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Fluctuation level bursts in a model of internal transport barrier formation
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A model of internal transport barrief§TB) is developed that, in addition to the typical features of

ITB models(the phase transition character with a power threshold, barrier front propagation, etc.
exhibits an oscillatory/bursty behavior close to the transition. This behavior comes from the
competition between the driving and suppression mechanisms for the turbulence. The onset of the
oscillations has a power threshol®,.., below the power threshold for the transition to the
enhanced confinement regimBy,. In the calculations,P,,-~0.5P,. This suggests that the
oscillations avoid an early transition Bf,= P ..., SO any mechanism that eliminates the oscillations
may lower the transition power. @999 American Institute of Physid§1070-664X99)00903-9

I. INTRODUCTION imity between the shearing rate and the estimated linear
growth rate. Furthermore, the analogous discharge with re-

The experiments on tokamak plasmas driven to a highy,ced bursts bifurcates into an enhanced RS regime. Such
confinement regime originated in 1982 in the Axisymmetricq~tuation bursts have also been observed in three-
Divertor Experimen{ASDEX) tokamak. This discovery led  gimensional turbulence models of transition based on self-

10 a series of efxperr]lmentj amfgd at reachhmg andhcontm"_'nggnerated sheared floWThe results from these experiments
new regimes of enhanced confinement that are characteriz pport the idea of a competition between the driving and the

by a Sfcreaie of ]Ehe plzsm:t;\ edge fltutc):tua_ltlonss and tlhti Cor.]ssqippression mechanisms for the turbulence. In this paper, we
quent formation of an edge transport barmer. severa eorle@entify an oscillatory mechanism that is caused by the com-

were developed to model the dynamics of the process based..... C . .
. . o ... petition between the driving and suppression terms in the
on key experimental observations like its phase transitio

A ) ) .~ {ime evolution of the turbulence. We use an equation for the
nature; the correlation between the fluctuation suppression : . N
. ; g envelope of the density fluctuation level, so the oscillations
and the formation of a radial electric fielE() shear laye?,

and the independence of these features on the type of m eferred to in this work should be understood as bursts of the

chine and heating mechaniénCurrently, the most accepted rms ﬂuctuqtio_n level itself. As will be discussed later, the
cause for the transport improvement is the reduction or stal'0d€l oscillations show a fairly broad power spectrum.
bilization of turbulence by sheardfix B flow. Some model The wransition model is based on the general assumption
realizations of this hypotheSi& have led to bifurcation sce- that the shear in th&xB flow is able to suppress the tur-
narios, where a power threshold for the transition to highPUlénce. TheExB shear is produced by the steepening of
confinement can be estimated. The general assumptions Btermodynamic profiles of the systeg., the plasma pres-
these are such that they can be extended to explain the ba§itr® and by the sheared rotation. The thermodynamic gradi-
features of the internal transport barriéf&B).”2 Thus, sev-  eNnts are also the source of free energy driving several insta-
eral models base the formation of ITB on the same mechaRilities. Thus, the steepening of the profiles under the effect
nism of turbulence reduction via a sheared radial electri®f the external sources of heat and particles is both the drive
field 1% As happens with the edge transport barriers, thdor the turbulence and its quenching. If there is a different
system reacts to the extra free energy supply by adjustingependence of the drive and suppression mechanisms on the
itself to reduce the transport. It is important to understand th@ressure profile, the particle and heat fluxes can exhibit a
key dynamical processes that lead to this reorganization ifonmonotonic function of the thermodynamic gradieints,
order to gain access to these regimes to control the confindfiere is an unstable range of decreasing flux for increasing
plasmas. In this respect, the advantage of studying ITB forgradients. When the power input makes the system reach
mation is that the physics are independent of edge effectée unstable gradients, the diffusivities are reduced in such a
like wall conditioning or divertor/limiter physics. Recent re- way that much higher gradients stand in equilibrium for the
views on transport barrier formation and related issues cafame flux. As a consequence, threshold fluxes mark the tran-
be found in Refs. 12, 13, and 14. sition from/to a high confinement to/from a low confinement
It has been observed experimentally that there are burstegime’®
in the fluctuation level accompanying the processes of The EXB flow depends on the pressure gradient and,
internal® and edg® transport barrier formation. In the case consequently, its shear incorporates the curvature of the pres-
of the reverse shedRS) discharge presented in Ref. 15, the sure profile. This is important both in the process of barrier
bursts in the density fluctuation level coincide with a prox-formation and in the oscillatory behavior. The polofdaind
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toroidaP®?! flows may also play an important role in the radius;cs=(T./m;)?is the ion sound velocity; andl is the

suppression of the turbulence. In particular, the poloidal floncharacteristic scale length of the turbulence, which has a
evolution can also give rise to oscillatory phenoméRaf.  functional dependence on the thermodynamic profiles ac-
17). Here we shall focus on the role of the diamagnetic con<ording to the instability model used. From E(), the
tribution to the radial electric field. L-mode level of fluctuations in equilibrium ie= y/ a4, as-
Because the modification of the transition threshold issuming that the diffusion term is not determining thero-
found to be the result of the bursts in the turbulence, arile. In fact, it is a requirement of this transition model that
understanding of their cause may help to find routes to théhe driving part in Eq(1) is dominant, as the time scales of
high confinement regimes with lower power thresholds. Thighe fluctuation level evolution should be of the ordenof.
work is devoted to describing numerically how the bursts carTherefore, different levels of saturation can be obtained de-
appear in a phase transition model for transport barrier forpending on the turbulence model chodea., they and A).
mation. The paper has been organized as follows: in Sec. I list of some of the possible choices is given in Diamond
we give a quick survey of the transition model, summarizinget al?* The turbulence suppression term includes EheB
the main general results; in Sec. Il we describe the oscillashearing ratey. We adopt the form of the shearing rate in a
tory behavior observed in numerical calculations; in Sec. IVtokamak'}?® w=(Aro/rA6)(r/q)(d/d,)(qVe/r), where
we gives an insight into the generation and dynamics of thej=rB,/RB, (¢ and 6 refer to the toroidal and poloidal com-
oscillatory behavior; and Sec. V is the conclusions and sumponent$; Ve=|EXB|/B? is theE x B flow velocity; andAr
mary. andrA @ are the correlation lengths of the ambient turbu-
lence in the radial and poloidal directions. Following Hahm
and Burrell?® we assume that the sign ¥t does not inter-
Il. TRANSITION MODEL vene in the suppression of fluctuations. The suppression oc-
curs when the shearing rate exceeds the decorrelation rate of
the ambient turbulence. Therefore, we use the expression
squared and then normalize it to the growth rate to give a
threshold condition for the transitioags~ vy in Eq. (1). We
have embedded the ratio of the correlation lengths in the
coefficient @,. From scale length estimates we obtain
~0.1. Within this order of magnitude, we use as a free
A. Evolution of the density fluctuation level € parameter. Note that we havg~ E, , whereE, is the radial

The transition mechanism is based on the notion of Com6|ectric fleld, and, therefore, its radial derivatEE is Iargely
petition between the rates of growth of the turbulence causetfSPonsible for changes ;. . o
by gradient-driven instabilities and of its decorrelation via  The radial electric field, enters in the definition of the
electric field sheaf? Here, we adopt the “turbulence” field shear?ng rate. It is determined from the radial force balance
e=((R/ny)2) ™2 which represents the envelope of the den-€quation in steady state:
sity fluctuations’! The time evolution ofe depends on three 1
main components. First, in the absence of any suppression Er:rem W—Vq,BﬁVaB(P. ()
mechanism, the fluctuation level is assumed to have a linear
drive that depends on the particular instability consideredwhere we are assuming, in accordance with the fluid ap-
Second, this growth is limited by the typical turbulent satu-proach to the problem, that the radial force balance is
ration mechanism, the convective nonlinearities in the turbuachieved in a magnetohydrodynamitHD) time scale,
lent (low confinement state, which we represent by an faster than the diffusion time scales in the problem. In Eq.
e’-dependent term. The third component is the fluctuatior{2), Z is the charge state of the main ioresis the electron
suppression term, associated with the radial electric fiel¢#harge,P is the ion pressurey is the ion velocity, and is
shear. Including a diffusive term, the general form for thethe magnetic fieldp and 6 refer, respectively, to the toroidal
time evolution ofe is then and poloidal components. As mentioned previously, Bbth
andV,, can introduce interesting phenomena to the problem,
but we shall discuss only th€ P contribution toE, .

The description of the transition model is given in three
parts:(a) the evolution of the density fluctuation level (b)
the e-dependent transport coefficients; af@l the transport
equations, which are linked tethrough the transport coef-
ficients.

(evolution=(linear drive—(saturation

—(suppressiont(diffusion).
Following this scheme we have, in cylindrical coordi- B. e-dependent transport coefficients
nates, The anomalous transport depends on the level of fluctua-
Je w? 19 Je tions. To find this relationship, we need a model for the
E:( Y- €— 7 e+ T E( erW)’ (1)  turbulent transport. Since we are interested in the dynamics

of ITB, we need a model that relates the growth rate to the
wherevy is the linear growth rate for the particular instability profiles of the system in the confinement region of the
andD, is the turbulence diffusivity® The coefficienta; of  plasma. They, model seems to describe many of the features
the saturation term is taken generically as= (kyps)Cs/A, of L-mode plasma&® Here we use the toroidaj}; model of
wherek, is the poloidal wave number with an overbar indi- Biglari et al,?” from which we obtain the main dependencies
cating the spectral average;=c;/(); is the sound Larmor for the growth rate and the width of the instabilities:
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Here,R anda are the major and minor radii of the tokamak; £ 3
L,=n(anlor)"Y;  Li=Ty(aT;/or) Y, and s=(1/q) 5 1000 a
X (dqglar) is the magnetic shear. The functidgs) param- E 5
etrizes the effect of magnetic shear stabilization. The anome g )
lous transport coefficients must kalependent in our model. : 100 £
Based on thep; model we write the fluctuation driven ion
energy transport in the radial directiony;~(v,p)/ 10
(—dPgy/ar), and then relate the fluctuating pressieand
E X B radial velocity,7,, with e. The resulting anomalous r/a
part in the ion thermal conductivity is FIG. 1. Radial profiles of the pressure and the anomalous thermal conduc-
a\ -2/ a |~V T\ 12 tiyity xi (ion channel calculated for neutral beam injectic(NB_I_) powers
Xiy = D062: Kyp<Ced| = ‘.2 (_l) 2 sllght_ly below and apove th_e threshold power for the transition. After the
i R L, Ly Te transition, the tota; is practically reduced to its neoclassi¢ahckground

(4) level in the region of steepest pressure gradients.

where we have taken E@3) as exact equations. In conse-
guence, we admit a free parameterl) in front of Eq.(4) to
adjust the transport. We obtain the electron thermal condu
tivity and the particle diffusivity in an analogous manner.
Then we have, for each field, a transport coefficient in th
form D=D,+ Dye?, whereD,, is a background neoclassical
transport ancD.o S a funghon of the thermodynamic profiles v is reduced. In the context of our model this explains the
and their gradients obtained from tlge model. The neoclas- benefit of RS regimes to access high confinement modes.
sical transport, being small compared to its anomalous coun- An example of transition with increasing power is shown

terpart, has been taken to be a constant. We consider ﬂ?ﬁ Fig. 1. The profiles correspond to the pretransition and

transport coefficienD. in Eq. (1) as a control of the mini- post-transition profiles of the anomalous thermal conductiv-

tmhumtrslpatlall Srlzale?hafllov;/r(]adtf(zrbvxihlch ShOUIdtnEt b? IESS ity and the pressure for a calculation in which the power was
an the scale length for the turbulence, ands taken to be slowly ramped up. The sudden increase in the confinement is

constant in space and time and of the same order as tt’3':1eresult of the suppression of the fluctuation leied., the

particle diffusivity. anomalous transporafter the critical conditionws~y has
been locally reached. The existence of a threshold comes
from the different functional dependence ®f and y on the
Equation(1) has been coupled to different sets of trans-shape ofP, but not on the particular dependencies. It is
port equations, ranging from a two-field, density simple  enough that locallywg can grow faster thary as the power
model to a comprehensive transport code with evolving deninput to the system is increased. Wheg> vy, the solution to
sity, ion and electron temperatures, current, toroidal and poEq. (1) is e=0, sincee is positive definite. This automati-
loidal momenta, and evolving flux surfaces. However, thecally eliminates the anomalous transpfiqg. (4)] and the
oscillatory features ok seem to be intrinsic to all systems confinement improves, steepening further the pressure and
when Eq.(1) is coupled to the diffusive fields through the causing an even larger rat'mg/yz. Although the#; model
edependent transport coefficients. Therefore, and for thesed for these results requires éindependence of the trans-
sake of consistency, all the results presented in this papgort, a linear dependence also gives transition dynamics, as
correspond to the same system of transport equations, whicke have found with other model realizations.
has been described in detail by Newmetral?! It includes Newmanet al?! discuss in more detail some features of
the electron density and the ion and electron temperaturthe transition model within this set of transport equations.
equations. There is no current evolution, and for our pur-These include the following: The system exhibits hysteresis,
poses the external sourc@seat and particlgshave a pre- giving a lower-power threshol®;, for the backward transi-
scribed Gaussian shape centered at the magnetic axis. Thien (from high to low confinementthan for the forward
parameters correspond to reversed shear Tokamak Fusigmransition(low to high). The time scale associated with the
Test ReactofTFTR)?® discharges. To take into account the forward transition is found to be faster than the scale for the
stabilizing effect of the negative shedrwe prescribed a backward transition. Dependencies of tRg, have been
radial functionf(S) [see Eq(3)], requiring thaty is lowered  found: Py,~B*; 1<a<3; andPy~n, whereB is the toroi-
in the region of reverse shear by a facted.1. As discussed dal magnetic field anah is the line-averaged density. The
by Newmanet al,?! this causes the transition to be triggered different exponents: depend on the relative evolution &f
at approximately the shear reversal positigp;f). The func- andT,.

Sion f(S) reflects the fact thay; instabilities are greatly re-
duced in the reverse shedS) region, although not neces-
esarily suppresset!. Therefore, the profiles steepen more
rapidly in the region of RS, allowing for a largers, where

C. Transport equations
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FIG. 4. The radial profile of the ratio between the driving and suppression
ﬁerms in the fluctuation level evolution equation just before the onset of the
oscillations.

FIG. 2. Time traces of the density fluctuation levelraa=0.25 and the
energy confinement time in a calculation where the neutral beam injectio
(NBI) power was slowly ramped up. The critical conditieg~ y is met at
P#~18 MW. The oscillatory activity starts &,,~9 MW.

the region of separation between Idthrough f(s)] and
IIl. OSCILLATORY BEHAVIOR high y. The steepest gradients in the pressure profile are also
o - ) found in this region, which is where the shearing rate reaches
An intrinsic feature of the transition model is that the i maximum value, thus giving the maximum ratixi/yz.
transition is preceded by oscillations i (Fig. 2) with a When and where the peak of the ratiig. 4) reaches a
power thresholP .. The possibility that these oscillations yhreshold value, the system becomes unstable giving rise to
have a numerical origin was studied extensively. TheS(_a _Stuqhe oscillations shown in Fig. 3. This threshold value for the
ies have shown that this is not the case. One of the difficuly, 5yimum ratio before the oscillations start has been found to
ties found is that the system tends to make use of the smalj;,, w2 ¥?~0.3 in all our calculations.
est spatial scalesj, possible, which can cause grid  Thg oggillations ine are translated, through the anoma-
separation problems unless a limit is set fom some way o5 transport, into oscillations in the gradient and the cur-
[for example, througiD . in Eg. (1)]. As.noted DFEYIOUS|y¢ vature of the pressure profilge., the rati0co§/y2 itself de-
represents the envelqpelof th.e Qensny fluctuation level, SQelops propagating oscillationsFor this reason, the regions
when we refer to oscillations ie it should be regarded as of a non-negligible ratio around the peak in the rafsee
bursts in the fluctuation level. In the calculations, the osciI-Fig_ 4) can easily reach the unstable limit after the first pulse
latory behavior starts at, roughly, half the power thresholdg “iiated, which implies that the point of origin of the
for the transition. A systematic study of the onset conditiong,,,qeqent oscillations moves inward, as illustrated in Fig. 3.
gives Posc= (0.50+0.09)Py, _ _ The oscillations rapidly diffuse away when they reach the
Figure 3 is a contour plot of the time evolution of the  o4iqn of Jarge growth rate as a result of both the enhanced
p_roflle showmg th_ese oscnla_tlons and their propagation. In"transport(that tends to smooth the pressure profded the
t'a”Yt € Is steep m_the [region close t_o the_sh_ear reyersa,:L’ma” shearing rate. Therefore, the radial extent of the oscil-
position ((/a=0.35 in this examplg which coincides with lations depends on the peakedness of the lﬁiiV@/z.
When the power approach&y,, the ratio can surpass
locally and periodically the transition threshold valug
~ . However, the fast propagation prevents the feedback
mechanism from having time to build up the pressure profile

Dt enough to trigger the transition. Furthermore, the outward
propagating oscillations cause an added effective transport of
0.6 particles and heat across the region of steep gradients to the

r/a

region of poor confinement outsidg,, (Fig. 5. This propa-
gation increases the power needed to reach the critical gra-
dients. Therefore, the propagation velochy,, plays an im-
portant role in delaying the formation of a transport barrier.
The relationDE~)\2f=Vf,/f, where\ is the average wave-
length of the oscillations anflis their frequency, holds rea-
sonably well in this mod€lFig. 6(@)]. On the other hand, we

_ have f~y, which gives a dependence closeMg~ D,y
Time [s] [Fig. 6(b)]. D, sets a limit for the minimum attainable, but
does not have any physical meaning otherwise. Thiss

FIG. 3. Onset of the oscillations. The system is allowed to evolve from the . .
equilibrium (=0) at a power slightly abov®,.. Data values range from fundamentally governed by the growth rate in this model.

zero (black to the maximum(white). The data in Fig. @) require some comment: At constant

0.000 0.001 0.002 0.003
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FIG. 5. Radial profiles of the density, and the effective particle diffusivity ) ) )
(calculated asD = [rS(r)dr/Vn) immediately before the transition for FG- 7. A contour plot of the time evolution of theprofiles[see Eq/(1)] as

two cases characterized by different propagation velocities of the oscillathe neutral beam injectiofNBI) power is slowly ramped up from below to
tions in the fluctuation level. above the transition power threshdRj,. The transition is produced at

~1.5 s and is preceded by burstsitnot resolved in this time scalaround
the radial position that eventually becomes the barrier front. After the tran-
sition, the bursty behavior persists at the barrier edge.

power we obtained/,~D%%*%!. However, a modification
in D affects the transport through, , thus also affecting.
We decided to calculate the dependencie¥ pfat constant which w.>y. The point wheras,~ y (r/a~0.35 in Fig. 1

P;,— P, that is, constant distance to the critical point in pa-. . . .
th P P limits the region of suppressed fluctuations, and can be seen

rameter space, assuming the power as the control parameter, : : ; )
In this way we obtained/p~D2'4i°'l for Py—P~0 (just as the location of the transport barrier. Therefore, just outside

before the transitionandV ~D8_5¢0_2 for Py— P~10. This the transport barrier the_ growth _rate and the shearing rate are
P - close to each other, giving a ratio above the threshold for the
last case corresponds to the data in Fig. 6. L .
onset of the oscillations. As a result, the oscillations at the
barrier front should be present, even after the transition. This
was numerically tested in a number of cases, one of which is
shown in Fig. 7. The figure is a contour plot of te@rofiles

After the transition, there is a region of suppresgad

5 f f f f t
; around the time of the transition1.5s) and shows both
4T — T the precursor bursts around the location of near critical gra-
f dients and the bursty behavior at the barrier after the transi-
L ¥ T tion. Note also that, at the moment of the transition, there is
E ; ] a transient reduction in the fluctuation level that almost
) 2*; T reaches the plasma edge. This is caused by a transient reduc-
] tion in the fluxes when the transport barrier is formed.
T T From the time trace ot at the barrier front a Fourier
of . L ‘ . . ‘ time series analysis was performed to find the possible de-
0 10 20 20 40 50 60 pendence of the frequency of the oscillations on the power.
e Figure 8 shows the power spectrum ofevaluated at/a
(a) AT [m/s]
800+t
: ] 10% el
700+ ;
R g
—_ — 1_|
= so0f g 03
I F 2 ]
& b 3
T w00t ] 3 ]
> [ ] o
300-F 1+ 210%y
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FIG. 6. (a) The relation between the diffusivit . and the parametex?f,

sqrt(D,y) [m/s]

T T
10° 10*

Frequency [s']

10

where\ is the wavelength of the oscillations amds their frequency(b)
Velocity at which the oscillations ie propagate as a function of the param- FIG. 8. The power spectrum of the time traceeff/a=0.39) att=1.6s

eterD.y, wherey is the local linear growth rate arfd, is the diffusivity (see Fig. 7. The location corresponds to the barrier front. The signal has
in the e-evolution equation. been averaged.
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conductivity[Eq. (3)]. Using the saturation condition outside
the barriere= y/ a;, we see from Eq93) and(4) that y~y.

As mentioned previously, there is also a roughly linear rela-
tion betweeny andf, which explains the increase infor
increasingPypg -

IV. CHARACTERISTIC PROPERTIES OF THE
OSCILLATIONS

The fact that there is a threshold for the onset of the
oscillations independent of the transport model suggests that
there is an intrinsic mechanism, provided by how [Eb.
determines the evolution of the anomalous transport, that
makes the system unstable when the shearing rate and the
growth rate are close enough to each other. Two questions
are addressed her@) What is the dynamical mechanism for
%he oscillations? and2) why do the pulses propagate? To

at the transport barrier front. The dashed line is a power law fit with the@@in insight on questioll), the stability of the system has

result shown.

been checked by perturbinglocally and following its evo-
lution. It is found that the imposed pulse damps aaig.
10(a)] with a time decay constant that decreases with the

=0.39in Fig. 7, which is characterized by a broadband spedocal value of the ratim)ﬁ/yz. This decay constant eventu-

trum as a consequence of the strong nonlinearities of thally becomes negativgFig. 10b)] for values of the ratio
system. Because the variakieepresents the envelope of the above a threshold. These figures show the value of koth
density fluctuation level, its local frequency spectriifig.  and the ratio at/a=0.25, where the perturbation is gener-
8) indicates that this envelope itself has a rather bursty beated. The maximum ratio in these cases correspondsato
havior. When the same analysis is performed for increasing=0.31 and its value for the case, Fig. (k) was
neutral beam injectiofNBI) powers,Pyg,, the frequency w?2/y?(0.31)=0.28. Although a negative time decay constant
associated with the maximum amplitude in the power specwould cause divergent oscillations, the damping mechanisms
trum, .y, Shifts to higher valuegFig. 9. A power law fit  set a limit for the amplitude. This amplitude has been found
gives f . Pig, although the data are compatible with a to increase with the power as well, which can be translated as
linear fit. From dimensional estimates, the power fluxa dependence between the amplitude and the value of the

through the transport barrier is proportional to the thermalocal time average of the ratio. Figure 11 is a plot of the
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0.0015 F
E 0.4
0.0010 - W&
w - \N
E =
» L8]
0.0005 Fo0.2
0.0000 H I — oo FIG. 10. The time“trices of and the rat?oﬂuﬁ/yz at
0.000 0.001 0.002 0.003 (r/a=0.25). _Case a” shows thg relaxation of an im-
. posed pulse ik att=_0 (centered irr/a=0.25) starting
Time (s) from the equilibrium slightly below the power threshold
for the onset of the oscillatory behavid?y.. In case
£ 0.6 “b,” the power is increased to slightly ovel .. and
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FIG. 11. The amplitudémaximum departure from the steady valeé the
ratio wﬁ/ y? atr/a=0.25 as a function of increasir(gircles and decreasing
(filled squares neutral beam injectioiNBI) power. The threshold for the
onset of the oscillations is higher in the forward case, and they appear wit
a finite amplitude. In the backward case, the oscillations disappear from a
much smaller amplitude, although it may also be finite.

FIG. 12. Time traccs ot atr/a=0.25 and the energy confinement time in
a calculation with the neutral beam injecti@BI) power slowly ramped up
for a case without th&2P contribution to the shearing rate.

y~\VP,
amplitude of the oscillations for increasirigircles and de- (5)
creasing(filled squarespower. The plot is reminiscent of a 199 1lon 1 )
Hopf bifurcation diagram, where there is a threshold for the S\gar noar r VP+V7P,

onset of a finite-amplitude limit cycle and an inaccessible
region that translates into the system exhibiting hysteresisvhere we have dropped the flows in Eg). In a smooth
Note that the limit cycle description may apply to a featurefunction with an inflection pointlike the pressure profije
of the system that is dominant in this small region of param+there is a natural shift between the maxima for the first and
eter space but that is really embedded in a more complicatesecond derivatives. The expressions in Ej.clearly show
dynamical system. that this can cause a shift between the maxima and wg

The explanation for the existence of the thresh®jd.is  whenever the second derivatives are not negligible compared
that the fluctuation level is able to respond to slight perturto the first derivatives. In this case, a local increas® P
bations in the profiles only when the shearing term in@y. (an increase inwg) will cause a local reduction of the trans-
is close enough to the growth rate. This is a response to thgort. This, in turn, will cause an enhancement of the local
feedback mechanism provided by tkelependent anoma- gradient(and hence ofy), pushing the maxima V2P to
lous transport: A perturbation iais translated into a pertur- both sides of the inflection point, which will shift the same
bation in the pressure profilge., in its gradient which, in ~ mechanism to other radial locations. Obviously, this can only
turn, affectsE, [see Eq.(2)], and consequentlys. The  occur as long as the reaction in, can affect the value of
feedback is closed through E@.). When the ratio is below in the manner explained in the previous paragraph. In the
the threshold, a perturbation &will also affect the pressure absence of the curvature term in E§) there is no possible
profile, but the feedback is not strong enough to cause apropagation, although the transition is still possible. An ex-
amplified reaction back on the fluctuation level, in which ample of this is given in Fig. 12, where the teWi¥P was
case the perturbation decays with the relaxation of the presliminated from Eq(5). The transition is still possible since
sure profile as shown in Fig. ). It has been suggest&d?  the dependencies of and ws on VP in Eq. (5) are still
that theV T, contribution toVP/n=VT;+(T;/n)Vn in E, different. Nevertheless, a much higher power is needed to
[Eq. (2)] should be canceled by the neoclassical poloidateach the transition, which proves that tRéP term is an
velocity (V,~—VT,) in the collisionless regim& In this  important contribution to the shearing rate in our calcula-
case the threshold power for the transition can increase sigions. This is clear when Fig. 12 is compared to Fig. 2. Both
nificantly if the same suppression coefficient,, is used, calculations are similar, except that the suppression coeffi-
but we have found that the oscillatory mechanism is stillcient used to obtain Fig. 12 i8,=0.2 instead ox,=0.1 in
operative. Fig. 2. Using the sama, for cases with and withot?P in

If the pulses could not move away from the near-criticalws would give even larger differences iy,. The system
region, the threshold for the transition would actuallyfg,  shows no oscillatory behavior witho®t?P, but the pretran-
because of the dynamo mechanism provided byMRecon-  sition maximum ratiaws/y turns out to be about the same as
tribution to the shearing rate, that is, onestarts to locally ~ for the onset of the oscillations whéf?P is present. This
decrease, the local transport is reduced and the profiles buildeans that, effectively, the instability limit that causes the
up, further increasingvs with respect toy. To investigate oscillatory behavior through an amplification mechanism is
this aspect, we turn to the remaining question of what makesow responsible for pushing the system to the transition
the pulses propagate. To clarify this we make explicit the(ws/y=1) from a state with a ratio ofvs/y<<1. As sug-
dependencies of and ws on the pressure gradient: gested before, the propagation mechanism through the
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FIG. 13. Schematic variation of the local density fluctuation level as aFIG. 14. Schematic representation of the variation-d¥ P as the input
function of the input power, depending on whether the oscillations arepower crosses the critical valu€s,. (oscillations thresholdand Py, (tran-
present. sition thresholgl

gradient—curvature interplay protects the fluctuation leveloop, caused by the nonlinear dependence of the shearing
from an early rollover to the transitioned state by pushing thd@t€ on the pressure profile, that can be positive for a given
pulses out to the region of high where they diffuse away closeness b.etween th(_a.rat(_as of sheann_g _and growth. In _thls
very quickly. This situation is depicted in Fig. 13, where we case, therg IS an ampl|f|cat|9n Process l'm't?d by the nonlln—
trace schematically the local dependencecohear the RS €87 damping in t_he fluctuation level evolution gquatlon._lt
region, on the input power: in the absence of oscillations, th&2USES perturbations that propagate from the critical region,
solutions with finite and null fluctuation levels are connectedd€nerating oscillations W'thllf speed that depends mainly on
through only one unstable regiddashed linesstarting at e local growth ratey,~ ™= The mechanism that causes
P,.., in which casePy = Py (see also Fig. 12 f the oscil-  thiS Propagation is the interplay between the gradient and the
lations are present, the first unstable region drives the systef!rvature of the pressure profile. The onset of the oscillations
to the oscillatory phase, characterized by an initially lowerPT€VeNts the system from undergoing an early transition to
average level of fluctuations, which can be sustained due t'€ €nhanced confinement mode. o
the effective transport caused by the oscillations themselves 1€ éxtent and structure of the oscillations in the enve-
(see also Fig. 2 A larger power is needed to access thelope of the fluctua}tlon level depenq on the details of the set
second phase transition. of transport equations. The oscillations start Whgn and where
In summary, three stable phasésw confinement, oscil- the'sys_tem starts to undergo the phase _transmon, but the
latory regime, and high confinementan be accessed using o§C|IIat|ons them;elves prevent it by expelling the s?eep gra-
the input power as a control parameter. The schematic in Fili€nts to the region of high transport and convectively in-
14 shows these three phases in terms-&P and the input  c'€asing the flux of hgat and particles. If the power is fur_ther
power. As the power is increased, the local gradient inincreased, the transition can take place. After the transition,

creases at a rate dictated by the anomalous transport coeffii€ local time traces of the fluctuation level at the barrier
cients. WherP o is reached, a first phase transition is char-PoSition have a wide power spectrum. The dominant fre-
acterized by an average higher pressure gradient, but stfjuencies shift tp hlgher values for increasing NBI powers
with the transport dominated by the turbulence. A further("e" for increasing particle and heat flux through the trans-
increase in the power then leads the system to the “hard’POrt barrier.
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