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Abstract
A sandpile model describing some of the features of plasma turbulent transport dynamics in the L-mode is extended,
by adding appropriate new dynamics, to exhibit a transition to enhanced confinement modes. As a result, H-modes
with and without edge localized modes (ELMs) can both be obtained by varying the appropriate parameters. Each
exhibits features reminiscent of what is observed in confined plasmas. The interplay between an avalanche and
a diffusive transport mechanism is shown to be essential, in this context, for the system to display periodic edge
ELMing.

PACS numbers: 52.55.Dy, 52.55.Fa, 52.35.Ra, 05.45.−a, 05.65.+b

1. Introduction

A few years ago, self-organized criticality [1] (SOC) was
proposed as a possible paradigm for plasma turbulent transport
dynamics in fusion devices [2, 3]. SOC systems have the
ability to organize themselves and to fluctuate around a state
marginal to a major disruption, exhibiting scale-free transport.
The key ingredient for the appearance of SOC is the existence
of two disparate timescales, respectively associated with the
drive and with the instability relaxation. Since this condition
is usually fulfilled in systems with instability thresholds, it
was proposed that SOC might apply to a plasma confined
in the L-mode [3]. The idea of the plasma staying in a
SOC-like state is attractive, since it can help in understanding
several experimental results encountered in the L-mode [4],
such as the non-gyro-Bohm scaling of the confinement time,
the existence of canonical profiles, the observation of power
degradation and the superdiffusive propagation of cold and
heat pulses [5]. Some experimental evidence consistent with
this idea has already been reported. It claims self-similarity
for electrostatic edge fluctuations [6,7], the existence of long-
range temporal correlations in them [8, 9] and the observation
of radial propagation of avalanche-like events in L-mode
discharges [10].

The existence of an H-mode confinement state and
its transition from the L-mode opens a new challenge to
the SOC transport paradigm. Quasi-periodic oscillations

a Author to whom any correspondence should be addressed.

have been observed before in SOC systems, but their
relevance to the H-mode is still unclear. For instance, we
introduced a diffusive sandpile in [11], in which global
oscillations come to dominate the dynamics after the diffusivity
becomes sufficiently large to compete with avalanche transport
efficiently in setting the profile roughness. Even when
this could be achieved for fairly small diffusivities, the
efficiency of this process improves in the opposite direction (in
parameter space) to that in which edge localized modes (ELMs)
are observed (in tokamaks, ELMs are observed when the
external power increases, which would reduce the efficiency
of diffusivity to carry out this task). On the other hand,
Chapman et al [12] obtained global quasi-periodic oscillations
with different sandpile dynamics by varying a characteristic
scale for energy-redistribution, but it is not clear how changes
in this parameter might correlate to changes in the external
drive. Finally, in [13], Hicks et al also observe quasi-periodic
behaviour when avalanche events are temporally trapped inside
a transport barrier, which gives to these events a more transient
character than observed in experiments. The basic difficulty
in bringing all these models closer to a confined plasma is
the limited dynamics they can exhibit as a result of the small
number of parameters that define them. This fact gives them
a strong universal character (in the sense that the behaviour
observed is rather insensitive to the details of the system), but it
also reduces the wealth of behaviour that can be observed. For
this reason, in this paper, we explore whether a sandpile model
for the L-mode can be extended to exhibit a transition into
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the H-mode and to produce ELMs, by adding new dynamics
inspired in what are thought to be the responsible physical
mechanisms. We acknowledge that this approach somewhat
reduces the universality of the model but, by adding a handful
of free parameters appropriately, this extended model provides
us with a highly simplified system in which the interaction of
these mechanisms could be isolated and studied, helping to
shed some light on the relevance (if any) of SOC in this context.

The paper is then organized as follows: in section 2,
the diffusive sandpile is introduced as a simple model that
captures the basic physics of L-mode dynamics. Then, in
section 3, this sandpile is extended by adding a few new rules
and parameters. All of them are inspired by the physical
mechanisms that are thought to be responsible for the L–H
transition in a real confined plasma [14, 15]. It is shown that,
for appropriate values of the new free parameters, the sandpile
rules make it possible that both ELM-free and Type-I ELMy
H-modes be accessed as the external power increases. In
section 4, the confinement time of the sandpile in all these
regimes is estimated both analytically and numerically. The
obtained scalings prove the enhanced-confinement character
of the so-called sandpile H-modes. In section 5, the Type-I
ELMs observed at the highest powers are characterized and the
dependence on the total external power of their frequency and
sizes, as well as some other of their temporal and dynamical
features, are studied. Finally, some conclusions are drawn in
section 6.

2. The diffusive sandpile: a model for
L-mode dynamics

We use a running diffusive sandpile [6] as the simplest
model that captures the essential dynamical features of plasma
transport in the L-mode (see figure 1). The sandpile consists
of L cells, each labelled by an index n ∈ [1, L]. Each cell
stores an amount of sand hn. U0 grains of sand are dropped
randomly on every cell at each iteration with probability P0.
The external drive per cell is thus S0 = U0P0. SOC dynamics

Nf

Nf

Z < Zc

Z > Zc

Z > Zc

p
0

L cells

Figure 1. Diagram explaining the diffusive sandpile rules. First,
sand is added randomly to every cell. Then, cells are checked for
stability and, if unstable, NF grains of sand are moved to the next
cell. Finally, at each iteration, a diffusive net flux is added
(or subtracted if negative) to each cell.

appear because of the existence of a critical sand slope −Zc

that, when locally overcome, triggers the removal of NF grains
of sand to the next cell. To this avalanche transport channel, a
second channel is added. A local diffusive flux � is computed
at each cell as �n = D0(Zn+1 −Zn), where D0 is the diffusion
coefficient and Zn = hn+1 − hn is the local slope. Finally, the
sandpile has an open boundary at n = L, from which sand is
removed (Notice that Zc is chosen to be positive which implies
that, throughout the paper, a cell is unstable if the local slope
Z � −Zc, since Z is negative due to the fact that sand leaves
the sandpile at the edge.)

For S0L < D0(Zc − NF/2), the system has a diffusion
dominated regime that we call the ohmic phase by analogy
with tokamak confinement. In this phase, the slope profile
is determined by the strength and distribution of the source.
The condition on the external power is set by the maximum
flux that can leave the sandpile through the diffusive channel
without the edge cell becoming unstable. Since the drive
we use is uniformly distributed, the typical slope profile is
linear all across the sandpile (see the slope profile in full
down triangles in the lower left part of figure 2). However,
for S0L > D0(Zc − NF/2), the diffusive sandpile makes a
transition into a different regime. The slope profile divides
into two regions (see profile in open left triangles in figure 2),
a diffusive core where transport is still dominated by diffusion
and a SOC region (with a constant slope just above −Zc),
where transport is mainly driven via avalanches. The point that
connects both regions can be easily estimated to be located at:

x1 � D0(Zc − NF/2)

S0
. (1)

In contrast to the ohmic phase (and to the diffusive core),
the slope profile in the SOC region is independent of the
distribution of the drive source. And the sandpile now has
many of the dynamical characteristics of the L-mode observed
in confined plasmas: transport in the SOC region is scale-free,
with contributing scales only limited by the size of the SOC
region (this implies a non-gyro-Bohm scaling of confinement,
as will be shown in section 4); the absolute value of the
slope stays on average very close to (but below) Zc − NF/2,
which reminds one of the canonical profiles observed in many
devices; power degradation is observed (which will be shown
in section 4); and, finally, any perturbation of the slope profile
can propagate superdiffusively (if �Z � NF/2) or diffusively
(if �Z � NF/2). For these reasons, we will claim that
this regime of the diffusive sandpile captures many of the
characteristic features of the L-mode in a confined plasma,
and we will accordingly call it the sandpile L-mode.

Since the relevant limit in fusion plasmas is D0/P0 � 1
(which implies that diffusive losses provide a small
contribution to the total transport), it might seem that D0 would
never play any important role in the dynamics. Therefore, this
diffusive sandpile should not add anything intrinsically new
to the dynamics of the standard non-diffusive sandpile used in
the past [3]. This statement is, however, not correct. In the
diffusive sandpile it is possible to achieve κ ≡ D0N

2
F/P0 � 1

while still satisfying D0/P0 � 1, which takes the diffusive
sandpile into a new dynamical regime. κ gives a measure of
the competition between the roughening of the slope profile
caused by avalanches and its smoothing by diffusion. When
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Figure 2. Height and slope profiles of the diffusive sandpile as the external power is increased, showing the path of the system across the
different regimes. (Parameters: D0 = 0.05; L = 400; Zc = 200; NF = 30; ZM

c = 1000; NM
F = 120; k = 10.)

the latter dominates (for κ > κc, with the critical value
given approximately by κc � 20 [16]), diffusion is not yet
sufficiently important to dominate the total transport (still
mainly driven through avalanches), but it can efficiently erase
all inhomogeneities in the slope profile. This causes SOC
to disappear. In its place, a quasi-periodic relaxation of the
edge extending all across the SOC region balances the external
power to maintain a steady state (see figure 5 in [16]). As we
will see, this transition may open a possible route to ELM-like
relaxations once the diffusive sandpile has entered the H-mode.

3. Physics-based extension of the
SOC-diffusive sandpile

In tokamak plasmas, H-mode is achieved when the external
power exceeds the threshold value for the L–H transition [17].
A transport barrier then forms at the edge that is thought
to be triggered by the sheared-flow-induced suppression of
turbulence [14, 15]. After the transition, the confinement
time seems to follow a gyro-Bohm scaling, at least in its
ion channel [18]. Once the system is in the H-mode, several
edge relaxation processes may successively appear as power
increases. Type-III ELMs appear first. These are small
periodic relaxations with frequency (amplitude) that decreases
(increases) with the external power. As power continues to
increase, Type-III ELMs give way to an ELM-free phase.
Finally, at even larger powers, large Type-I ELMs appear, with
a frequency that increases with power. The standard view of
these phenomena relates Type-III ELMs to resistive modes,
while Type-I ELMs are associated with the much faster ideal
ballooning modes [19].

Several ways may be envisioned to make the sandpile
undergo a transition into an H-mode. In our case, we have
tried to capture the effect of the shear-induced suppression
of the local transport by varying the sandpile relaxation rules

that deal with overdriven cells. These overdriven cells appear
as follows: as the external power increases, the flux that
must leave the sandpile through its edge increases as well.
Eventually, the balancing of the external power will require that
the flux leaving the sandpile exceeds the maximum flux that can
go through the edge cell while it stays subcritical on average
(i.e. with its average slope staying above −Zc). This maximum
flux would be equal to NF/2 in the absence of diffusive
transport, which corresponds to the limit case of continuous
edge relaxation. If diffusion is taken into account, the flux limit
is overcome for S0 � SL–H

0 , where SL–H
0 � (NF/2 + D0Zc)/L.

At higher powers, the number of overdriven cells increases,
extending inwards from the sandpile edge. The new relaxation
rule for any of these overdriven cells is to substitute the transfer
of NF grains to the next cell by a ‘turbulent’ diffusive flux, with
diffusion coefficient given by Dt = NF/(kZc). Since this flux
is added to the ambient diffusion given by D0, the effective
diffusivity at these cells is De = D0 + Dt . Note that with this
prescription, the local transport at these cells is reduced by
k times (relative to that produced by the normal overlapping
rule) when the slope is close to −Zc. Therefore, the local
slope must increase (in absolute value) to balance the external
power, which causes the formation of the barrier. But at the
same time, the diffusive turbulent flux brings into the dynamics
the radial transport decorrelation associated with the shear-
suppression mechanism, which is suspected to be responsible
for the transition of the confinement time towards gyro-Bohm
scaling [3].

The new relaxation rule has the effect of allowing
the formation of a diffusive pedestal for S0 > SL–H

0 (see slope
profile in open squares in figure 2). This new regime will be
called the sandpile ELM-free H-mode. It will be seen later
(see section 4) that in this ELM-free H-mode confinement
improves and changes its scaling with the sandpile parameters.
Also, no ELMing activity is observed. From a simple power
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balance calculation, the location where the diffusive pedestal
starts is approximately given by:

x2 � NF/2 + D0Zc

S0
. (2)

The width of the diffusive pedestal (�2 = L−x2) is therefore
an increasing function of S0, that reaches a final limit value
(�2 � L) when the total power reaches S0 = (NF/2 + D0Zc).
However, a comment must be made at this point. The fact that
more and more of the cells must go supercritical to balance the
always increasing external drive is related to the absence of
any other transport mechanism in the system. In a real plasma,
the increase in width of the pedestal might be limited by the
encounter with another transport mechanism as the pedestal
propagates inwards (such as ion or electron temperature-
gradient modes, that might dominate the core transport). These
modes might take care of balancing the external drive without
going supercritical. In this case, the width of the pedestal will
no longer increase to cover the whole system.

The second physics-based change in the diffusive sandpile
rules will open the route into an ELMy H-mode. As we
commented before, Type-I ELMs are usually related to the
ideal instabilities that would be triggered when the local
critical gradient for these modes is overcome [19]. Therefore,
we will introduce a second critical gradient −ZM

c � −Zc,
that will trigger the transfer of NM

F � NF grains of sand
when any cell goes unstable. The much faster temporal
scales associated with ideal MHD activity are included by
relaxing these avalanches differently: instead of constraining
the relaxation to affect only one cell per iteration (as is the
case for cells unstable relative to Zc), the relaxations relative
to ZM

c will be continued in the same iteration until no more free
energy is available.

The existence of this second critical gradient makes
the system transit into a Type-I ELMy H-mode when
S0 > De(Z

M
c − NM

F /2)/L. A second pedestal (that we will
call the SOC pedestal) then appears with a steeper slope (see
slope profile in filled circles in figure 2), whose absolute value
varies linearly between ZM

c − NM
F /2 and ZM

c . The location
where this pedestal starts is found to be at

x3 � De(Z
M
c − NM

F /2)

S0
. (3)

As in the case of the diffusive pedestal observed in ELM-free
H-mode, the SOC pedestal width (�3 = L − x3) is an
increasing function of S0 that saturates (at �3 � L) for
total power S0 � De(Z

M
c − NM

F /2). However, the same
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Figure 3. Time traces of the flux leaving the sandpile for S0 = 0.5 in the Type-I ELMy H-mode.

considerations that we already made for the diffusive pedestal
width must also be made regarding that of the SOC pedestal.
And, in particular, the effects on the periodicity of ELMs of a
possible blocking of the pedestal advance by a second transport
mechanism should be considered.

As an example of the ELMing activity typical of this
regime, the temporal trace of the flux leaving the sandpile for
S0 = 0.5 is shown in figure 3. A very clear ELM-like periodic
relaxation is observed and, between ELMs, an increasing
diffusive flux (see zoom of the same figure) reveals the increase
of Zedge towards ZM

c in absolute value. As will be discussed in
section 5, the frequency of these relaxations increases linearly
with S0. However, there is a value of the power (S0 �
De(N

M
F )2/κc) above which the relaxations transform from

periodic to intermittent (see upper frame in figure 4). When this
happens, the slope profile is no longer linear across the SOC
pedestal, but approximately constant at −[ZM

c − NM
F /2], as

shown in figure 2 (see curve in right open triangles). Therefore,
we will distinguish in what follows between periodic and
intermittent Type-I ELMy H-modes.

As a final comment, we want to stress the point that the
rules we have chosen to produce a sandpile H-mode are by
no means unique. Any rule that guarantees the damping of
avalanche formation beyond the transition point can be used to
provide the same dynamical behaviour. For instance, Gruzinov
et al [20] proposed recently an alternate prescription when
exploring several issues related instead to the dynamics of
pedestal formation at the L–H transition. Their rule relies
on the existence of a bracket of slope values [−Zc2 , −Zc1 ] in
which the sandpile is unstable. In this way, avalanches cease
to be triggered when the slope locally becomes more negative
than −Zc2 , and a pedestal and an H-mode are also achieved. In
contrast, the role played by the diffusivity in this context is not
arbitrary, since no quasi-periodic ELMs would exist otherwise.

4. Scaling of the diffusive sandpile confinement time

Both the ELM-free H-mode and the Type-I ELMy H-modes
are enhanced confinement regimes compared to the L-mode.
To prove it, we define the confinement time of the sand in the
diffusive sandpile as:

τE =
∫ L

0

[ ∫ x

L
Z(x ′) dx ′] dx

S0L
, (4)

where the integral represents the amount of sand confined in the
sandpile in a steady state, and S0L is the total external power.
τE is a function of the parameters that define the sandpile: D0,
De, L, S0, Zc, ZM

c , NF and NM
F .
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Figure 4. Time traces of the flux leaving the sandpile in the ELMy H-mode for different values of S0.

The slope profiles can be estimated analytically in all
regimes as:

• Ohmic:

Z(x) = −
(

S0

D0

)
x, 0 < x < L. (5)

• L-mode:

Z(x) =




−
(

S0

D0

)
x, 0 < x < x1,

−
(

Zc − NF

2

)
, x1 < x < L.

(6)

• ELM-free H-mode:

Z(x) =




−
(

S0

D0

)
x, 0 < x < x1,

−
(

Zc − NF

2

)
, x1 < x < x2,

−
(

S0

De

)
x, x2 < x < L.

(7)

• Type-I ELMy H-mode (periodic):

Z(x) =




−
(

S0

D0

)
x, 0 < x < x1,

−
(

Zc − NF

2

)
, x1 < x < x2,

−
(

S0

De

)
x, x2 < x < x3,

−
(

ZM
c − NM

F

2

)
− NM

F (x − x3)

2(L − x3)
,

x3 < x < L.

(8)

• Type-I ELMy H-mode (intermittent):

Z(x) =




−
(

S0

D0

)
x, 0 < x < x1,

−
(

Zc − NF

2

)
, x1 < x < x2,

−
(

S0

De

)
x, x2 < x < x3,

−
(

ZM
c − NM

F

2

)
, x3 < x < L.

(9)

Then, using equation (4), the following confinement times
are obtained (the interval of external power over which each
formula holds is bracketed next to the regime name):

• Ohmic [S0 < D0(Zc − NF/2)/L]:

τOhmic
E = L2

3D0
. (10)

• L-mode [D0(Zc − NF/2)/L < S0 < (NF/2 + D0Zc)/L]:

τL-mode
E = (Zc − NF/2)L

2S0
− D2

0(Zc − NF/2)3

6S3
0L

. (11)

• ELM-free H-mode [(NF/2 + D0Zc)/L < S0 <

De(Z
M
c − NM

F /2)/L]:

τELM-free H-mode
E = L2

3De
− (NF/2 − D0Zc)

2

2S3
0L

×
[

2(NF/2 − D0Zc)

3De
−

(
Zc − NF

2

)]

−D2
0(Zc − NF/2)3

6S3
0L

. (12)
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Figure 5. Comparison of the analytic formulae for τE with numerical calculations. The dashed line extrapolates the L-mode beyond the
power threshold for the L–H transition for easier comparison.

• Type-I ELMy H-mode (periodic) [De(Z
M
c − NM

F /2)/L

< S0 < De(N
M
F )2/κc]:

τ
ELMy H-mode (periodic)
E =

(
ZM

c − NM
F /6

)
L

2S0

−NFDe
(
ZM

c − NM
F /2

)
6S2

0

− NFD
2
e

(
ZM

c − NM
F /2

)2

12S3
0L

−D2
e

(
ZM

c − NM
F /2

)3

6S3
0L

− (NF/2 − D0Zc)
2

2S3
0L

×
[

2(NF/2 − D0Zc)

3De
−

(
Zc − NF

2

)]

−D2
0(Zc − NF/2)3

6S3
0L

. (13)

• Type-I ELMy H-mode (intermittent) [S0 > De(N
M
F )2/κc]:

τ
ELMy H-mode (intermittent)
E =

(
ZM

c − NM
F /2

)
L

2S0

−D2
e

(
ZM

c − NM
F /2

)3

6S3
0L

− (NF/2 − D0Zc)
2

2S3
0L

×
[

2(NF/2 − D0Zc)

3De
−

(
Zc − NF

2

)]

−D2
0(Zc − NF/2)3

6S3
0L

. (14)

All these expressions (equations (10)–(14)) agree very
well with the results for τE obtained numerically (see figure 5).
Several interesting conclusions can be drawn when analysing
them in similar ways to those used in studies of confinement
of fusion plasmas [18, 21, 22]. First, we will carry out
an analysis similar to the ρ/a-scalings of the confinement
time so common in plasma transport literature (ρ is the ion
Larmor radius and a the minor radius of the device). The
equivalent analysis in the case of the sandpile is to study

how τE changes when the number of cells L is increased.
However, it is necessary to ensure that the critical gradients
and the total power remain unchanged. Therefore, if we
apply the transformation L → αL, the following parameter
transformations must be applied simultaneously:

(Zc, NF) →
(

Zc

α
,
NF

α

)
,

(
ZM

c , NM
F

) →
(

ZM
c

α
,
NM

F

α

)
,

S0 → S0

α
.

(15)

Applying these transformations to equations (10)–(14), it
is straightforward to obtain, in the ohmic phase, τE(αL) ∼
α2τE(L). This dependence on α is characteristic of a purely
diffusive process, and we will refer to it as the sandpile gyro-
Bohm scaling, in analogy with plasma transport terminology.
In contrast, for the L-mode, τE(αL) ∼ ατE(L), which reveals
the existence of a non-diffusive transport process dominating
the dynamics (the second term in equation (11), which scales
as α−1, is strongly subdominant). Interestingly, the results
for the ELM-free H-mode reveal that the dominant term (the
first) has a gyro-Bohm scaling (it scales as α2). That is, a
diffusive mechanism (the one associated with De, related to the
suppression of turbulent transport by a sheared-flow) has taken
over control of the system transport after the L–H transition.
The importance of the other two terms, which both scale asα−1,
will depend on the sandpile parameter values used. Finally, for
both the periodic and the intermittent ELMy H-modes, a non-
gyro-Bohm transport scaling is obtained, since the dominant
term (the first in both cases) again scales as α. The new
dominant non-diffusive transport mechanism is, in this case,
related to the ELMs.

A similar analysis can be done regarding the degradation
of confinement with power observed in tokamaks. To do it, it
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is only necessary to carry out the transformation PT → βPT,
where PT = S0L is the total external power. In this case,
it is sufficient to make the transformation S0 → βS0 in
equations (10)–(14). It is then found that, in the L-mode
and in both ELMy H-modes the dominant term scales as
β−1, revealing that power degradation in the diffusive sandpile
is intrinsically linked to the dominance of a non-diffusive
transport process. On the other hand, no power degradation is
observed in the ohmic phase, while a mixed scaling is found in
the ELM-free H-mode. In it, the dominant term is independent
of β, but the other terms scale as β−3 which, depending on the
sandpile parameter values, can modify the global scaling with
power. (This situation can be important if the system enters
into the ELMy H-mode at powers for which the first term is
not still dominating the global confinement.)

Finally, we can compare the global confinement times of
the ELMy H-modes and the L-mode for the same PT. The ratio
of these times is known as the H enhancement factor in the
plasma transport community [21]. For the diffusive sandpile,
this ratio is roughly equal to (ZM

c /Zc). The enhancement can
be recognized more visually by comparing τE for the ELMy
H-mode (solid line) with the extrapolation of equation (11)
(dashed line) for S0 > SL–H

0 . As a final remark, it is interesting
to notice that the intermittent and the periodic H-modes have
very similar global confinement properties. Not only does τE

have a gyro-Bohm scaling in both regimes, but the values of
τE are also within 5–10% of each other. This similarity is
due to the small difference in mass stored in the SOC pedestal
in the two regimes. In contrast, the dynamics of ELMs are
intrinsically different.

5. Characterization of Type-I ELMs in the diffusive
sandpile

We will first characterize the periodic ELM-like oscillations
occuring in the periodic H-mode (i.e. for De(Z

M
c − NF/2)/L

< S0 < De(N
M
F )2/κc). Their frequency can be obtained

numerically in several ways. For instance, in figure 6 the
power spectra of the fluxes leaving the sandpile are shown for
increasing powers. The dominant frequency (and some of its
first harmonics) is clearly identified as a peak in the spectrum.
In the inset of the same figure, the frequencies corresponding
to these peaks are plotted against S0, and νPS ∼ S

(1.08 ± 0.01)
0 is

obtained when fitting them to a power law.
A very similar number is obtained when looking instead

for break points in the rescaled-range analysis (R/S) of the flux
time series (see figure 7). The R/S analysis is a well-known
method to look for temporal correlations in a time series [23].
For a time series of length N , we form ordered subsets of length
n � N : X = Xk, k = 1, 2, . . . , n, with mean X̄n and variance
S2

n . Then, we define:(
R

S

)
n

= max(0, W1, . . . , Wn) − min(0, W1, . . . , Wn)√
S2

n

,

(16)

where Wk = X1 + · · · + Xk − kX̄n. Hurst showed that for self-
similar signals, R/S ∼ nH for some ranges of time lags n. H is
known as the Hurst exponent, and is equal to 0.5 for a random
signal, while H > 0.5 implies correlation and H < 0.5
anticorrelation. When any periodicity is present in the signal,
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ELMing frequency with S0; full squares correspond to the periodic
H-mode, and open squares to the intermittent H-mode.
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the R/S trace exhibits an abrupt break point for n equal to
the signal period. At n smaller than the break point a region
with H ∼ 1 exists, while a much flatter region with H ∼ 0
is found slightly above [8]. In the case of our flux series,
νR/S = T −1

break � S1.06±0.02
0 (see inset), which coincides with

the characteristic frequency found in the power spectrum.
Another analytical tool of interest to detect periodic and

intermittent behaviour in a time signal is the shape of the
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probability density functions (pdf) of the quiet times between
events. The basics of this technique were first explored in the
context of the sandpile [24], but they have proved to be useful
when analysing experimental data as well [9]. In figure 8,
we construct this pdf for the sandpile outflux time series. The
result is a very peaked function centred at q � Tbreak, as should
be expected from a series of quasi-periodic events.

The numerical finding of such strong periodicity is
somewhat unexpected. The access to the second critical
gradient at powers not sufficiently large as to overdrive the
system should yield scale-free SOC transport, not quasi-
periodic relaxations. The cause for this strong periodicity
must be looked for in the large value of De(N

M
F )2/S0 > κc,

due to the large value of NM
F associated with the ideal mode.

This forces the SOC pedestal to stay in the quasi-periodic
regime already encountered in the simple diffusive sandpile
at values of κ > κc [16]. Therefore, the dynamics dominating
the SOC pedestal transport in the periodic ELMy H-mode
are no longer critical. Instead, transport takes place through
periodic relaxations which are triggered at the sandpile edge
with periodicity ν � S0/N

M
F . Two characteristic signatures of

this dynamical regime [16] are indeed observed numerically,
confirming this conclusion: (1) the linear slope profile with
absolute value varying between Zc − NM

F /2 and Zc across the
SOC pedestal region (see profile in full squares in figure 2),
and (2) a strong peaking at the sandpile edge of the pdf of the
locations at which avalanches are triggered.

For larger powers, κ can get sufficiently small to make the
SOC pedestal change into a SOC regime. Then the pedestal
discharges through intermittent scale-free avalanches. The
average frequency of these events still scales linearly with
S0 (see figure 6), but all characteristic features of critical
SOC dynamics are recovered. For instance, the peaks in the

power spectrum and the breaking point in the R/S curve vanish
(see figures 6 and 7). In the same way, the quiet time pdf
(see figure 8) recovers the exponential shape characteristic
of a randomly driven system, and reveals the existence of
SOC dynamics upon the use of intensity thresholding of the
ELM events in the fashion proposed in [24]. In the same way,
the slope across the SOC pedestal becomes constant (roughly
Z � −(ZM

c − NM
F /2)), and the pdf of avalanche initiation

locations becomes much wider and peaked at the inner part of
the SOC pedestal. All these features are characteristic of the
SOC regime, as previously observed in the simple diffusive
sandpile [16].

6. Conclusions

In this paper we have shown that the SOC paradigm for
plasma turbulent transport in the L-mode can be extended,
in a physically meaningful way for confined plasmas, by
introducing new dynamics that allow a transition to enhanced
confinement modes. The physical mechanisms added include
the suppression of local transport induced by a turbulence-
generated shear-flow, some kind of diffusive transport and
the existence of a second critical gradient that is larger than
the one dominating the dynamics in the L-mode. This can
be done by including a handful of new free parameters and
evolution rules. When these elements are implemented in a
simple sandpile model, the resulting system exhibits, in spite of
its simplicity, many of the characteristic features of enhanced
confinement modes in plasmas. Specifically, these features
include an improvement of global confinement, a transition
from non-gyro-Bohm to gyro-Bohm scaling in the confinement
time, the formation of an edge pedestal and the excitation of
strongly periodic Type-I ELM-like activity.

All of these results seem to suggest that much of the
phenomenology observed in enhanced modes in plasmas might
not depend too strongly on the details of the unstable modes
involved but instead on the character of their associated
transport. For instance, knowledge of the details of the linear
growth and non-linear saturation phases of the resistive and/or
ideal modes that might be related to the two critical gradients
may be less important than knowledge of whether the dynamics
are avalanche-like or diffusive, memoryless or critical, or
scale-free or single-scale dominated. In a way, the sandpile
model suggests that the system tries to balance the external
power with all means at its disposal and that the changes in
dynamics respond to the need to transport larger and larger
fluxes out of the system. It also suggests some interesting
ideas that might guide the study of edge phenomena with more
sophisticated models/codes. For instance, the local power
balance between diffusive and/or avalanche transport channels
might be ultimately responsible for setting the pedestal width.
Similarly, this model confirms that a very essential role might
be played by the interaction between diffusive and avalanche
transport, as previously suggested in [11]. This might be
of special relevance at the edge region in order to obtain
periodic ELMing. This hypothesis might perhaps be tested
by looking for increasing ELM intermittency in tokamaks at
higher powers, even when the required powers might not be
attainable without encountering a disruption.
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Figure 9. Sketch of the periodic–intermittent transition. From an
arbitrary point (◦) in the periodic ELMy region, the transition curve
(shown by dashed/full lines for three different values of the
diffusivity De) can be crossed by either increasing the power S0 or
by decreasing (NF)

M.

Another interesting idea suggested by our studies stems
from a different interpretation of the periodic–intermittent
ELM transition. As we mentioned before, the transition point
is crossed as the external power is increased (see figure 9).
However, the fact that the transition point depends solely on
κ = De(N

M
F )2/S0 implies that an analogous transition from

quasi-periodic to intermittent relaxations would also take place
as NM

F is reduced, even at constant power. However, the
intermittent relaxations would now be considerably smaller
and of higher frequency, which would allow quieter disposal of
the incoming power. This situation is somewhat reminiscent
of the excitation of Type-II ELMs observed in experiments
when the stability properties of the discharges are improved.
In fact, NM

F is nothing other than a coarse measure of the
strength of the local instability. Finally, it is worth mentioning
that, as it is, our diffusive sandpile model does not exhibit
anything similar to Type-III ELMs. However, preliminary
work suggests that, by adding some details of the interaction
between local fluctuations and sheared flows, small edge
relaxation oscillations with frequencies that decrease with
increasing power might be obtained at the onset of the L–
H transition (more precisely, in the range of powers NF/2 +
D0Zc � S0L � NF + D0Zc). These results would then

suggest that the appearance of Type-III ELMs in a confined
plasma might be related to the dynamics of the formation of
the edge transport barrier at the onset of the L–H transition.
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