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Quiet-time statistics: A tool to probe the dynamics of self-organized-criticality systems
from within the strong overlapping regime
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A method is presented that allows one to obtain information about the underlying dynamics of a self-
organized-criticality system even when the strong-overlapping or hydrodynamic réigiméich individual
avalanches are no longer distinguishalifethe only one amenable of probing. The method is based on the
analysis of the statistics of the lapses of time between activity bursts or quiet times. The case of a randomly
driven running sandpile is used to illustrate the use and capabilities of this technique.
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[. INTRODUCTION any activity to cease. There is always a fifiggen if some-
times negligible probability of avalanche overlapping,
Self-organized criticalitfSOQ [1] is a concept that has which will increase with the strength of the drive. Therefore,
found wide application in the physical and earth sciences irany analysis based on the construction of any of these PDFs
the last 15 yearf2—10]. Due to limits in the available com- may be difficult to interpret, and sometimes even turn use-
puting power, much of the theoretical work on this conceptless, after the system has entered the hydrodynamic regime
has been done with cellular automata models, of which th¢13]. This is a situation of more than just academic interest.
sandpile is probably the best known exampld—-14,15— For instance, in the case of the occurrence of turbulent trans-
18]. In it, sand is dropped following some prescribed rule.port in a plasma magnetically confined in a tokamak or a
Then, whenever the slop@r the height at some cell ex- stellarator(systems for which a SOC paradigm has been re-
ceeds a prescribed threshold value, it becomes unstable andntly proposed, which accounts for some of the phenom-
relaxes by moving part of its content to the neighboring cellenology experimentally observéé,10]), it might very well
or cells. These can themselves go unstable, and the relake that the hydrodynamic regime is the only one relevant to
ation can propagate forming an avalanche. The rules thahe experimenf20,21]. Therefore, developing analysis tools
govern both the driving and the relaxation processes distinto investigate the underlying system dynamics in the pres-
guish the different sandpile models. But in all of them, aence of strong overlapping is of interest.
steady state is reached after the flux of sand that leaves In this paper, we consider the possible use of quiet-time
through the bottom of the sandpile balances the incomingtatistics to perform this task. Quiet-time statistics are some-
drive. This final state shares many of the characteristics ofvhat related to waiting-time statistics, which have been re-
critical points from equilibrium phase transition theory. cently revisited in the context of SOC dynamics by several
Namely, self-similarity and correlations that diverge with theauthorg14,22,23. But quiet times can be shown not to suf-
system sizg19]. fer from the same shortcomings as their relatiy24]. To
Self-similarity can be easily made apparent in SOC sysexplore the possibilities of this tool, we have applied it to the
tems by constructing the probability distribution function analysis of the running sandpil@1,13, which is the sim-
(PDF) of, say, the sizes of the avalanches. These PDFs exlest SOC system exhibiting avalanche overlapping. The pa-
hibit power laws that extend for several decades and decgyer is organized as follows. In Sec. Il, some properties re-
with an exponent slower than 2, which makes the distri- garding the waiting times of a uniform Poisson point process
bution not have a finite variancé diverges instead with the are introduced, which will be relevant to the rest of our dis-
system sizg [19]. However, it is necessary to be able to cussion. The application of these ideas to the running sand-
distinguish single avalanches in order to perform this type opile will take us to the definition of the quiet-time concept in
analysis. This is ensured in most sandpile models studied i8ec. Ill. In Sec. IV, quiet-time statistics will be applied to
the literature by halting the drive after an avalanche is exprobe the underlying dynamics of the running sandpile from
cited. It is again restarted only after all avalanche activity hasvithin the strong overlapping regime. The usefulness of this
disappeared throughout the system. technique to capture the underlying SOC dynamics will be
Regretfully, in a real system, the drive does not wait fortested against results obtained from an equivalent sandpile
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where no avalanche overlapping is allowed. Finally, some ; 5 ; :
conclusions will be drawn in Sec. VI. ;

II. WAITING TIMES OF A POISSON POINT PROCESS t t 1 t tg time

A point process is an ordered set of events, with zero Y Y20 W Wy Ws

duration, that are consecutively triggered in tf@8. It can FIG. 1. Sketch explaining the different series associated with the

be represented by a semi-infinite series of real numbBers Poisson procesB: the waiting time seriesV" and the quiet-time

formed by those instants of time at which events are trig-__ .~ __p
gered: seriesQp .

P={t,c[0x), k=1,2,3...}, 1) as the whole series given by E®). This theorem is particu-
larly useful when trying to estimate in practice.
where the initial time at which data recording begins has The third one is a result, which refers to another series
been set arbitrarily td=0. Qp ., that can be constructed from a Poisson proéesshe
Associated to procesB, a second semi-infinite series is procedure goes as follows: at timge P some real number
defined in the following way: d,;>0 is chosen. Then, the first element@j, is given by
(see Fig. 1
WP={w, =t 1—t,,k=1,2,3...}. 2
sy~ 1
WP will be referred to as thevaiting-timeseries associated qlzts(l)—(t1+ dy)= E w,—dq, (7
to P. A point process is called a uniform Poisson process if =1
the probability of any waiting time in its associatéd’ se-

. ) ; X s(1) being thelowestpositive integer verifying that, >t
ries exceeding some prescribed value sati$hé$ (1) g P g fying S~ L

+d;. The next element irQB is computed in an identical
p(w>t+s) way: a second real numbds is chosen at times(l), and the

p(W>s) =pw>t), V 1,5>0. (3 second element iR, is obtained as

It is important to notice that Eq(3) implies the absence of @t

any temporal correlation between triggerings. In more physi- QZZtS(z)_(tS(1)+dZ)= I=§s: Wi —ds, ®)

cal terms, it can be restated by saying that the system where @

P takes place behaves in the same way no matter whictvhere s, is again defined as the lowest positive integer
reference time is chosen to look at it, as should be expecteghich verifies that, 2)>t +d,. This process is continued
from the lack of memory of the dynamics. Since E§).can arbitrarily large k(,
be rewritten as

S()

qm—l
p(W>t+s)=p(w>s)p(w>t), (4) A=tegy = (g T )= 2 wi—dy, 9)
=S(k-1)
this probability can be expressed in the form . . o .
with s, being the lowest positive integer for whldig(k)
p(w>s)=e ’° (5 >ty T d,. Denoting the set formed by adl, by D, and
the PDF according to which elementsDnare distributed by
Pp(d), the third theorem can be stated as follows.
Theorem 3The elements QY are also distributed ac-
cording toP} ...
vaait(W)zae_UW- (6) _ Proof. To prove it, it is sufficient to realize that any pos-
sibleq must be equal to the sum of a real numbé¢from the
This PDF characterizes Comp|ete|y the Poisson prd:(zas distribution PD(d)] and some finite numbéN of consecutive
o is known as the mean rate of the process awnddlives the ~ Waiting times [each of them distributed according to
average waiting time between triggerings. P\f’vait(w)]. For any particular series of waiting times and

Several theorems regarding Poisson processes that will fixed g and d, N is equal to the order number of the last
used later are now presented. The first two are well-knowwaiting time satisfying
results from the theory of Poisson processes, and are thus
stated without proofsee, for instance, Reff26] for a math-
ematical proof.

Theorem 1 Any new processP, formed by randomly
choosing elements iR with some probabilityp is again a  Let us assume now that, for fixebandN, the probability of
Poisson process, with mean rate givendy= op. any possible collection of waiting-time values can be de-

Theorem 2Any new series formed bsandomlychoosing  scribed by some functiopg(w;,w,,w3, ... Wy_1), Which
elements inW" with any probability follows the same PDF contains any possible correlation betwegrand the{w;}

for someo>0. From Eq.(5), it follows that the PDF of the
waiting times(from now on, all PDFs will be represented
with P, in contrast to probabilities witlp) is given by

N—1
Wy=q+d— >, w>0. (10
k=1
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collection(it would be constant in the case of no correlation
Then, the probability of appearance of some value) ¢br
fixed d andN is given by

pM(g)=oNe™ 7T DK (d), (11)

where the kerneK(d) is defined by

d d—w _yN-2
KN(d)EJ dWlJ ' dw,- "fd S dwn-1 Pg
0 0 0

X (Wq,Wo, W3, ... Wn_1). (12

The total probability of obtainingy is now computed by,
first, summingpl'(q) over all possibleN and averaging it
over all possibled values,

f dd'Pp(d) S pN(q)
0 N=1

=e—<’q(f dd'Pp(d’) X, oNe edKy(d") |,
0 N=1
(13

and, second, normalizing it to unity over all possilgjis.

FIG. 2. Comparison of the
PDFs according to which the ele-
ments inW" and Qf are distrib-
uted for the Poisson proceBsde-
scribed in Sec. Il of the text. Both
waiting times and quiet times are
measured in iterations in this and
all other figures.

[} Illllll

500

It is easy to test Eq.14) numerically. To do it, a Poisson
point proces® has been obtained by generating a series of
random numbers if0,1], and storing the order number of
those that exceed a given threshola;03<1. P clearly sat-
isfies the independence condition required for &g to hold
and, as expected, its associaiéfi series is distributed ac-
cording to an exponential PDF. Usirig-0.99 (see Fig. 2
and fitting to an exponential law, a mean rate=0.009 56
+0.000 16 is obtained. This value is within 5% of the theo-
reticalo=1—1t=0.1. Other testéwith different values fot)
suggest that the typical deviation that should be expected lies
within 1—10 % from the theoretical value. The reason for this
discrepancy is to be found in the worse statistics of the long-
est waiting times. When the previous fit is recalculated
excluding them, a much closer value is obtained,
=0.0100590.000 048, less than 0.5% from the theoretical
value.

If we repeat the exercise with tr@E series[generated
following Eqg. (9)] using values fod €[ 0,100 produced by
a random number generator, almost identical results are ob-
tained. The associated PDF has been included in the same
figure for easier comparison. Clearly, both PDFs are identi-
cal: the exponent obtained for th@) distribution is o
=0.009 475-0.000 18, again around a 5% from the theoret-
ical o, ando=0.009 991 1+ 0.000 03(less than 0.1%when

This normalization eliminates the constant bracketed factothe longest values are discarded.

from the right-hand side of Eq13), except for ac factor.
The PDF according to which the elementsQR are distrib-
uted is finally given by

PG Pla)=0 e "I=P (), (14

as the theorem states.

IIl. QUIET TIMES IN A RUNNING SANDPILE

The running sandpilgll,13 is the simplest SOC system
that exhibits avalanche overlapping. It is composedLof
cells, each of them storing an amount of sdnd with k
being any integer ifi1,L]. Avalanches can be excited when-
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ever the local slop&,=h,, ; —h, exceeds a prescribed criti- associated witt (in spite of this, slightly different flavors of
cal thresholdZ, at any cell. ThenN; grains of sand are this PDF have been often used in the literafi@2—24):
moved from the unstable cell to the next cell downhill. If the

receiving cell becomes unstable itself, the avalanche can then WA={wp=ag, 1 —a k=123 ..}, 17
propagate.

The sandpile is driven randomly by dropping one grain ofsince they are not necessarily distributed according to an
sand with some prescribed probabilipy at each iteration ~€xponential law. But to prove this, we must first deal with the
and on each cell. This is done by generating a random num’3.V3.|anChe duration PDF. According to one of the hallmarks
ber in [0,1] per cell and iteration. Whenever this number of SOC dynamics, these durations are distributed according
exceeds ¥ pg, a grain of sand is dropped. Interestingly, thisto @ power-law-like distribution in the limit ot (or po)
procedure is identical to that used to generate the test Pois=0. This distribution is well approximated by the following
son process in the preceding section. The mean rate is hoftnctional form[19]:
everpgl in the present case, since at each iteralidatiffer-
ent numbers are produced, one per cell.

It is essential to notice now that a grain of sand must be
dropped at the same cell and iteration at which any ava-
lanche is triggered. But not every drop that falls gives rise tq.> 0 peing the power-law exponent; andd, are two func-
an avalanche. Ips denotes the probability for an avalanche tjons of L, the system size which verifies that
to be triggered in one cell when a drop falls, Theorem 1 from

e d/d;

PD(d’UO_)O)va (18)

the preceding section guarantees that the ordered series limdy(L)=o, limd,(L)=0. (19
formed by the iterations at which avalanches are triggered, Lo L—oo
T={i,ez" k=1,23...} (15) They model the limitations to self-similarity induced on the

distribution by the finite size of the system. Roughly speak-
ing, self-similarity is limited to those time scales lying be-
Sween them. In the presence of overlapping, this PDF can
how measured, it would provide us with an accurate estim however be c.iefo.rmed dye to the nontrivial changeg induced
i fthe d ’ d d i fwith th ¢ aby th_e spatial interaction of avala_mches in their well-
lon of the dependences and scalingspeiwi € SYStem  otablished spatial structyr27]. In particular, the power-law
a(53<ponent of the PDF can change or even disappear, and its
self-similarity limits can be shifted, as shown, for instance,
in Fig. 3. Therefore, thisr, dependence will be made ex-

a;somated WIthT, which must foIIow.an expon_ent!al law plicit by denoting the avalanche duration PDF By(d, o)
with exponento,. However, the running sandpile is more in what follows

compl_ex than a P_oisson poi_nt process. All avalanches in the It is now straightforward to show that the probability for
sandpile have a finite duratiod;>0. Therefore, as soon as anyw? (that when properly normalized to unity ovigd )

%0 increases, the probability also in(_:reases for any triggeri_n ives the PDF does not follow an exponential law but in-
in T to be excited before the previous avalanche has die tead

away. For large enougty, the system enters into the hydro-
dynamic regime where avalanche overlapping happens fre- Ay ~ ot A
quently, and the number of elements Tnthat cannot be pW?)=aoe 70" H(W?, 00), (20
detected increases. What can be measured in practice is @i the functionH (WA, o) defined by

subset ofT: w0

must necessarily inherit the Poisson character of the driv
with mean ratery=pspoL. Therefore, ifog could be some-

acterizing the running sandpile dynamics.
In principle, oo might be estimated from th&/" series

AT={a =t eTI=123...}, (16) H(WA,00)= fow dsPy(s,00)e70. (21)

with {ky Ko, ... ki, ...} being the subset of indices of the As might be expectedH(w",a4)—1 only whengy—0,
iterations at which avalanche activity has startéébr in-  which makes this PDF of little use in order to estimateas
stance, considering again the triggering process shown isoon as the hydrodynamic regime is entered. As an illustra-
Fig. 1, andd, andd, being the durations of the avalanches tion, Fig. 4 shows the PDF according to which values\fy
triggered at time¢, andts, the triggerings taking place at are distributed for a series of sandpile runs with increasing
timest,, t,, andts would not be detectable. The" series  p, (and therefore, increasing). It is apparent how, for the
for this process would begin with;=t;, a,=t;, anda;  smallestoy’s, the PDF stays close to an exponential above a
=1t,.) Notice thatATC T, but the identity is only reached in certain minimum value fow” that vanishes withro. How-
the limit 0p— 0. AT will be referred to as the “avalanching ever, ass, increases, it quickly departs from the exponential
process” associated to tieprocess, from now on referred to law, which makes impossible the determinationogt
as the “triggering process.” However, Theorem 3 from the preceding section provides
In general, it is very difficult to extract useful information us with an easy and elegant alternative solution for this prob-
about the underlying procedsfrom the waiting-time series lem. It is sufficient to construct th@B process fronil using
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1() T T T T TTTT I T T T T TTTT T T T T TTTT | T T T T TTT g
e O py=1.5x10° 7
& p=25x10"
W0k 0-® p=2.5x10"
E FIG. 3. Change ofPp(d, o)
2 10-4,=_ with drive strength(in this case
= g with p,, sinceoo=pspoL) for a
_‘é‘ C sandpile run with L=400, Z
£ 10°F =20, andN¢=3. In this and all
E other figures, duration units are it-
C erations, and botb, and o units
10°E are iterations®.
107 E
-8 i 1 1 111111 I 1 1 | I T T I | I 1 1 11 1111 I
10
10° 10' 107 10° 10"

duration

Eq. (9), with the setD being the ordered series of measuredcan also be useful in other contexts. For instance, the expo-
avalanche durations. Since the PDF of the elemen@jn nential shape of the quiet-time PDF disappears as soon as the
must be distributed according to an exponential law with theecorded triggerings " are no longer decorrelated. This
same exponent as the hidd@nprocess,o, can be easily Wwas shown to be possible in Rg24], either by using certain
estimated. All the elements in tisomewhat obscuyedefi-  types of conditionally sampling the avalanches from a ran-
nition of Q, become now physically meaningful: thg in  domly driven system that violates Theorem 2 from Sec. I, or
Eq. (9) correspond to the instants when activity patches star?y driving the system with a nonrandom correlated source.
And the elements i) correspond to the lapses of inactiv- The experimental finding of nonexponential quiet-time PDFs
ity between these patches, which justifies calling thpriet i real experiments might thus suggest the relevance of one
times (It is interesting to point out that quiet-time statistics of these possibilities.

10- E T T T TTTTT T T T TTTTT T T T TTTT I| T T T TTTT II g
C 5 E
10_2 L (]])_@ p0=2.5X10 -
3 - 4 E
C & p=2.5x10 3
B [ D o I -3 T
107 L Uk~ p=1.5x10 -
210t =
= g 3 FIG. 4. Change of the PDF ac-
_‘é’ C ] cording to which the values W*
& 10° E = are distributed as a function f,
E 3 for the same case as Fig. 3.
10°F 3
10’ g 3
-8 i 1 1 111111 I 1 1 111111 | 1 1 111111 | |
10
10° 10" 10° 10°
Waiting time
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s 4l 1 g / with L=400 and N;=3 (left).
S E 4 E . / caling of oy with py obtained
& i .Q ] 0.01 / 3 from these casegight).
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Quiet time Py
IV. ESTIMATION OF ps FOR THE RUNNING SANDPILE N;=3 with increasingp, are usedsee Fig. 5. In order to
USING QUIET-TIME STATISTICS test the extent to which quiet-time statistics can yield infor-

emation about the underlying dynamics when probing within
two previous sections is used to estimate the dependencH¥ Nydrodynamic regime, the rest of the dependefioes
and scalings ofp, for the running sandpile. To verify the ©" L andN¢) have been explored using a series of sandpile

independence op with respect top,, a series of sandpile TUnS With a value ofpg well within the strong-overlapping
runs with parameter values given lhy=400, Z.=20, and regime. This can be assessed by ascertaining the existence of

In this section, the quiet-time technique described in th

106 IIIIII| 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII ) 1 LI
10°
10 =
10°
5 2 j FIG. 6. Power spectrefre-
8 10 3 quency units are iterationd) of
2 . = the time traces of the total number
g 10 of overturning cells for a series of
s sandpile runs withL=400 and
10° N;=3 and varying drive.
5 N ) i 3
10" == p=2.5x10 \\\ NG ',
c=+ p=6.25x10"" ! !
5] R
10 — p=125x10° N
N )
10'3 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 1 I\I/IIIII
10* 10° 10” 10" 10°

Frequency
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N - 3 o' e | FIG. 7. Statistics of quiet
= 10°E : = = C ] times for a series of sandpile runs
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a widef ! region in the power spectrum of the time trace for The exponents obtained for bofi, and L are within the
the total number of unstable cellsee Fig. § which is well 3—-5% range of deviation expected from the theoretical ex-
known to be characteristic of the hydrodynamic reg|h&]. pectation,o=pspoL. Therefore, the scaling fgus given by
Assembling data from all these runs, the obtained parametriguiet-time statistics in the hydrodynamic regime is
dependence gb turns out to besee Figs. 7 and)8

ps=N; 12, (23
L (1.056-0.014) [11.011-0.009 This scaling gives a lower value fog than the somewhat

(22 naive estimation obtained by assuming that the local slope
has an equal probability of staying in any of the stable slope

00=(1.010.12 N(1:19350.012)
f

0
10 LI | IIIIIII T IIIIIIII T TTTrT I T T T T T LI
10" — y=2.5745¢-04x """
10”
10°
2. 4 FIG. 8. Statistics of quiet
B 10 7 g times for a series of sandpile runs
% S @ 2 0.1~ ] with py=1.25x10"2 iteratior !
& 10 @ - - and N;=3 (left). Scaling of o
v A Q W] B 7 with L obtained from these cases
10°H & =s00] ¢4 @Y i 1 (right).
A L=400| & 4 @f@ - .
g[] @ L=200| | A L0
10°El 0 L=100] & % & & ) ’
A é \
-8 ,@ \ & L i
10 LA P4
l é’ ||| ? [i] 1
-9 L1 11111l L1 Lrenid v 1 a1 1 B1lll 1 1 1 1 1 11 1
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FIG. 9. Scaling ofI",,¢1 With N¢ for the nonoverlapping sandpile.

states within[Z;—N;,Z.], which predictsps=N; ' [24]. poL=oo(Toud T (24)
The difference in the exponent fdi; is close to 20% with

the predicted one, which seems to discard any numericavhich ensures the flux balance that must hold in steady state,
inaccuracy as responsible for this difference. Thus, (8. and

suggests that the previous assumption probably underesti- 5

mated the importance of the stable slope values lying out of % = o(S) (25)

this interval. These values are distributed[i.—2N;,Z, 2N AT

—Ns], and are accessed whenever the first relaxation of an

avalanchdthat reduces the local slope at the starting locatiofvhich guarantees that all flux in the sandpile is related to
to Z.— 2N;) does not propagate to other ciis which case, ~avalanche activity. It is important to notice thdt,y)+ and

the local slope is moved up @, — N; in the following itera-  (S)1, respectively, stand for the average flux out of the pile
tion). The influence of these events in the slightly nonlinearand the average sizelefined as the total number of relax-
scaling(in 1/N;) observed seems to be confirmed when ne-ations that have taken place during the avalappeesingle
glecting them in the quiet-time statistics, which brings theavalanche(even if they may not be distinguished due to
exponent much closer to linearitgven when their effect on overlapping.

the rest of events is maintained through the modifications of Sincepy cancels out in both sides of Eq24) and (25),

the sandpile profile they causéThe slightly nonlinear de- these laws hold for any level of overlapping and, in particu-
pendence could be associated to the radial correlations b, in the limit of no overlapping €,—0). If the scalings
tween the slopes of neighboring cdl®7]. They affect these for ps obtained in the preceding section are correct, it should
lower-slope states because the slope can be increased felow that

wardsZ; not only by a falling grain of san¢that increases

the slope in ong but also by means of any avalanche that _iN 1.2
. . ; (Toudr=—=Ni (26
starts somewhere else and happens to die at this location Ps
(increasing the slope biy;).
and
V. COMPARISON WITH THE DYNAMICS OF A L
NONOVERLAPPING SANDPILE <S>T:W:0'5 N2 27)
iPs

In this section, we are interested in testing the extent to
which the information onpg collected from within the This prediction can be compared with the scalings for
strong-overlapping regime by means of quiet-time statistichboth quantities obtained from calculations with a sandpile in
reflects any property of the dynamics of the system in thavhich the drive is stopped after an avalanche is excited, be-
absence of overlapping. Two conservation laws that musing only restarted after all avalanche activity has died away.
hold in the running sandpile will be useful for this task: The obtained scalings are shown in Figs. 9 and 10, agreeing
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with those provided by quiet-time statistics within less thancontrolled and where the diagnostics available are also very
5% and confirming the goodness of the method to probe thémited. This is certainly the case in magnetically confined

underlying dynamics. plasmas. In them, the combination of short discharges and
extremal conditions allows, at most, for measurements pro-
VI. CONCLUSIONS viding the flux coming out of the system or through some

fixed radial location. In systems like these, the results de-
In this paper we have shown that quiet-time statistics carcribed in the paper may be of application to obtain informa-
be a powerful tool to test the underlying dynamics of ran-tion about the underlying dynamics.
domly driven SOC systems, even if measurements can only
be made in the hydrodynamic regime where avalanches can-

not be lclearl_y separated. This result extends importantly_tq ACKNOWLEDGMENTS
the regimes in which these systems can be probed, since it is
no longer required to go to the limit of vanishing dritiee., Valuable discussions with M. Varela, U. Bhatt, and R.
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