree of determinism. This cycle dominates the dynamics

FIG. 2. Fraction of false nearest neighbors for different values of the exter-

nal diffusivity as a function of the embedding dimension m. Calculations

were performed using s ¼ 1000 Dt, Rt ¼ 15, and L2-norm.

FIG. 3. Recurrence plots for the three regimes seen in Fig. 1: (a) low

diffusion, Dexta
�2X�1

i ¼ 10�9, (b) intermediate diffusion, Dexta
�2X�1

i

¼ 3� 10�8, and (c) high diffusion, Dexta
�2X�1

i ¼ 10�6. The parameters

used in the calculations were RR¼ 5%, m¼ 4, s ¼ 1000 Dt, lmin ¼ 2, and

L2-norm.
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and extends to very long timescales due to the imprint left on

the profiles by previous avalanches. However, for the largest

high values of Dext, the dynamical cycle changes its nature

because the memory reservoir provided by the profiles disap-

pears, as it is smoothed out by the background diffusion.

Transport becomes less and less predictable and becomes

more diffusive-like and, accordingly, more random and

unpredictable, which justifies the lower values of DET.

Regarding entropy [see Fig. 4(c)], it reflects the com-

plexity of the system through the statistics of diagonal lines

in the RP. Indeed, the entropy becomes maximum if all diag-

onal lengths are observed and have equal probability. It is

minimum if only one diagonal length is possible, thus imply-

ing rather non-complex dynamics. In fact, for completely

uncorrelated noisy signals, ENTR should be rather small (or

zero!). Fig. 4(c) shows the temporal average of ENTR as a

function of Dext. Clearly, low diffusivities allows for more

complex dynamics, related to the previously mentioned ava-

lanche cycle and its self-similar, highly correlated in time

features. As Dext takes higher values, the probability distribu-

tion function of diagonal lines becomes much narrower and

the dominant length smaller (see Fig. 5), as should be

expected when the dynamics become more random and non-

complex. At the largest diffusivity, ENTR has decreased by

a factor of 3 with respect to the case with very small diffu-

sion. Clearly, this diagnostic confirms the idea that the dy-

namical cycle between fluctuations and profile that causes

self-similar avalanching is being short-circuited by diffusion.

As well as DET and ENTR, LAM turns out to be a mon-

otonic-decreasing function of Dext [see Fig. 4(b)]. Since the

laminarity quantifies the occurrence of states which do not

change much in time, LAM tells us that the system remains

quiet much more often (on average) at the lowest diffusiv-

ities, which gives the time needed for memory to build up.

There is a decrease of roughly a factor of 2 in LAM when

diffusion goes from 10�9 a2Xi to 3� 10�5 a2Xi. This is in

agreement with the visual impression given by the three

records plotted in Fig. 1. When Dext takes the lowest value

(a), it seems that g(t) is more laminar (its fluctuations are

slower). In contrast, for the highest values of Dext (c), the tur-

bulent activity record fluctuates faster.

Finally, we study the AVL or trapping time. This diag-

nostic estimates the mean time the system remains

unchanged or the time the system is trapped in a given state.

Fig. 4(d) shows its temporal average along the simulation as

a function of the external diffusion. As expected, the result is

consistent with all previously mentioned diagnostics. In the

less diffusive case, the trapping time has an average value of

about 4s ¼ 4000 Dt. At the higher diffusivities, the averaged

value is less than 2:5 s ¼ 2500 Dt. As diffusion takes higher

values, it smoothes the nonlinear modification of the average

density profile, sustaining instability and making quiet times

shorter on average.

Fig. 4 also shows the values of all RQA diagnostics for

the same time series but with shuffled points. This procedure

creates a surrogate series for which the statistical distribu-

tions are preserved, but destroying time correlations. Thus,

for a given diagnostic, the proper estimation will be the dif-

ference between the value for the original series and its cor-

responding surrogate.

FIG. 4. (Color online) Averaged determinism (a), laminarity (b), entropy

(c), and average vertical length (d) as a function of ambient diffusivity.

Filled circles stand for original data, whereas hollow squares refer to surro-

gate data. The parameters used in the calculations were RR ¼ 5%,

s ¼ 1000 Dt, m¼ 4, lmin ¼ 2, and L2-norm.

FIG. 5. (Color online) (a) Probability distribution functions of diagonal line

lengths for two extreme regimes regarding Dext: Low diffusion (filled

circles) and high diffusion (hollow squares). In (b), the same plots are repre-

sented in log-log scale.
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All these conclusions seem to support the analysis previ-

ously published using completely different tools.22,23 There

is, however, a new aspect that was not identified in those

studies. All plots in Fig. 4 show a “bump” at intermediate

diffusivities. More precisely, in the neighbourhood of

Dext � 10�6 a2Xi. In this intermediate range, the quantities

increase again before decreasing to the final value. Is this

just a numerical glitch or does it represent some meaningful

dynamical change? We proceed now to analyze this

question.

V. TRANSPORT DYNAMICS WITHIN THE
INTERMEDIATE DIFFUSIVITY RANGE

From the results of the RQA analysis described in

Sec. IV, it is clear that the dynamics become less deterministic

and less complex as the subdominant diffusivity is increased

with respect to the purely near-marginal DTEM turbulent

transport channel. This is in agreement with other analysis

done in these simulations using different methods in the

past.22,23 However, a new dynamical feature has also been

revealed by the RQA that we explore in this section. As

the diffusivity increases and randomness role in the

dynamics increases, a transient phase appears (between

Dexta
�2X�1

i ¼ 10�7 � 10�6Þ where the complexity of the dy-

namics seems to increase instead of further decrease. To

explore the nature of this change, we have completed addi-

tional simulations to increase our resolution in diffusivity

space and have examined the subsequent turbulent activity

signals in two ways. First, we have computed the average

number of radial unstable sites (i.e., radial positions where tur-

bulent transport is taking place). Secondly, we have computed

the Hurst exponent H of the activity signals. The results are

shown in Fig. 6.

Clearly, the number of unstable sites (hollow squares)

increases with Dext as expected, because the diffusivity is

pushing the profile against its local critical value, accelerat-

ing its destabilization. But curiously, the form of the growth

somewhat resembles that of a transition, with the fastest

increase corresponding to the same intermediate diffusivity

values where the “bump” was observed in the RQA diagnos-

tics. The variation of the Hurst exponent (filled circles) is

even more interesting. Indeed, H goes from larger than 0.5 at

the lowest diffusivities, as expected in the avalanche-domi-

nated regime, to H � 0:5 at the largest diffusivities where

randomness dominates the dynamics. However, in the inter-

mediate region H becomes significantly smaller than 0.5,

which points to a rather strong anti-correlation. Anti-correla-

tion is associated typically to predictability and complex

dynamics, not to randomness. What is the physical interpre-

tation of these results?

The most plausible explanation is found by drawing an

analogy with the transport behavior observed years ago in

the study of diffusive sandpiles.36,37 In them, it was also

observed that the interplay between avalanches and subdo-

minant diffusion made the system dynamics morph into a

more randomized transport process as the diffusivity

increases. However, the change is not smooth, going instead

through an intermediate phase in which system-wide events

empty the system quasi-periodically. This was due to the fact

that the action of diffusion can make the system stay very

close to marginal almost everywhere. When an avalanche is

then triggered, it propagates all throughout the system bring-

ing the profile rather far from the critical one everywhere in

a very short time. After one such system-wide event, a period

of low activity follows while the system pushes back to criti-

cal again. This continued succession of big events and quiet

periods is the basis for the anti-correlation. The same process

is most probably at play here, with the only difference that

the critical threshold varies from point to point relative to the

sandpile model. This spatial dependency would break the pe-

riodicity observed in the sandpile relaxations, but the anti-

correlated dynamics would still be maintained.

VI. CONCLUSIONS

In this work, we have characterized the effect of an exter-

nal subdominant diffusive transport channel on the global

dynamics associated to dissipative-trapped-electron-mode

plasma turbulence by using one unconventional technique in

this context known as the recurrence quantification analysis

technique. We have found that the information retrieved from

the analysis is consistent with previous analysis carried out

with more conventional techniques such as the autocorrelation

function or the Hurst exponent. Basically, the RQA diagnos-

tics show that the dynamics are more complex and predictable

for the correlated avalanche-dominated regime present at

small diffusivities, and becomes more random as the subdo-

minant channel strength increases in spite of the fact that

most of the transport is still carried by the turbulence.

But RQA has also revealed new features in the dynam-

ics. In particular, it has shown that the transition between

these two regimes is not smooth, but crosses a region (in dif-

fusivity) in which strong correlation is substituted by strong

anticorrelation in the dynamics. An explanation of the proc-

esses taking place in the system during this phase has been

proposed by analogy to the behavior found in diffusive sand-

piles sometime ago.

The relevance of the work to magnetically confined

fusion plasmas has been discussed elsewhere,23 but it suffi-

ces to say that the type of dynamics described here should

play an important role in any system that sits close to mar-

ginal conditions and that supports several transport channels.

It is not difficult to imagine situations in a tokamak plasma

FIG. 6. (Color online) Hurst exponents (filled circles) and temporal-aver-

aged value of the turbulent activity (hollow squares) as a function of the

external diffusion applied to the profile.

062306-7 Recurrence quantification analysis… Phys. Plasmas 18, 062306 (2011)

Downloaded 29 Aug 2011 to 137.229.53.151. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



in which these conditions are met, such as near-marginal

ITG or DTEM conditions in the presence of neoclassical dif-

fusion or supercritical drift-wave turbulence.
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20Z. O. Guimarães-Filho, I. L. Caldas, R. L. Viana, J. Kurths, I. C. Nasci-

mento, and Yu. K. Kuznetsov, Phys. lett. A 372, 1088 (2008).
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