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A self-organized critical transport model based on critical-gradient
fluctuation dynamics
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A one-dimensional transport model based on critical-gradient fluctuation dynamics is presented.
This model has the characteristic properties of a self-organized critical~SOC! system. As the source
increases and for an input flux above a threshold value, a dynamical transition spontaneously takes
place. A high-gradient edge region forms. The width of this region increases with increasing value
of the particle source. Transport dynamics in this edge region self-organizes to be very close to
marginal stability, while the core remains at the subcritical gradient that is typical of a SOC system.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1455630#
t

o
la
e

a

d
ua
io
lik
r

s
th
th

t
u
d
ra
n

i
ge
t

tio
es
e

icl
b

th
o

r of
r is
.
an
is

tical
cles
is
and
gra-
al
nt

II,
rical
al
is
ize
nd

ua-

is
hird
I. INTRODUCTION

In the past 10 years, there has been great interest in
concept of self-organized criticality~SOC!1 as a unifying ex-
planation for some of the observed universal dynamics
complex systems. Characteristic SOC dynamics can exp
some of the properties of transport in magnetically confin
plasmas2,3 and transitions to high-confinement regimes.4–6 It
also offers a new perspective on how plasma transport
fluctuation dynamics calculations should be performed.7,8

Here we consider a one-dimensional transport mo
based on critical-gradient fluctuation dynamics. The fluct
tion dynamics is incorporated through an evolution equat
for the fluctuation envelope as has been done in models
Ref. 9. This equation is coupled to a transport equation fo
scalar quantityh. For convenience, we will refer to thi
quantity as particle density. Transport is controlled by
fluctuation level, and the fluctuations are triggered when
gradient ofh is above a critical value. We can interpret3 each
radial site as corresponding to a resonant surface, and
coupling to the transport is done through the amount of fl
transported in each resonant surface. This model inclu
both fluctuation and transport time scales. It has the cha
teristic properties of a SOC system such as subcritical tra
port, probability distribution function~PDF! with power
tails, and expected power spectra. However, in contrast w
the sandpile model, transport is not done by an inte
amount of grains of sand, but by a continuous amount tha
regulated by the local fluctuations.

As the particle source increases, a dynamical transi
spontaneously takes place. For a particle flux above a thr
old value, an edge pedestal-like region forms, and the p
estal width increases with increasing value of the part
source. Transport in this edge region self-organizes to
very close to marginal stability, while the core remains at
subcritical gradient that is typical of the sandpile. The tw
8411070-664X/2002/9(3)/841/8/$19.00
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regions are characterized by distinct dynamical behavio
the fluxes. The change from one radial region to the othe
sharp and has the characteristic properties of a transition

The control parameter for the transition is the local me
flux. When the mean particle flux is low, the transport
caused by bursty flux events. The system remains subcri
most of the time and evolves through a sequence of parti
bursts. At the critical value of the local mean flux, th
mechanism cannot effectively keep the particle balance,
the system transitions to another state. In this state, the
dient of the particle density stays very close to its critic
value,zc , and the flux becomes continuous with intermitte
changes of its amplitude.

The rest of this paper is organized as follows. In Sec.
we present the transport model, and we discuss its nume
implementation. In Sec. III, a description of the numeric
results is given. This is followed, in Sec. IV, by an analys
of the dynamics of the fluxes that allows us to character
the transition. Finally, In Sec. V, we discuss the results a
conclusions of this paper.

II. EQUATIONS OF THE MODEL AND NUMERICAL
SCHEME

The model proposed in this paper consists of two eq
tions describing the evolution of the rms fluctuations,F(x),
and of the averaged density,h(x). The two equations are

]F

]t
5F~g2mF!1S1 , ~1!

]h

]t
5

]

]x S m0F
]h

]xD1S0 . ~2!

In the fluctuation equation,g is the linear growth rate of the
instability, m is the coefficient of the nonlinear term that
responsible for the saturation of the turbulence, and the t
© 2002 American Institute of Physics
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term,S1 , is a small source term to guarantee a minimal le
of seed fluctuations. This seed for fluctuations is neede
start the growth when the profile goes from supercritical
subcritical. The transport equation includes two terms
source term,S0 , and a radial diffusion term. In the latter, w
assume that the diffusivity is proportional to the level
fluctuations and is given bym0F.

The underlying instability is assumed to be a critic
gradient instability. Then the linear growth rate is

g5g0S 2
]h

]x
2zcDQS 2

]h

]x
2zcD . ~3!

Here, Q is the Heaviside function, andzc is the absolute
value of the critical gradient. The source terms are not c
tinuous, but they represent the random addition of fluctua
energy and density with a prescribed probability. In Eq.~1!,
we addF̄ with probabilityp1 , in Eq. ~2!, we add an amoun
d with probability p0 .

This model represents a generalization of the class
sandpile model used to interpret plasma transport3 by the
addition of fluctuation dynamics that regulates the amoun
transport, which couples back to the fluctuations through
gradient drive.

Equations~1! and ~2! can be rewritten in dimensionles
form as

]F̂

]t
5F̂~ ĝ2F̂!1Ŝ1 , ~4!

]ĥ

]t
5

]

] x̂
S F̂

]ĥ

] x̂
D 1Ŝ0 . ~5!

Here, t5tg0Zc , x̂5xAm/m0, ĥ5(h/Zc)Am/m0, F̂

5mF/(g0Zc), ĝ5g/(g0Zc), Ŝ15mS1 /(g0Zc)
2, and Ŝ0

5(S0 /Zc
2)Am/(m0g0

2). There are no explicit parametric de
pendencies in these equations except for the source t
However, they depend on the system sizeL̂5LAm/m0. Be-
cause of this transformation, in what follows we takeg0

51.
Equations~1! and ~2! are numerically advanced in th

following way. First, the source terms are taken into acco
by

F i
t→F i

t1F̄ ~6!

with probability p1 , and

hi
t→hi

t1d ~7!

with probability p0 . Then we proceed to time advance b
setting

F i
t1Dt5F i

t exp@Dt~g i2mF i
t!#, ~8!

hi
t1Dt5hi

t1Dtm0~2F i
t1Dtzi1F i 21

t1Dtzi 21! ~9!

for i .0. At the origin,

h0
t1Dt5h0

t 2Dtm0F0
t1Dtz0 , ~10!

whereg5(z2zc)Q(z2zc), with zi5hi
t2hi 11

t .
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The boundary condition at the edge,x5L, is hedge

[h(L)50. Note thatF i is really defined ati 11/2, and
F(L) does not enter in the scheme.

The form for the time advancement ofF, Eq. ~8!, has
been chosen to guarantee the positivity of the fluctuat
amplitude.

III. NUMERICAL RESULTS

Using the model described in Sec. II, we have carr
out numerical calculations for different values of the para
eters. For these calculations, a time step ofDt50.05 has
been used. The time evolution goes through a trans
phase. The length of this phase depends on the sizeL of the
system. After the transient, there is a steady state phase.
functionh in steady state can be characterized by its slopz.
The time-averaged fluctuation profile must be such that
induced local flux at every location is equal to the input flu
that ism0^F izi&5p0xi .

Because the diffusion coefficient is proportional toF
and the source term in Eq.~1! is random with a fixed size
step, this source term~if large enough! can induce diffusive
transport. In the radial region where the randomly induc
flux is larger than the fluctuation-induced flux,p1F̄
.Dt^g iF i&, diffusion dominates, and the slope ofz is linear
with x. In this region, the time-averagedF is given by

^F i&5Ap1F̄/(mDt) and is essentially independent of th
radial position @Fig. 1~a!#. When p1F̄,Dt^g iF i&, the
fluctuation-induced flux dominates; the saturation condit
for the fluctuations iŝg i&5m^F i&; and because the slope o
z is nearly constant, thêF& profile is approximately linear
with x @Fig. 1~a!#. In this diffusion-dominated regime, on
can reproduce many of the properties identified in the cas
combining a sandpile dynamics with diffusive transport10

Therefore, depending on the value ofp1 andF̄, we can have
a diffusion dominated transport@Fig. 1~a!#, or an avalanche-
dominated transport regime@Fig. 1~b!#. In the remainder of
this paper, we always work in the second regime where
effect of the source termS1 on the transport dynamics i
negligible.

As expected,11 and from the invariance transformatio
given in Sec. II, numerical results are not affected by
value of the critical gradient,zc . Therefore, we keepzc55
for all cases considered here. This independence ofzc is a
consequence of the simple form of this model. Here,
consider a single instability mechanism. In more realis
models, multiple instabilities are possible, each with its o
critical gradient. In such a case, a dependence on the rela
magnitude of the critical gradients may appear. We also k
constant throughout these calculations the amount of den
added randomly to theh, that isd50.05, and we control the
particle source through the frequencyp0 of these additions.
The probabilityp1 is maintained very small. The only role o
this term is to avoid the fluctuations going to zero during t
subcritical phase. We keep the value ofp1 below 1027, and
for this range of values the numerical results are independ
of p1 . Therefore, we are left with three main parameters:p0 ,
L, andm0 /m. To understand the role of each parameter,
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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843Phys. Plasmas, Vol. 9, No. 3, March 2002 A self-organized critical transport model . . .
have done sequences of numerical calculations that vary
of these parameters independently. For thep0 scans, we se
m0 /m50.5 and considered four values ofL—100, 200, 400,
and 800.

As a difference from the classical sandpile, the system
not always subcritical. The average slope can be belowzc

but can also be at marginal stability,z5zc . How much of the
profile is subcritical depends on the value ofp0 . An example
is shown in Fig. 2, where we have plotted the time-avera
slope ofh for different values ofp0 . The results plotted in
Fig. 2 are for a system’s lengthL5200.

In Fig. 2, we see the jump in the averaged slope of
density at a given radial position. This jump is sharp and
the characteristic properties of a transition. It is not only
change in the averaged equilibrium properties of the sa
pile, but also reflects a change in transport dynamics as
cussed in Sec. IV. The transition point from subcritical
marginal is well defined in all cases. It is also clearly visib
in the averaged profile of the fluctuations~Fig. 1!. This tran-

FIG. 1. Time-averaged fluctuation level and slope ofh for: ~a! p051

31024, p15131023, andf̄5131025 ~diffusion-dominated regime! and

~b! p05131024, p15131027, f̄5131028 ~avalanche-dominated re
gime!.
Downloaded 28 Sep 2002 to 163.117.134.158. Redistribution subject to A
ch

is

d

e
s

a
d-
is-

sition point depends on bothp0 and the system size,L. For
each one of the four sequences ofp0-scan calculations with
different sizeL, we can plot the position of transition point a
a function of p0 . In this way, we obtain four self-simila
curves. As can be seen in Fig. 3, these four curves can
superimposed by plotting them as a function of the param
p0L3/4. The functional dependence on this parameter
simple and can be described by the following:

xm

L220
5

1

~p0L3/4/A!5/211
. ~11!

Here, the value of the parameterA50.0067 has been dete
mined by fitting this function to the data. In this figure, w
have normalizedxm to L-20 instead ofL. The reason is tha

FIG. 2. Time-averaged slope ofh for different values ofp0 . The change of
the jump position in the averaged slope is shown.

FIG. 3. Radial position of the transition normalized to the system size a
function of the parameterp0L3/4 for different sizes of the system an
m0 /m50.5.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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boundary effects can be important in a range of about
cells in each of the end points of the radial region.

By transforming Eqs.~1! and~2! to Eqs.~4! and~5!, we
have shown that, apart fromzc , only two relevant param-
eters remain: the renormalized sourceŜ05S0Am/(m0g0

2)
and the system sizeL̂5LAm/m0. For the time-averagedh
profile, the renormalization of the source can be interpre
as a renormalization ofp0 . Therefore, Eq.~11! automatically
can be changed to include the dependence in the param
m/m0 in the following way:

xm

L220
5

1

@p0L3/4~m/2m0!7/8/A#5/211
. ~12!

In Fig. 4, we compare the fit obtained from the numeri
data for m0 /m50.5 with the data form0 /mÞ0.5. As ex-
pected, the agreement is good.

For very low values of the averaged flux,p0L, the jump
in the slope stays just at the edge. This is the case fop0

51026, shown in Fig. 2, and for lower values ofp0 . From
Eq. ~12!, we have that the pedestal width is greater than
cell for

p0L>AS 2m0

m D 7/8

L23/20. ~13!

For values ofp0L above this value, the jump on the slop
moves inward, and the edge pedestal broadens. We ca
terpret Eq.~13! as a threshold value for the total particle flu

IV. ANALYSIS OF THE NUMERICAL RESULTS

The slope of the density gradient as a function of
radial positionx near the jump region has the properties o
critical transition. The real control parameter for the tran
tion is not necessarilyx, but it is probably the time-average
local flux G5p0x. One of the properties that allows us

FIG. 4. A generalization of the plot in Fig. 3 by transformation of variabl
In this plot, we compare the fit obtained from the numerical data
m0 /m50.5 with the data form0 /mÞ0.5.
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identify the change in slope as a transition is that the wi
of the transition region decreases in relation to the sys
size with increasing system size.

We calculate the widthWS of the transition region by
fitting the slope with a constant plus a hyperbolic tangent
Fig. 5, we show an example of such a fit and the parame
WS and xm are indicated. Whenxm is close to any of the
boundaries, the width becomes very small. However, for v
ues of xm such as 0.2L<xm<0.8L, WS is approximately
constant for a fixed system size. WhenL increases,WS in-
creases asL0.4. This scaling is shown in Fig. 6, where w
have plottedWS /L0.4 as a function ofxm /L for all cases

.
r
FIG. 5. Width,Ws , and position,xm , of the transition as determined from
a fit to the numerically calculated averaged slope for a case withp0

51024.

FIG. 6. Finite-size scaling of the width of the transition region as a funct
of xm /L.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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considered. We can see that, within error bars, all points
on top of the same curve.

To understand the transition between subcritical a
marginal regions of the profile, it is important to investiga
the dynamical properties of the fluxes in the different rad
positions or averaged local flux values. To do so, time
quences of the fluxes for radial points around the transi
point have been analyzed. The time sequences of fluxes
23108 points in length.

The mean value of the flux does not have any particu
radial structure in the region of the transition point. This,
course, is expected because the mean flux has to matc
integrated source, which is uniform inx. However, there is a
different dynamical behavior of the fluxes above and bel
the transition point. A way to visualize this change in beha
ior is to do a two-dimensional~2-D! plot of the contours of
the flux. Such a plot is shown in Fig. 7. Between the tran
tion point (x5161) and the edge, there is continuous act
ity. In the inner region, the activity is sporadic. In this regio
the dominant transport mechanism is avalanche transp
These avalanches are triggered in the outer regionx
.161), and they propagate inward (x,161). They can pen-
etrate all the way to the center of the pile (x50). Some
avalanches may start in the inner region (x,161), but they
are rare, and it takes a long time for them to build up. A
though most avalanches propagate inward, all fluxes
positive, which causes outward transport of particles. If
look at the time trace of the fluxes, the flux is bursty forx
,xm . It is practically zero most of the time, and suddenly
flux burst occurs. Above the transition radius, there is a c
tinuous flux with what looks like a superimposed noise.

To quantify the change of behavior of the fluxes, it
useful to introduce the parameterL. This parameter is de
fined as the ratio of the time-averaged, most probable
~the maximum of the PDF of the fluxes! to the time-averaged

FIG. 7. A 2-D plot of the contours of the flux in the time-radius plane
show the time evolution of the radial structure of the flux.
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flux. In Fig. 8, we have plottedL as a function ofx/xm for 20
different cases, which vary fromp0 andL. In the radial re-
gion where the flux is bursty, we see that 0,L,0.3. That is,
the large values of the flux that dominate the tail of the P
determine the mean flux. In this region,L is bound to a low
value, but its value varies from case to case without a c
pattern. At the transition point,L jumps above 0.8 for all
cases considered and goes asymptotically to 1 forx/xm.1.
In this region,x/xm.1, the mean flux is determined by th
peak of the PDF. Although the functionL(x/xm) is not a
universal function, the functional form is quite close for a
cases considered.

The change ofL with x is very sharp atx/xm51, and
again it shows the characteristics of a transition. From c
to case and in the regionx/xm51, there is a slight change o
the rate of increase ofL with x. We can measure this rate o
increase and, from it, calculate the widthWG of the transition
region. In Fig. 9, we have plottedWG /xm for all the cases
considered as a function ofp0 . Figure 9 shows that the
WG /xm on p0 is compatible with a simple power scaling.

This transition from a continuous flux to intermittent flu
is rather similar to the transition discussed in Ref. 12 fo
pure sandpile model. However, in the latter case the tra
tion was observed as an overall change of the dynamic
the sandpile, while in the present model the change app
at a radial position.

Other statistical properties of the flux depend on the
dial position or mean flux, and they correlate with the tra
sition points. An example can be seen in Fig. 10, where
have plotted the variance of the flux for each of the
quences withL5800 and different values ofp0 as a function
of x/xm . There is a clear sharp peak of the variance at
transition point.

This change in the value of the variance reflects a qu
tative change of the PDF of the fluxes,P(G), as we move
from the subcritical to the marginal region. ForL5800 and
p05531025, we have illustrated this change by plotting th
normalized PDF for the different radial positions~Fig. 11!. In

FIG. 8. Ratio of the time-averaged, most probable flux~the maximum of the
PDF of the fluxes! to the time-averaged flux as a function ofx/xm for 20
different cases varyingp0 andL.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Fig. 11, we have plotted the PDF at each radial point mu
plied byx of the flux normalized tox, xP(G/x). In this way,
the mean is the same for all the PDFs. In the subcrit
region the tails of the large positive fluxes are all on top
each other, and they scale as a power,xP(G/x)→l(G/x)a.
Clearly, above the transition point, there is a change in
functional form of the PDF, and the large flux tail no long
lies on top of the others. For the region of normalized flux
between 1026 and 1025, we can calculate the decay indexa
of this tail. The results for the same sequence are plotte
Fig. 12. A similar plot can be done for a constantp0 scan
varying L. This is shown in Fig. 13. As can be seen fro
Figs. 12 and 13, the exponent of the tail for large and po
tive fluxes is fairly constant and 2.0,a,2.2; but it in-
creases sharply at the transition point. This value ofa in the
subcritical region indicates that the mean flux may be w
defined, but its variance is unbounded.

FIG. 9. Normalized radial width of the transition region ofL as a function
of p0 .

FIG. 10. Variance of the flux for each of the sequences withL5800 and
different values ofp0 as a function ofx/xm .
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We can better verify this PDF characterization by loo
ing separately at some of these PDFs. First, consider the
of fluxes well in the subcritical region~Fig. 14!. This PDF is
strongly asymmetric with a clear algebraic tail. This alg
braic tail is well defined over more than a decade of values
the flux. However, in the marginal region, the PDF is co
pletely different. The bulk is well described by a Gaussi
curve, but it is somewhat asymmetric~Fig. 15! with a weak
tail. Therefore, the flux fluctuation can be approximately d
scribed by a mean value with Gaussian noise. Naturally
this case the flux has a small level of intermittency. In th
regime, the range of large positive fluxes that constitutes
algebraic tail is rather short and ill defined. Consequently
is more difficult to determine the decay index of the PDF
this region~see Figs. 12 and 13!.

One possible explanation for the transition follows:
the drive increases, the flux through all local positions m
increase. This must be accommodated by the increased
effective diffusivity, because the system is in steady sta

FIG. 11. PDF of the flux normalized tox, xP(G/x) at several values of the
radial positionx.

FIG. 12. Decay indexa of the algebraic tail of the PDF of normalized fluxe
in the range 1026 to 1025, for different values ofp0 .
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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and we know that while the gradient changes it does
change by a large amount. Therefore fromG5D¹h, the
effective diffusivity must increase to match the increas
flux. Note that with a distributed source, this is true for si
ply changing radial position as well as increasing the dr
because the steady state flux through a given point is
integral of the drive inside that point. The low-flux state
characterized by the bursty intermittent transport events.
burst of particles comes into a radial location from the up
side. If the site becomes unstable, the fluctuations grow u
the fluctuation-induced flux reduces the gradient enough
that it is subcritical. At that time the fluctuations damp o
~do not stop instantaneously! and leave the site at least som
what subcritical. The high-flux state is characterized by m
continuous lower level fluctuations. The ‘‘material’’ comes
from uphill, which makes the site unstable. The fluctuatio
grow and transport the particles until it is subcritical; b
before the fluctuations can turn off fully, the flux from abo
refills the local gradient, which starts the process again.
transition between states then occurs when the refill rate
ceeds the flux from an individual burst. At that point, t
average gradient will increase close to the critical gradie

FIG. 14. An example of a PDF of fluxes well in the subcritical region

FIG. 13. Decay indexa of the algebraic tail of the PDF of normalized fluxe
in the range 1026– 1025, for different values ofL.
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and the fluctuations will change from bursty to more contin
ous with smaller oscillations. In this way, in the high-flu
regime, the PDF of the fluctuations grows narrower a
more Gaussian. This change is a consequence of the os
tions around the continuous level being driven by the rand
variations in the external drive. They are not caused by
collective effects of reaching and then relaxing away fro
the critical gradient that characterizes the low-flux transp
regime.

V. DISCUSSION AND CONCLUSIONS

The one-dimensional transport model presented in
paper has the properties of a SOC system. The main tr
port mechanism is avalanche-like transport that leads to
ward particle fluxes of all sizes. The distribution of fluxe
has a power scaling tail with a decay index close to22. In
the inner region, the time-averaged slope of the particle d
sity is significantly below the critical slope in spite of th
local flux mechanism being a continuous variable control
by the fluctuations instead of an integer quantity as in
case of the running sandpile. This model seeks to bridge
gap between the simple cellular automata models and
more complete ‘‘primitive’’ turbulence models. In the prim
tive turbulence models, exploring different regimes is dif
cult due to computational limitations; in the cellular a
tomata models, much interesting physics is excluded du
the simplicity and discrete nature of the models.

This critical-gradient fluctuation-driven transport mod
shows the characteristic properties of a critical transit
with control parameter the averaged particle flux,^G&
5p0x. When the mean particle flux is low, the transport
caused by bursty flux events. The system remains subcri
most of the time and evolves through a sequence of par
bursts. As the mean particle flux increases, the bursts hav
happen more often and be larger. At the critical value of^G&,
this mechanism cannot effectively keep the particle balan
and the system transitions to another state. In this state
gradient of the particle density stays very close to its criti
value,zc , and the flux becomes continuous with intermitte
changes of its amplitude.

This model shows that even in a very simple syst
spontaneous transitions can occur. Such a transition in

FIG. 15. An example of a PDF of fluxes well in the marginal region.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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system will cause an effective confinement improvem
simply by establishing a region with an increased gradie
Furthermore, this model predicts a detectable global fl
threshold for this transition. This threshold depends on
parameter regulating the saturation of the fluctuations
the particle transport coefficient in the ‘‘lower-confinemen
regime. It is important to note that the nature of the transit
is not likely to be directly related to the ‘‘classical’’ enhance
confinement regimes since the physics thought to be res
sible for those regimes is not included in this model. Rath
it defines a region, for example an edge region, in which
dynamics are different and the gradient is increased ma
this the region in which a ‘‘classical’’ confinement enhanc
ment transition can occur. This is because the requisite
tures for a transition to enhanced confinement, namely in
mogeneity of the turbulence and a broken symmetry in
fluctuations, both exist. The former comes from the transit
point itself while the latter comes from the increased gra
ent. This type of ‘‘transition’’ makes the most sense near
edge. However, depending on the parameters and instabi
involved, this transition could also occur in the core.
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