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A one-dimensional transport model based on critical-gradient fluctuation dynamics is presented.
This model has the characteristic properties of a self-organized c{i8CHD) system. As the source
increases and for an input flux above a threshold value, a dynamical transition spontaneously takes
place. A high-gradient edge region forms. The width of this region increases with increasing value
of the particle source. Transport dynamics in this edge region self-organizes to be very close to
marginal stability, while the core remains at the subcritical gradient that is typical of a SOC system.
© 2002 American Institute of Physic§DOI: 10.1063/1.1455630

I. INTRODUCTION regions are characterized by distinct dynamical behavior of
the fluxes. The change from one radial region to the other is
In the past 10 years, there has been great interest in ttgharp and has the characteristic properties of a transition.
concept of self-organized criticalifBOQ! as a unifying ex- The control parameter for the transition is the local mean
planation for some of the observed universal dynamics oflux. When the mean particle flux is low, the transport is
complex systems. Characteristic SOC dynamics can explaitaused by bursty flux events. The system remains subcritical
some of the properties of transport in magnetically confinednost of the time and evolves through a sequence of particles
plasma$? and transitions to high-confinement reginte8lt  bursts. At the critical value of the local mean flux, this
also offers a new perspective on how plasma transport anghechanism cannot effectively keep the particle balance, and
fluctuation dynamics calculations should be perforrhd. the system transitions to another state. In this state, the gra-
Here we consider a one-dimensional transport modedlient of the particle density stays very close to its critical
based on critical-gradient fluctuation dynamics. The fluctuavalue,z., and the flux becomes continuous with intermittent
tion dynamics is incorporated through an evolution equatiorchanges of its amplitude.
for the fluctuation envelope as has been done in models like The rest of this paper is organized as follows. In Sec. Il,
Ref. 9. This equation is coupled to a transport equation for ave present the transport model, and we discuss its numerical
scalar quantityh. For convenience, we will refer to this implementation. In Sec. Ill, a description of the numerical
quantity as particle density. Transport is controlled by theresults is given. This is followed, in Sec. IV, by an analysis
fluctuation level, and the fluctuations are triggered when thef the dynamics of the fluxes that allows us to characterize
gradient ofh is above a critical value. We can interpreach  the transition. Finally, In Sec. V, we discuss the results and
radial site as corresponding to a resonant surface, and ttf@®@nclusions of this paper.
coupling to the transport is done through the amount of flux

transported in each resonant surface. This model includes

both fluctuation and transport time scales. It has the charadl: EQUATIONS OF THE MODEL AND NUMERICAL

teristic properties of a SOC system such as subcritical transS-CHEME

port, probability distribution function(PDF) with power  The model proposed in this paper consists of two equa-
tails, and expected power spectra. However, in contrast witfions describing the evolution of the rms fluctuatiofigx),

the sandpile model, transport is not done by an integeand of the averaged density(x). The two equations are
amount of grains of sand, but by a continuous amount that is

regulated by the local fluctuations. i =D(y—ud)+S, (1
As the particle source increases, a dynamical transition 9t '

spontaneously takes place. For a particle flux above a thresh- P sh

old value, an edge pedestal-like region forms, and the ped- i Mo‘D& +S;. 2

estal width increases with increasing value of the particle
source. Transport in this edge region self-organizes to bén the fluctuation equationy is the linear growth rate of the
very close to marginal stability, while the core remains at theinstability, u is the coefficient of the nonlinear term that is
subcritical gradient that is typical of the sandpile. The tworesponsible for the saturation of the turbulence, and the third
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term,S;, is a small source term to guarantee a minimal level ~ The boundary condition at the edge=L, is hegge
of seed fluctuations. This seed for fluctuations is needed te=h(L)=0. Note that®; is really defined at +1/2, and
start the growth when the profile goes from supercritical to®(L) does not enter in the scheme.
subcritical. The transport equation includes two terms: a The form for the time advancement d&f, Eq. (8), has
source termSy, and a radial diffusion term. In the latter, we been chosen to guarantee the positivity of the fluctuation
assume that the diffusivity is proportional to the level of amplitude.
fluctuations and is given by o®.

The underlying instability is assumed to be a critical-

gradient instability. Then the linear growth rate is ll. NUMERICAL RESULTS
oh oh Using the model described in Sec. Il, we have carried
Y= 70( T X Zc) @< T % (3)  out numerical calculations for different values of the param-

eters. For these calculations, a time stepAdf=0.05 has
Here, O is the Heaviside function, and, is the absolute been used. The time evolution goes through a transient
value of the critical gradient. The source terms are not conphase. The length of this phase depends on thelsafethe
tinuous, but they represent the random addition of fluctuatiorsystem. After the transient, there is a steady state phase. The
energy and density with a prescribed probability. In Blg,  functionh in steady state can be characterized by its slope
we add® with probability p;, in Eq.(2), we add an amount The time-averaged fluctuation profile must be such that the

& with probability p,. induced local flux at every location is equal to the input flux,
This model represents a generalization of the classicdhat iSMo(‘DiZO:poXi- _ o . _
sandpile model used to interpret plasma transpbyt the Because the diffusion coefficient is proportional ¢o

addition of fluctuation dynamics that regulates the amount ofnd the source term in E@1) is random with a fixed size
transport, which couples back to the fluctuations through th&tep, this source tertif large enough can induce diffusive

gradient drive. transport. In the radial region where the randomly inguced
Equations(1) and(2) can be rewritten in dimensionless flux is larger than the fluctuation-induced fluxp,®
form as >At({y,®,), diffusion dominates, and the slopeis linear
. with x. In this region, the time-average® is given by
@=‘i’(3’—‘i>)+é 4) (®;)=+/p;®/(nAt) and is essentially independent of the
T v radial position [Fig. 1(@]. When p1<I_><At(yi<I>i>, the
- N fluctuation-induced flux dominates; the saturation condition
@z i( 3 ‘9_[‘ +8,. (5) fo.r the fluctuations ig 7i>=,u<<1>i>_; a'nd becau§e the slppe of
JdT  IX\ X z is nearly constant, théd) profile is approximately linear

N - - with x [Fig. 1(@]. In this diffusion-dominated regime, one
Here, 7=tyoZe, X=Xvulpo, h=(NZ)Vulmo, P can reproduce many of the properties identified in the case of
=u®/(y0Zo), ¥=yl(vZo), S1=uSi/(v0Zc)? and Sy combining a sandpile dynamics with diffusive transp8rt.
=(So/Z5)ul(1075)- There are no explicit parametric de- Therefore, depending on the valuemfand®, we can have
pendencies in these equations except for the source term.gitysion dominated transpdifig. 1(a)], or an avalanche-
However, they depend on the system dizel \u/uo. Be-  dominated transport regin{€ig. 1(b)]. In the remainder of
cause of this transformation, in what follows we takg  this paper, we always work in the second regime where the

=1. effect of the source tern$, on the transport dynamics is
Equations(1) and (2) are numerically advanced in the negligible.

following way. First, the source terms are taken into account  As expected! and from the invariance transformation
by given in Sec. Il, numerical results are not affected by the
value of the critical gradientz.. Therefore, we keeg,=5

t t L
Pi—®i+d (©) for all cases considered here. This independence. @ a
with probability p,, and consequence of th.e sim.p_le form of .this model. Here,. we
consider a single instability mechanism. In more realistic
hi—hi+ 6 (7)  models, multiple instabilities are possible, each with its own

critical gradient. In such a case, a dependence on the relative

with probability po. Then we proceed to time advance by magnitude of the critical gradients may appear. We also keep

setting constant throughout these calculations the amount of density
O A =dlexd At(yi— udh)], (8) add_ed randomly to thi, that is=0.05, and we contrql the
particle source through the frequenpy of these additions.
hi*At=hi+ Atpe(— DI Az + D12z )) (9)  The probabilityp, is maintained very small. The only role of

this term is to avoid the fluctuations going to zero during the

for i>0. At the origin, subcritical phase. We keep the valuepgfbelow 107, and

hirAt=ht = Atue®L iz, (10) for this range of values the numerical resu_lts are indepe.ndent
of p;. Therefore, we are left with three main parametess:
wherey=(z—z.)0(z—z), with z=h{—h!, . L, anduo/u. To understand the role of each parameter, we
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T 20 - ] sition point depends on both, and the system sizé, For
/;: each one of the four sequencespgfscan calculations with
S 1 2 - . -y -y .
1.5 different sizel, we can plot the position of transition point as
a function of py. In this way, we obtain four self-similar
1.0 ) curves. As can be seen in Fig. 3, these four curves can be
] 1 superimposed by plotting them as a function of the parameter
0.5 ; poL¥% The functional dependence on this parameter is
] simple and can be described by the following:
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FIG. 1. Time-averaged fluctuation level and slopetofor: (a) py=1
X104, p;=1x1073, and$=1x10"° (diffusion-dominated regimeand
(b) pp=1%x10"% p;=1X10"7, ¢=1%x10"8 (avalanche-dominated re-
gime).

have done sequences of numerical calculations that vary each
of these parameters independently. For plgescans, we set
mol w=0.5 and considered four valueslof-100, 200, 400,

and 800.

As a difference from the classical sandpile, the system is
not always subcritical. The average slope can be bepw
but can also be at marginal stabilis z. . How much of the
profile is subcritical depends on the valuepgf. An example
is shown in Fig. 2, where we have plotted the time-averaged
slope ofh for different values ofp,. The results plotted in
Fig. 2 are for a system’s length=200.

In Fig. 2, we see the jump in the averaged slope of the
density at a given radial position. This jump is sharp and has
the characteristic properties of a transition. It is not only a
change in the averaged equilibrium properties of the sand-
pile, but also reflects a change in transport dynamics as dis-
cussed in Sec. IV. The transition point from subcritical to

Here, the value of the paramet&r=0.0067 has been deter-
mined by fitting this function to the data. In this figure, we
have normalize,, to L-20 instead oL. The reason is that
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FIG. 3. Radial position of the transition normalized to the system size as a

marginal is well defined in all cases. It is also clearly visiblefynction of the parametep,L¥* for different sizes of the system and

in the averaged profile of the fluctuatioffsg. 1). This tran-

polpu=0.5.
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a fit to the numerically calculated averaged slope for a case pjth
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boundary effects can be important in a range of about 10

cells in each of the end points of the radial region. identify the change in slope as a transition is that the width

By transforming Eqs(1) and(2) to Egs.(4) and(5), we of the transition region decreases in relation to the system
have shown that, apart from., only two relevant param- . . , i
size with increasing system size.

eters remain: the renormalized sourBg=Soy'u/(x070) We calculate the widthWsg of the transition region by
and the system size=L yu/uo. For the time-averagetl fitting the slope with a constant plus a hyperbolic tangent. In
profile, the renormalization of the source can be interpreteqi:ig. 5, we show an example of such a fit and the parameters
as a renormalization gf,. Therefore, Eq(11) automatically  \vg and x,, are indicated. Wheix,, is close to any of the
can be changed to include the dependence in the parametgsundaries, the width becomes very small. However, for val-
ul po in the following way: ues ofx,, such as 0R<x,,<0.8L, Ws is approximately
X 1 constant for a fixed system size. WherincreasesWs in-
= . (12 creases a&%“ This scaling is shown in Fig. 6, where we
L—20 [p0L3/4(M/2/—L0)7/8/A]5/2+ 1 . g g. b,

have plottedWs/L% as a function ofx,/L for all cases
In Fig. 4, we compare the fit obtained from the numerical
data for uo/uw=0.5 with the data forug/w+#0.5. As ex-

pected, the agreement is good. ORNL 2001-1293C EFG
For very low values of the averaged flypgL, the jump 16or——T 1T T T ]
in the slope stays just at the edge. This is the casegfor [ T 4 ]
=105, shown in Fig. 2, and for lower values pf. From 14 | + # * {‘# { { -
Eg. (12), we have that the pedestal width is greater than one i + % + +
cell for 12 |- + =
210 718 [ + } ]
pOLBA(—) L3820 (13 < 10 # -
g 3 bk ¢
For values ofpgL above this value, the jump on the slope Z o8| =
moves inward, and the edge pedestal broadens. We can in- [ ﬁ
terpret Eq(13) as a threshold value for the total particle flux. 06| ®L=800 ¢ "
m L=400 ]
e L=200 @
041 LL=100 p
IV. ANALYSIS OF THE NUMERICAL RESULTS 1
[ . ] | P
The slope of the density gradient as a function of the e 0 02 0.4 0.6 0.8 1.0

radial positionx near the jump region has the properties of a
critical transition. The real control parameter for the transi-

tion is not necessarily, but it is prObab!y the time-averaged FiG. 6. Finite-size scaling of the width of the transition region as a function
local flux I'=pgx. One of the properties that allows us to of x,,/L.

x /L
m
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FIG. 7. A 2-D plot of the contours of the flux in the time-radius plane to

show the time evolution of the radial structure of the flux. flux. In Fig. 8, we have plotted as a function ok/x, for 20
different cases, which vary frompy andL. In the radial re-
gion where the flux is bursty, we see that @ <0.3. That is,

considered. We can see that, within error bars, all points falthe large values of the flux that dominate the tail of the PDF

on top of the same curve. determine the mean flux. In this regiof,is bound to a low

To understand the transition between subcritical andralue, but its value varies from case to case without a clear
marginal regions of the profile, it is important to investigatepattern. At the transition pointA jumps above 0.8 for all
the dynamical properties of the fluxes in the different radialcases considered and goes asymptotically to Ixfgg,> 1.
positions or averaged local flux values. To do so, time sein this region,x/x,,>1, the mean flux is determined by the
guences of the fluxes for radial points around the transitiorpeak of the PDF. Although the functioh(x/x,,) is not a
point have been analyzed. The time sequences of fluxes ammiversal function, the functional form is quite close for all
2x 10° points in length. cases considered.

The mean value of the flux does not have any particular  The change ofA with x is very sharp ak/x,,=1, and
radial structure in the region of the transition point. This, ofagain it shows the characteristics of a transition. From case
course, is expected because the mean flux has to match ttecase and in the regiotx,,= 1, there is a slight change on
integrated source, which is uniform i However, there is a the rate of increase of with x. We can measure this rate of
different dynamical behavior of the fluxes above and belowincrease and, from it, calculate the widdfy- of the transition
the transition point. A way to visualize this change in behav-region. In Fig. 9, we have plotted/ /x,, for all the cases
ior is to do a two-dimensiongPR-D) plot of the contours of considered as a function gf,. Figure 9 shows that the
the flux. Such a plot is shown in Fig. 7. Between the transi-W/x,, on p, is compatible with a simple power scaling.
tion point (x=161) and the edge, there is continuous activ-  This transition from a continuous flux to intermittent flux
ity. In the inner region, the activity is sporadic. In this region, is rather similar to the transition discussed in Ref. 12 for a
the dominant transport mechanism is avalanche transponpure sandpile model. However, in the latter case the transi-
These avalanches are triggered in the outer regiwn (tion was observed as an overall change of the dynamics of
>161), and they propagate inwamd<(161). They can pen- the sandpile, while in the present model the change appears
etrate all the way to the center of the pile<0). Some at a radial position.
avalanches may start in the inner regiori(161), but they Other statistical properties of the flux depend on the ra-
are rare, and it takes a long time for them to build up. Al-dial position or mean flux, and they correlate with the tran-
though most avalanches propagate inward, all fluxes arsition points. An example can be seen in Fig. 10, where we
positive, which causes outward transport of particles. If wehave plotted the variance of the flux for each of the se-
look at the time trace of the fluxes, the flux is bursty for quences with. =800 and different values qf, as a function
<Xm. Itis practically zero most of the time, and suddenly aof x/x,,. There is a clear sharp peak of the variance at the
flux burst occurs. Above the transition radius, there is a contransition point.
tinuous flux with what looks like a superimposed noise. This change in the value of the variance reflects a quali-

To quantify the change of behavior of the fluxes, it istative change of the PDF of the fluxeB(I'), as we move
useful to introduce the parametar This parameter is de- from the subcritical to the marginal region. Hor800 and
fined as the ratio of the time-averaged, most probable flup,=5x10"°, we have illustrated this change by plotting the
(the maximum of the PDF of the fluxet® the time-averaged normalized PDF for the different radial positioffsg. 11). In
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FIG. 11. PDF of the flux normalized tg xP(I'/x) at several values of the

radial positionx.
FIG. 9. Normalized radial width of the transition region Afas a function P

of pg.

We can better verify this PDF characterization by look-
Fig. 11, we have plotted the PDF at each radial point multi-"9 separately_ at some of _these PDFS'. First, con_sider th_e PDF
plied byx of the flux normalized to, xP(I'/x). In this way, of fluxes well in the_ sub_crmcal regiofFig. 14_1). Thls PD_F is
the mean is the same for all the PDFs. In the subcriticaﬁtrqngly asymmetric with a clear algebraic tail. This alge-
region the tails of the large positive fluxes are all on top of raic tail is well defl_ned overmore than.a decade of v_alues of
each other, and they scale as a pow@t(I'/x)—\ (I'/x)®. the flux. _However, in the margmal region, the PDF is com-
Clearly, above the transition point, there is a change in thé’letely:'ﬁ?r?m' The tr’]u'k is well de';cnbed b_yha Gau5k3|an
functional form of the PDF, and the large flux tail no Iongercu,rve' ut itis somewnat asymmet( i. 19 wit awea
lies on top of the others. For the region of normalized fluxeéa'l' Therefore, the flux fluctuation can be approximately de-
between 10° and 10°°, we can calculate the decay index scribed by a mean value with Gaussian noise. Naturally, in
of this tail. The results for the same sequence are plotted iW'S_ case the flux has a small_l_evel of mtermlttency. In this
Fig. 12. A similar plot can be done for a constantscan '€9ime. the range of large positive fluxes that constitutes the
varying L. This is shown in Fig. 13. As can be seen from algebraic tail is rather short and ill defined. Consequently, it
Figs. 12 and 13. the exponent of the tail for large and posiis more difficult to determine the decay index of the PDF in
tive fluxes is fairly constant and Z0w<<2.2; but it in- this region(see Figs. 12 and 13

creases sharply at the transition point. This valuer af the One possible explanation for the transition f_O,IIOWS: as
subcritical region indicates that the mean flux may be WeIIthe drive increases, the flux through all local positions must
defined. but its variance is unbounded increase. This must be accommodated by the increased local

effective diffusivity, because the system is in steady state,
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in the range 10°~10°5. for different values oL, and the fluctuations will change from bursty to more continu-

ous with smaller oscillations. In this way, in the high-flux

regime, the PDF of the fluctuations grows narrower and
and we know that while the gradient changes it does nofhore Gaussian. This change is a consequence of the oscilla-
change by a large amount. Therefore frdt=DVh, the tions around the continuous level being driven by the random
effective diffusivity must increase to match the increasedvariations in the external drive. They are not caused by the
flux. Note that with a distributed source, this is true for sim-collective effects of reaching and then relaxing away from
ply changing radial position as well as increasing the drivethe_critical gradient that characterizes the low-flux transport
because the steady state flux through a given point is th€9ime.
integral of the drive inside that point. The low-flux state is
characterized by the bursty intermittent transport events. Th¥ DISCUSSION AND CONCLUSIONS
burst of particles comes into a radial location from the uphill ~ The one-dimensional transport model presented in this
side. If the site becomes unstable, the fluctuations grow untippaper has the properties of a SOC system. The main trans-
the fluctuation-induced flux reduces the gradient enough sport mechanism is avalanche-like transport that leads to out-
that it is subcritical. At that time the fluctuations damp outward particle fluxes of all sizes. The distribution of fluxes
(do not stop instantaneouslgnd leave the site at least some- has a power scaling tail with a decay index close-®. In
what subcritical. The high-flux state is characterized by morehe inner region, the time-averaged slope of the particle den-
continuous lower level fluctuations. The “material” comes in sity is significantly below the critical slope in spite of the
from uphill, which makes the site unstable. The fluctuationdocal flux mechanism being a continuous variable controlled
grow and transport the particles until it is subcritical; butby the fluctuations instead of an integer quantity as in the
before the fluctuations can turn off fully, the flux from above case of the running sandpile. This model seeks to bridge the
refills the local gradient, which starts the process again. Thgap between the simple cellular automata models and the
transition between states then occurs when the refill rate exnore complete “primitive” turbulence models. In the primi-
ceeds the flux from an individual burst. At that point, the tive turbulence models, exploring different regimes is diffi-
average gradient will increase close to the critical gradientcult due to computational limitations; in the cellular au-

tomata models, much interesting physics is excluded due to

the simplicity and discrete nature of the models.
ORNL 2001-1301C EFG

10° . 8 This critical-gradient fluctuation-driven transport model
X = 25 shows the characteristic properties of a critical transition
10t ) — Fit Values with control parameter the averaged particle flu};)
5 L ! =poX. When the mean particle flux is low, the transport is
§ s caused by bursty flux events. The system remains subcritical
};E, 107 f 1 most of the time and evolves through a sequence of particle
‘; bursts. As the mean particle flux increases, the bursts have to
= 10° 1 happen more often and be larger. At the critical valu€lof
§ this mechanism cannot effectively keep the particle balance,
a 10| 1 and the system transitions to another state. In this state, the
— PDF = 1.493 x 10795 21 gradient of the particle density stays very close to its critical
10° . 2 value,z., and the flux becomes continuous with intermittent

1078 107 y 107 107 changes of its amplitude.
ux This model shows that even in a very simple system
FIG. 14. An example of a PDF of fluxes well in the subcritical region. Spontaneous transitions can occur. Such a transition in this
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