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Quiet-time statistics: A tool to probe the dynamics of self-organized-criticality systems
from within the strong overlapping regime
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A method is presented that allows one to obtain information about the underlying dynamics of a self-
organized-criticality system even when the strong-overlapping or hydrodynamic regime~in which individual
avalanches are no longer distinguishable! is the only one amenable of probing. The method is based on the
analysis of the statistics of the lapses of time between activity bursts or quiet times. The case of a randomly
driven running sandpile is used to illustrate the use and capabilities of this technique.
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I. INTRODUCTION

Self-organized criticality~SOC! @1# is a concept that ha
found wide application in the physical and earth science
the last 15 years@2–10#. Due to limits in the available com
puting power, much of the theoretical work on this conce
has been done with cellular automata models, of which
sandpile is probably the best known example@11–14,15–
18#. In it, sand is dropped following some prescribed ru
Then, whenever the slope~or the height! at some cell ex-
ceeds a prescribed threshold value, it becomes unstable
relaxes by moving part of its content to the neighboring c
or cells. These can themselves go unstable, and the re
ation can propagate forming an avalanche. The rules
govern both the driving and the relaxation processes dis
guish the different sandpile models. But in all of them,
steady state is reached after the flux of sand that lea
through the bottom of the sandpile balances the incom
drive. This final state shares many of the characteristics
critical points from equilibrium phase transition theor
Namely, self-similarity and correlations that diverge with t
system size@19#.

Self-similarity can be easily made apparent in SOC s
tems by constructing the probability distribution functio
~PDF! of, say, the sizes of the avalanches. These PDFs
hibit power laws that extend for several decades and de
with an exponent slower than22, which makes the distri-
bution not have a finite variance~it diverges instead with the
system size! @19#. However, it is necessary to be able
distinguish single avalanches in order to perform this type
analysis. This is ensured in most sandpile models studie
the literature by halting the drive after an avalanche is
cited. It is again restarted only after all avalanche activity h
disappeared throughout the system.

Regretfully, in a real system, the drive does not wait
1063-651X/2002/66~3!/036124~10!/$20.00 66 0361
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any activity to cease. There is always a finite~even if some-
times negligible! probability of avalanche overlapping
which will increase with the strength of the drive. Therefo
any analysis based on the construction of any of these P
may be difficult to interpret, and sometimes even turn u
less, after the system has entered the hydrodynamic reg
@13#. This is a situation of more than just academic intere
For instance, in the case of the occurrence of turbulent tra
port in a plasma magnetically confined in a tokamak o
stellarator~systems for which a SOC paradigm has been
cently proposed, which accounts for some of the pheno
enology experimentally observed@9,10#!, it might very well
be that the hydrodynamic regime is the only one relevan
the experiment@20,21#. Therefore, developing analysis too
to investigate the underlying system dynamics in the pr
ence of strong overlapping is of interest.

In this paper, we consider the possible use of quiet-ti
statistics to perform this task. Quiet-time statistics are som
what related to waiting-time statistics, which have been
cently revisited in the context of SOC dynamics by seve
authors@14,22,23#. But quiet times can be shown not to su
fer from the same shortcomings as their relatives@24#. To
explore the possibilities of this tool, we have applied it to t
analysis of the running sandpile@11,13#, which is the sim-
plest SOC system exhibiting avalanche overlapping. The
per is organized as follows. In Sec. II, some properties
garding the waiting times of a uniform Poisson point proce
are introduced, which will be relevant to the rest of our d
cussion. The application of these ideas to the running sa
pile will take us to the definition of the quiet-time concept
Sec. III. In Sec. IV, quiet-time statistics will be applied
probe the underlying dynamics of the running sandpile fr
within the strong overlapping regime. The usefulness of t
technique to capture the underlying SOC dynamics will
tested against results obtained from an equivalent sand
©2002 The American Physical Society24-1
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where no avalanche overlapping is allowed. Finally, so
conclusions will be drawn in Sec. VI.

II. WAITING TIMES OF A POISSON POINT PROCESS

A point process is an ordered set of events, with z
duration, that are consecutively triggered in time@25#. It can
be represented by a semi-infinite series of real numberP
formed by those instants of time at which events are t
gered:

P[$tkP@0,̀ !, k51,2,3, . . . %, ~1!

where the initial time at which data recording begins h
been set arbitrarily tot50.

Associated to processP, a second semi-infinite series
defined in the following way:

WP[$wk5tk112tk ,k51,2,3, . . . %. ~2!

WP will be referred to as thewaiting-timeseries associate
to P. A point process is called a uniform Poisson proces
the probability of any waiting time in its associatedWP se-
ries exceeding some prescribed value satisfies@26#

p~w.t1s!

p~w.s!
5p~w.t !, ; t,s.0. ~3!

It is important to notice that Eq.~3! implies the absence o
any temporal correlation between triggerings. In more phy
cal terms, it can be restated by saying that the system w
P takes place behaves in the same way no matter w
reference time is chosen to look at it, as should be expe
from the lack of memory of the dynamics. Since Eq.~3! can
be rewritten as

p~w.t1s!5p~w.s!p~w.t !, ~4!

this probability can be expressed in the form

p~w.s!5e2ss ~5!

for somes.0. From Eq.~5!, it follows that the PDF of the
waiting times~from now on, all PDFs will be represente
with P, in contrast to probabilities withp) is given by

Pwait
P ~w!5se2sw. ~6!

This PDF characterizes completely the Poisson process@26#.
s is known as the mean rate of the process and 1/s gives the
average waiting time between triggerings.

Several theorems regarding Poisson processes that w
used later are now presented. The first two are well-kno
results from the theory of Poisson processes, and are
stated without proof~see, for instance, Ref.@26# for a math-
ematical proof!.

Theorem 1. Any new processPp formed by randomly
choosing elements inP with some probabilityp is again a
Poisson process, with mean rate given bysp5sp.

Theorem 2. Anynew series formed byrandomlychoosing
elements inWP with any probability follows the same PD
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as the whole series given by Eq.~6!. This theorem is particu-
larly useful when trying to estimates in practice.

The third one is a result, which refers to another ser
QD

P , that can be constructed from a Poisson processP. The
procedure goes as follows: at timet1PP some real number
d1.0 is chosen. Then, the first element inQD

P is given by
~see Fig. 1!

q15ts(1)
2~ t11d1!5 (

l 51

s(1)21

wl2d1 , ~7!

s(1) being thelowestpositive integer verifying thatts(1)
.t1

1d1. The next element inQD
P is computed in an identica

way: a second real numberd2 is chosen at timets(1)
, and the

second element inQD
P is obtained as

q25ts(2)
2~ ts(1)

1d2!5 (
l 5s(1)

s(2)21

wl2d2 , ~8!

where s(2) is again defined as the lowest positive integ
which verifies thatts(2)

.ts(1)
1d2. This process is continued

till arbitrarily large k,

qk5ts(k)
2~ ts(k21)

1dk!5 (
l 5s(k21)

s(k)21

wl2dk , ~9!

with s(k) being the lowest positive integer for whichts(k)

.ts(k21)
1dk . Denoting the set formed by alldk by D, and

the PDF according to which elements inD are distributed by
PD(d), the third theorem can be stated as follows.

Theorem 3. The elements inQD
P are also distributed ac

cording toPwait
P .

Proof. To prove it, it is sufficient to realize that any po
sibleq must be equal to the sum of a real numberd @from the
distributionPD(d)] and some finite numberN of consecutive
waiting times @each of them distributed according t
Pwait

P (w)]. For any particular series of waiting times an
fixed q and d, N is equal to the order number of the la
waiting time satisfying

wN5q1d2 (
k51

N21

wk.0. ~10!

Let us assume now that, for fixedd andN, the probability of
any possible collection of waiting-time values can be d
scribed by some functionpd(w1 ,w2 ,w3 , . . . ,wN21), which
contains any possible correlation betweend and the$wi%

FIG. 1. Sketch explaining the different series associated with
Poisson processP: the waiting time seriesWP and the quiet-time
seriesQD

P .
4-2
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FIG. 2. Comparison of the
PDFs according to which the ele
ments inWP and QD

P are distrib-
uted for the Poisson processP de-
scribed in Sec. II of the text. Both
waiting times and quiet times ar
measured in iterations in this an
all other figures.
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collection~it would be constant in the case of no correlatio!.
Then, the probability of appearance of some value ofq for
fixed d andN is given by

pd
[N]~q!5sNe2s(q1d)KN~d!, ~11!

where the kernelKN(d) is defined by

KN~d![E
0

d

dw1E
0

d2w1
dw2•••E

0

d2( l 51
N22wl dwN21 pd

3~w1 ,w2 ,w3 , . . . ,wN21!. ~12!

The total probability of obtainingq is now computed by,
first, summingpd

[N] (q) over all possibleN and averaging it
over all possibled values,

E
0

`

dd8PD~d8! (
N51

`

pd8
[N]

~q!

5e2sqS E
0

`

dd8PD~d8! (
N51

`

sNe2sd8KN~d8!D ,

~13!

and, second, normalizing it to unity over all possibleq’s.
This normalization eliminates the constant bracketed fa
from the right-hand side of Eq.~13!, except for as factor.
The PDF according to which the elements inQD

P are distrib-
uted is finally given by

PQ
[ P,D]~q!5s e2sq5Pwait

P ~q!, ~14!

as the theorem states.
03612
r

It is easy to test Eq.~14! numerically. To do it, a Poisson
point processP has been obtained by generating a series
random numbers in@0,1#, and storing the order number o
those that exceed a given threshold, 0,t,1. P clearly sat-
isfies the independence condition required for Eq.~5! to hold
and, as expected, its associatedWP series is distributed ac
cording to an exponential PDF. Usingt50.99 ~see Fig. 2!
and fitting to an exponential law, a mean rates50.009 56
60.000 16 is obtained. This value is within 5% of the the
reticals512t50.1. Other tests~with different values fort)
suggest that the typical deviation that should be expected
within 1–10 % from the theoretical value. The reason for t
discrepancy is to be found in the worse statistics of the lo
est waiting times. When the previous fit is recalculat
excluding them, a much closer value is obtained,s
50.010 05960.000 048, less than 0.5% from the theoretic
value.

If we repeat the exercise with theQD
T series@generated

following Eq. ~9!# using values fordP@0,100# produced by
a random number generator, almost identical results are
tained. The associated PDF has been included in the s
figure for easier comparison. Clearly, both PDFs are ide
cal: the exponent obtained for theQD

T distribution is s
50.009 47560.000 18, again around a 5% from the theor
ical s, ands50.009 991 160.000 03~less than 0.1%! when
the longest values are discarded.

III. QUIET TIMES IN A RUNNING SANDPILE

The running sandpile@11,13# is the simplest SOC system
that exhibits avalanche overlapping. It is composed oL
cells, each of them storing an amount of sandhk , with k
being any integer in@1,L#. Avalanches can be excited when
4-3
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ever the local slopeZk[hk112hk exceeds a prescribed crit
cal thresholdZc at any cell. Then,Nf grains of sand are
moved from the unstable cell to the next cell downhill. If th
receiving cell becomes unstable itself, the avalanche can
propagate.

The sandpile is driven randomly by dropping one grain
sand with some prescribed probabilityp0 at each iteration
and on each cell. This is done by generating a random n
ber in @0,1# per cell and iteration. Whenever this numb
exceeds 12p0, a grain of sand is dropped. Interestingly, th
procedure is identical to that used to generate the test P
son process in the preceding section. The mean rate is h
everp0L in the present case, since at each iterationL differ-
ent numbers are produced, one per cell.

It is essential to notice now that a grain of sand must
dropped at the same cell and iteration at which any a
lanche is triggered. But not every drop that falls gives rise
an avalanche. Ifps denotes the probability for an avalanch
to be triggered in one cell when a drop falls, Theorem 1 fr
the preceding section guarantees that the ordered s
formed by the iterations at which avalanches are triggere

T[$ i kPZ1,k51,2,3, . . . %, ~15!

must necessarily inherit the Poisson character of the dr
with mean rates05psp0L. Therefore, ifs0 could be some-
how measured, it would provide us with an accurate estim
tion of the dependences and scalings ofps with the system
parameters, as well as many other interesting quantities c
acterizing the running sandpile dynamics.

In principle, s0 might be estimated from theWT series
associated withT, which must follow an exponential law
with exponents0. However, the running sandpile is mo
complex than a Poisson point process. All avalanches in
sandpile have a finite duration,d.0. Therefore, as soon a
s0 increases, the probability also increases for any trigge
in T to be excited before the previous avalanche has d
away. For large enoughs0, the system enters into the hydro
dynamic regime where avalanche overlapping happens
quently, and the number of elements inT that cannot be
detected increases. What can be measured in practice
subset ofT:

AT[$al5tkl
PT,l 51,2,3, . . . %, ~16!

with $k1 ,k2 , . . . ,kj , . . . % being the subset of indices of th
iterations at which avalanche activity has started.~For in-
stance, considering again the triggering process show
Fig. 1, andd1 andd2 being the durations of the avalanch
triggered at timest1 and t3, the triggerings taking place a
times t2 , t4, and t5 would not be detectable. TheAT series
for this process would begin witha15t1 , a25t3, and a3
5t6.! Notice thatAT#T, but the identity is only reached in
the limit s0→0. AT will be referred to as the ‘‘avalanchin
process’’ associated to theT process, from now on referred t
as the ‘‘triggering process.’’

In general, it is very difficult to extract useful informatio
about the underlying processT from the waiting-time series
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associated withA ~in spite of this, slightly different flavors of
this PDF have been often used in the literature@22–24#!:

WA[$wk
A5ak112ak ,k51,2,3, . . . %, ~17!

since they are not necessarily distributed according to
exponential law. But to prove this, we must first deal with t
avalanche duration PDF. According to one of the hallma
of SOC dynamics, these durations are distributed accord
to a power-law-like distribution in the limit ofs0 ~or p0)
→0. This distribution is well approximated by the followin
functional form@19#:

PD~d,s0→0!.
e2d/d1

11~d/d2!k
, ~18!

k.0 being the power-law exponent.d1 andd2 are two func-
tions of L, the system size which verifies that

lim
L→`

d1~L !5`, lim
L→`

d2~L !50. ~19!

They model the limitations to self-similarity induced on th
distribution by the finite size of the system. Roughly spea
ing, self-similarity is limited to those time scales lying b
tween them. In the presence of overlapping, this PDF
however be deformed due to the nontrivial changes indu
by the spatial interaction of avalanches in their we
established spatial structure@27#. In particular, the power-law
exponent of the PDF can change or even disappear, an
self-similarity limits can be shifted, as shown, for instanc
in Fig. 3. Therefore, thiss0 dependence will be made ex
plicit by denoting the avalanche duration PDF byPD(d,s0)
in what follows.

It is now straightforward to show that the probability fo
any wA ~that when properly normalized to unity over@0,̀ )
gives the PDF! does not follow an exponential law but in
stead,

p~wA!5s0e2s0wA
H~wA,s0!, ~20!

with the functionH(wA,s0) defined by

H~wA,s0![E
0

wA

dsPD~s,s0!es0s. ~21!

As might be expected,H(wA,s0)→1 only when s0→0,
which makes this PDF of little use in order to estimates0 as
soon as the hydrodynamic regime is entered. As an illus
tion, Fig. 4 shows the PDF according to which values inWA

are distributed for a series of sandpile runs with increas
p0 ~and therefore, increasings0). It is apparent how, for the
smallests0’s, the PDF stays close to an exponential abov
certain minimum value forwA that vanishes withs0. How-
ever, ass0 increases, it quickly departs from the exponent
law, which makes impossible the determination ofs0.

However, Theorem 3 from the preceding section provid
us with an easy and elegant alternative solution for this pr
lem. It is sufficient to construct theQD

T process fromT using
4-4
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FIG. 3. Change ofPD(d,s0)
with drive strength~in this case
with p0, sinces05psp0L) for a
sandpile run with L5400, Zc

520, andNf53. In this and all
other figures, duration units are it
erations, and bothp0 ands0 units
are iterations21.
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Eq. ~9!, with the setD being the ordered series of measur
avalanche durations. Since the PDF of the elements inQD

T

must be distributed according to an exponential law with
same exponent as the hiddenT process,s0 can be easily
estimated. All the elements in the~somewhat obscure! defi-
nition of QD

T become now physically meaningful: thetsj
in

Eq. ~9! correspond to the instants when activity patches st
And the elements inQD

T correspond to the lapses of inacti
ity between these patches, which justifies calling themquiet
times. ~It is interesting to point out that quiet-time statisti
03612
e

rt.

can also be useful in other contexts. For instance, the ex
nential shape of the quiet-time PDF disappears as soon a
recorded triggerings inWA are no longer decorrelated. Th
was shown to be possible in Ref.@24#, either by using certain
types of conditionally sampling the avalanches from a r
domly driven system that violates Theorem 2 from Sec. II,
by driving the system with a nonrandom correlated sour
The experimental finding of nonexponential quiet-time PD
in real experiments might thus suggest the relevance of
of these possibilities.!
-
FIG. 4. Change of the PDF ac
cording to which the values inWA

are distributed as a function ofp0

for the same case as Fig. 3.
4-5
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FIG. 5. Statistics of quiet
times for a series of sandpile run
with L5400 and Nf53 ~left!.
Scaling of s0 with p0 obtained
from these cases~right!.
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IV. ESTIMATION OF ps FOR THE RUNNING SANDPILE
USING QUIET-TIME STATISTICS

In this section, the quiet-time technique described in
two previous sections is used to estimate the depende
and scalings ofps for the running sandpile. To verify the
independence ofps with respect top0, a series of sandpile
runs with parameter values given byL5400, Zc520, and
03612
e
es

Nf53 with increasingp0 are used~see Fig. 5!. In order to
test the extent to which quiet-time statistics can yield inf
mation about the underlying dynamics when probing with
the hydrodynamic regime, the rest of the dependences~i.e.,
on L andNf) have been explored using a series of sandp
runs with a value ofp0 well within the strong-overlapping
regime. This can be assessed by ascertaining the existen
r
f

FIG. 6. Power spectra~fre-
quency units are iterations21) of
the time traces of the total numbe
of overturning cells for a series o
sandpile runs withL5400 and
Nf53 and varying drive.
4-6



s

QUIET-TIME STATISTICS: A TOOL TO PROBE THE . . . PHYSICAL REVIEW E 66, 036124 ~2002!
FIG. 7. Statistics of quiet
times for a series of sandpile run
with L5400 and p051.25
31023 iteration21 ~left!. Scaling
of s0 with Nf obtained from these
cases~right!.
or

t

ex-

t
ope
pe
a wide f 21 region in the power spectrum of the time trace f
the total number of unstable cells~see Fig. 6!, which is well
known to be characteristic of the hydrodynamic regime@13#.
Assembling data from all these runs, the obtained parame
dependence ofps turns out to be~see Figs. 7 and 8!

s05~1.0160.12!
L (1.05660.014) p0

1.01160.009

Nf
(1.19360.012)

. ~22!
03612
ric

The exponents obtained for bothp0 and L are within the
3–5 % range of deviation expected from the theoretical
pectation,s5psp0L. Therefore, the scaling forps given by
quiet-time statistics in the hydrodynamic regime is

ps.Nf
21.2. ~23!

This scaling gives a lower value forps than the somewha
naive estimation obtained by assuming that the local sl
has an equal probability of staying in any of the stable slo
s

s

FIG. 8. Statistics of quiet
times for a series of sandpile run
with p051.2531023 iteration21

and Nf53 ~left!. Scaling of s0

with L obtained from these case
~right!.
4-7



R. SÁNCHEZ et al. PHYSICAL REVIEW E 66, 036124 ~2002!
FIG. 9. Scaling of̂ Gout&T with Nf for the nonoverlapping sandpile.
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states within@Zc2Nf ,Zc#, which predictsps5Nf
21 @24#.

The difference in the exponent forNf is close to 20% with
the predicted one, which seems to discard any numer
inaccuracy as responsible for this difference. Thus, Eq.~23!
suggests that the previous assumption probably under
mated the importance of the stable slope values lying ou
this interval. These values are distributed in@Zc22Nf ,Zc
2Nf #, and are accessed whenever the first relaxation o
avalanche~that reduces the local slope at the starting locat
to Zc22Nf) does not propagate to other cells~in which case,
the local slope is moved up toZc2Nf in the following itera-
tion!. The influence of these events in the slightly nonline
scaling~in 1/Nf) observed seems to be confirmed when
glecting them in the quiet-time statistics, which brings t
exponent much closer to linearity~even when their effect on
the rest of events is maintained through the modifications
the sandpile profile they cause!. The slightly nonlinear de-
pendence could be associated to the radial correlations
tween the slopes of neighboring cells@27#. They affect these
lower-slope states because the slope can be increase
wardsZc not only by a falling grain of sand~that increases
the slope in one!, but also by means of any avalanche th
starts somewhere else and happens to die at this loca
~increasing the slope byNf).

V. COMPARISON WITH THE DYNAMICS OF A
NONOVERLAPPING SANDPILE

In this section, we are interested in testing the exten
which the information onps collected from within the
strong-overlapping regime by means of quiet-time statis
reflects any property of the dynamics of the system in
absence of overlapping. Two conservation laws that m
hold in the running sandpile will be useful for this task:
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p0L5s0^Gout&T , ~24!

which ensures the flux balance that must hold in steady s
and

p0L2

2Nf
5s0^S&T , ~25!

which guarantees that all flux in the sandpile is related
avalanche activity. It is important to notice that^Gout&T and
^S&T , respectively, stand for the average flux out of the p
and the average size~defined as the total number of relax
ations that have taken place during the avalanche! persingle
avalanche~even if they may not be distinguished due
overlapping!.

Sincep0 cancels out in both sides of Eqs.~24! and ~25!,
these laws hold for any level of overlapping and, in partic
lar, in the limit of no overlapping (s0→0). If the scalings
for ps obtained in the preceding section are correct, it sho
follow that

^Gout&T5
1

ps
.Nf

1.2 ~26!

and

^S&T5
L

2Nfps
.0.5 Nf

0.2L. ~27!

This prediction can be compared with the scalings
both quantities obtained from calculations with a sandpile
which the drive is stopped after an avalanche is excited,
ing only restarted after all avalanche activity has died aw
The obtained scalings are shown in Figs. 9 and 10, agre
4-8



QUIET-TIME STATISTICS: A TOOL TO PROBE THE . . . PHYSICAL REVIEW E 66, 036124 ~2002!
FIG. 10. Scaling of̂ S&T with
L ~left, usingNf53 andZc510)
and of ^S&T /L with Nf ~right, us-
ing L5400 andZc530) for the
nonoverlapping sandpile.
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with those provided by quiet-time statistics within less th
5% and confirming the goodness of the method to probe
underlying dynamics.

VI. CONCLUSIONS

In this paper we have shown that quiet-time statistics
be a powerful tool to test the underlying dynamics of ra
domly driven SOC systems, even if measurements can
be made in the hydrodynamic regime where avalanches
not be clearly separated. This result extends importantly
the regimes in which these systems can be probed, since
no longer required to go to the limit of vanishing drive~i.e.,
p0→01) to obtain precise information about their dynamic
In particular, it can be of significant importance in real phy
cal systems in which, in contrast to the running sandpile u
to test the method, the level of overlapping cannot be ea
J

t. A

ev

03612
e

n
-
ly
n-

to
t is

.
-
d
ly

controlled and where the diagnostics available are also v
limited. This is certainly the case in magnetically confin
plasmas. In them, the combination of short discharges
extremal conditions allows, at most, for measurements p
viding the flux coming out of the system or through som
fixed radial location. In systems like these, the results
scribed in the paper may be of application to obtain inform
tion about the underlying dynamics.
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