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Fluctuation level bursts in a model of internal transport barrier formation
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A model of internal transport barriers~ITB! is developed that, in addition to the typical features of
ITB models~the phase transition character with a power threshold, barrier front propagation, etc.!,
exhibits an oscillatory/bursty behavior close to the transition. This behavior comes from the
competition between the driving and suppression mechanisms for the turbulence. The onset of the
oscillations has a power threshold,Posc, below the power threshold for the transition to the
enhanced confinement regime,Pth . In the calculations,Posc;0.5Pth . This suggests that the
oscillations avoid an early transition atPth5Posc, so any mechanism that eliminates the oscillations
may lower the transition power. ©1999 American Institute of Physics.@S1070-664X~99!00903-9#
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I. INTRODUCTION

The experiments on tokamak plasmas driven to a h
confinement regime originated in 1982 in the Axisymmet
Divertor Experiment~ASDEX! tokamak.1 This discovery led
to a series of experiments aimed at reaching and contro
new regimes of enhanced confinement that are characte
by a decrease of the plasma edge fluctuations and the co
quent formation of an edge transport barrier. Several theo
were developed to model the dynamics of the process b
on key experimental observations like its phase transi
nature,2 the correlation between the fluctuation suppress
and the formation of a radial electric field (Er) shear layer,3

and the independence of these features on the type of
chine and heating mechanism.4 Currently, the most accepte
cause for the transport improvement is the reduction or
bilization of turbulence by shearedE3B flow. Some model
realizations of this hypothesis5,6 have led to bifurcation sce
narios, where a power threshold for the transition to h
confinement can be estimated. The general assumption
these are such that they can be extended to explain the
features of the internal transport barriers~ITB!.7–9 Thus, sev-
eral models base the formation of ITB on the same mec
nism of turbulence reduction via a sheared radial elec
field.10,11 As happens with the edge transport barriers,
system reacts to the extra free energy supply by adjus
itself to reduce the transport. It is important to understand
key dynamical processes that lead to this reorganizatio
order to gain access to these regimes to control the confi
plasmas. In this respect, the advantage of studying ITB
mation is that the physics are independent of edge eff
like wall conditioning or divertor/limiter physics. Recent re
views on transport barrier formation and related issues
be found in Refs. 12, 13, and 14.

It has been observed experimentally that there are bu
in the fluctuation level accompanying the processes
internal15 and edge16 transport barrier formation. In the cas
of the reverse shear~RS! discharge presented in Ref. 15, th
bursts in the density fluctuation level coincide with a pro
8541070-664X/99/6(3)/854/9/$15.00
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imity between the shearing rate and the estimated lin
growth rate. Furthermore, the analogous discharge with
duced bursts bifurcates into an enhanced RS regime. S
fluctuation bursts have also been observed in thr
dimensional turbulence models of transition based on s
generated sheared flow.17 The results from these experimen
support the idea of a competition between the driving and
suppression mechanisms for the turbulence. In this paper
identify an oscillatory mechanism that is caused by the co
petition between the driving and suppression terms in
time evolution of the turbulence. We use an equation for
envelope of the density fluctuation level, so the oscillatio
referred to in this work should be understood as bursts of
rms fluctuation level itself. As will be discussed later, t
model oscillations show a fairly broad power spectrum.

The transition model is based on the general assump
that the shear in theE3B flow is able to suppress the tur
bulence. TheE3B shear is produced by the steepening
thermodynamic profiles of the system~e.g., the plasma pres
sure! and by the sheared rotation. The thermodynamic gra
ents are also the source of free energy driving several in
bilities. Thus, the steepening of the profiles under the eff
of the external sources of heat and particles is both the d
for the turbulence and its quenching. If there is a differe
dependence of the drive and suppression mechanisms o
pressure profile, the particle and heat fluxes can exhib
nonmonotonic function of the thermodynamic gradients~i.e.,
there is an unstable range of decreasing flux for increas
gradients!. When the power input makes the system rea
the unstable gradients, the diffusivities are reduced in suc
way that much higher gradients stand in equilibrium for t
same flux. As a consequence, threshold fluxes mark the t
sition from/to a high confinement to/from a low confineme
regime.18

The E3B flow depends on the pressure gradient a
consequently, its shear incorporates the curvature of the p
sure profile. This is important both in the process of barr
formation and in the oscillatory behavior. The poloidal19 and
© 1999 American Institute of Physics
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toroidal20,21 flows may also play an important role in th
suppression of the turbulence. In particular, the poloidal fl
evolution can also give rise to oscillatory phenomena~Ref.
17!. Here we shall focus on the role of the diamagnetic c
tribution to the radial electric field.

Because the modification of the transition threshold
found to be the result of the bursts in the turbulence,
understanding of their cause may help to find routes to
high confinement regimes with lower power thresholds. T
work is devoted to describing numerically how the bursts c
appear in a phase transition model for transport barrier
mation. The paper has been organized as follows: in Se
we give a quick survey of the transition model, summariz
the main general results; in Sec. III we describe the osc
tory behavior observed in numerical calculations; in Sec.
we gives an insight into the generation and dynamics of
oscillatory behavior; and Sec. V is the conclusions and su
mary.

II. TRANSITION MODEL

The description of the transition model is given in thr
parts:~a! the evolution of the density fluctuation levele; ~b!
the e-dependent transport coefficients; and~c! the transport
equations, which are linked toe through the transport coef
ficients.

A. Evolution of the density fluctuation level e

The transition mechanism is based on the notion of co
petition between the rates of growth of the turbulence cau
by gradient-driven instabilities and of its decorrelation v
electric field shear.22 Here, we adopt the ‘‘turbulence’’ field
e[^(ñ/n0)2&1/2, which represents the envelope of the de
sity fluctuations.21 The time evolution ofe depends on three
main components. First, in the absence of any suppres
mechanism, the fluctuation level is assumed to have a lin
drive that depends on the particular instability consider
Second, this growth is limited by the typical turbulent sa
ration mechanism, the convective nonlinearities in the tur
lent ~low confinement! state, which we represent by a
e2-dependent term. The third component is the fluctuat
suppression term, associated with the radial electric fi
shear. Including a diffusive term, the general form for t
time evolution ofe is then

~evolution!5~linear drive!2~saturation!

2~suppression!1~diffusion).

Following this scheme we have, in cylindrical coord
nates,

]e

]t
5S g2a1e2

vs
2

g D e1
1

r

]

]r S rD e

]e

]r D , ~1!

whereg is the linear growth rate for the particular instabili
andDe is the turbulence diffusivity.23 The coefficienta1 of
the saturation term is taken generically asa15( k̄urs)cs /D,
whereku is the poloidal wave number with an overbar ind
cating the spectral average;rs5cs /V i is the sound Larmor
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radius;cs5(Te /mi)
1/2 is the ion sound velocity; andD is the

characteristic scale length of the turbulence, which ha
functional dependence on the thermodynamic profiles
cording to the instability model used. From Eq.~1!, the
L-mode level of fluctuations in equilibrium ise5g/a1 , as-
suming that the diffusion term is not determining thee pro-
file. In fact, it is a requirement of this transition model th
the driving part in Eq.~1! is dominant, as the time scales o
the fluctuation level evolution should be of the order ofg21.
Therefore, different levels of saturation can be obtained
pending on the turbulence model chosen~i.e., theg andD!.
A list of some of the possible choices is given in Diamo
et al.24 The turbulence suppression term includes theE3B
shearing ratevs . We adopt the form of the shearing rate in
tokamak,11,25 vs5(Dr 0 /rDu)(r /q)(]/] r)(qVE /r ), where
q5rBw /RBu ~w andu refer to the toroidal and poloidal com
ponents!; VE5uE3Bu/B2 is theE3B flow velocity; andDr 0

and rDu are the correlation lengths of the ambient turb
lence in the radial and poloidal directions. Following Hah
and Burrell,25 we assume that the sign ofVE does not inter-
vene in the suppression of fluctuations. The suppression
curs when the shearing rate exceeds the decorrelation ra
the ambient turbulence. Therefore, we use the expres
squared and then normalize it to the growth rate to giv
threshold condition for the transitionvs;g in Eq. ~1!. We
have embedded the ratio of the correlation lengths in
coefficient a2 . From scale length estimates we obtaina2

;0.1. Within this order of magnitude, we usea2 as a free
parameter. Note that we haveVE;Er , whereEr is the radial
electric field, and, therefore, its radial derivativeEr8 is largely
responsible for changes invs .

The radial electric fieldEr enters in the definition of the
shearing rate. It is determined from the radial force bala
equation in steady state:

Er5
1

Zueun
]P

]r
2VwBu1VuBw , ~2!

where we are assuming, in accordance with the fluid
proach to the problem, that the radial force balance
achieved in a magnetohydrodynamic~MHD! time scale,
faster than the diffusion time scales in the problem. In E
~2!, Z is the charge state of the main ions,e is the electron
charge,P is the ion pressure,V is the ion velocity, andB is
the magnetic field.w andu refer, respectively, to the toroida
and poloidal components. As mentioned previously, bothVu

andVw can introduce interesting phenomena to the proble
but we shall discuss only the“P contribution toEr .

B. e-dependent transport coefficients

The anomalous transport depends on the level of fluc
tions. To find this relationship, we need a model for t
turbulent transport. Since we are interested in the dynam
of ITB, we need a model that relates the growth rate to
profiles of the system in the confinement region of t
plasma. Theh i model seems to describe many of the featu
of L-mode plasmas.26 Here we use the toroidalh i model of
Biglari et al.,27 from which we obtain the main dependenci
for the growth rate and the width of the instabilities:
e or copyright; see http://pop.aip.org/about/rights_and_permissions
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g;kurs

cs

a
f ~ ŝ!S a

RD 1/2S a

Ln
1

a

LT
D 1/2S Ti

Te
D 1/2

,

~3!

D;rsAq

ŝ FRS 1

Ln
1

1

LT
D Ti

Te
G1/4

.

Here,R anda are the major and minor radii of the tokama
Ln5n(]n/]r )21; LT5Ti(]Ti /]r )21; and ŝ5(1/q)
3(]q/]r ) is the magnetic shear. The functionf ( ŝ) param-
etrizes the effect of magnetic shear stabilization. The ano
lous transport coefficients must bee dependent in our model
Based on theh i model we write the fluctuation driven io
energy transport in the radial direction,x i'^ñ r p̃&/
(2]P0 /]r ), and then relate the fluctuating pressure,p̃, and
E3B radial velocity, ñ r , with e. The resulting anomalou
part in the ion thermal conductivity is

x ih i
5D0e25kurscsaS a

RD 21/2S a

Ln
1

a

LT
D 21/2S Ti

Te
D 1/2

e2,

~4!

where we have taken Eq.~3! as exact equations. In cons
quence, we admit a free parameter~;1! in front of Eq.~4! to
adjust the transport. We obtain the electron thermal cond
tivity and the particle diffusivity in an analogous manne
Then we have, for each field, a transport coefficient in
form D5Dn1D0e2, whereDn is a background neoclassic
transport andD0 is a function of the thermodynamic profile
and their gradients obtained from theh i model. The neoclas
sical transport, being small compared to its anomalous co
terpart, has been taken to be a constant. We conside
transport coefficientDe in Eq. ~1! as a control of the mini-
mum spatial scales allowed fore, which should not be less
than the scale length for the turbulence, andDe is taken to be
constant in space and time and of the same order as
particle diffusivity.

C. Transport equations

Equation~1! has been coupled to different sets of tran
port equations, ranging from a two-field~e, density! simple
model to a comprehensive transport code with evolving d
sity, ion and electron temperatures, current, toroidal and
loidal momenta, and evolving flux surfaces. However,
oscillatory features ofe seem to be intrinsic to all system
when Eq.~1! is coupled to the diffusive fields through th
e-dependent transport coefficients. Therefore, and for
sake of consistency, all the results presented in this pa
correspond to the same system of transport equations, w
has been described in detail by Newmanet al.21 It includes
the electron density and the ion and electron tempera
equations. There is no current evolution, and for our p
poses the external sources~heat and particles! have a pre-
scribed Gaussian shape centered at the magnetic axis.
parameters correspond to reversed shear Tokamak Fu
Test Reactor~TFTR!28 discharges. To take into account th
stabilizing effect of the negative shear,29 we prescribed a
radial functionf ( ŝ) @see Eq.~3!#, requiring thatg is lowered
in the region of reverse shear by a factor;0.1. As discussed
by Newmanet al.,21 this causes the transition to be trigger
at approximately the shear reversal position (qmin). The func-
oaded 29 Aug 2011 to 137.229.53.151. Redistribution subject to AIP licens
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tion f ( ŝ) reflects the fact thath i instabilities are greatly re-
duced in the reverse shear~RS! region, although not neces
sarily suppressed.30 Therefore, the profiles steepen mo
rapidly in the region of RS, allowing for a largervs , where
g is reduced. In the context of our model this explains t
benefit of RS regimes to access high confinement mode

An example of transition with increasing power is show
in Fig. 1. The profiles correspond to the pretransition a
post-transition profiles of the anomalous thermal conduc
ity and the pressure for a calculation in which the power w
slowly ramped up. The sudden increase in the confineme
a result of the suppression of the fluctuation level~i.e., the
anomalous transport! after the critical conditionvs;g has
been locally reached. The existence of a threshold co
from the different functional dependence ofvs andg on the
shape ofP, but not on the particular dependencies. It
enough that locallyvs can grow faster thang as the power
input to the system is increased. Whenvs.g, the solution to
Eq. ~1! is e50, sincee is positive definite. This automati
cally eliminates the anomalous transport@Eq. ~4!# and the
confinement improves, steepening further the pressure
causing an even larger ratiovs

2/g2. Although theh i model
used for these results requires ane2 dependence of the trans
port, a linear dependence also gives transition dynamics
we have found with other model realizations.

Newmanet al.21 discuss in more detail some features
the transition model within this set of transport equatio
These include the following: The system exhibits hystere
giving a lower-power thresholdPth for the backward transi-
tion ~from high to low confinement! than for the forward
transition~low to high!. The time scale associated with th
forward transition is found to be faster than the scale for
backward transition. Dependencies of thePth have been
found: Pth;Ba; 1,a,3; andPth;n, whereB is the toroi-
dal magnetic field andn is the line-averaged density. Th
different exponentsa depend on the relative evolution ofTi

andTe .

FIG. 1. Radial profiles of the pressure and the anomalous thermal con
tivity x i ~ion channel! calculated for neutral beam injection~NBI! powers
slightly below and above the threshold power for the transition. After
transition, the totalx i is practically reduced to its neoclassical~background!
level in the region of steepest pressure gradients.
e or copyright; see http://pop.aip.org/about/rights_and_permissions
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III. OSCILLATORY BEHAVIOR

An intrinsic feature of the transition model is that th
transition is preceded by oscillations ine ~Fig. 2! with a
power thresholdPosc. The possibility that these oscillation
have a numerical origin was studied extensively. These s
ies have shown that this is not the case. One of the diffic
ties found is that the system tends to make use of the sm
est spatial scales,l, possible, which can cause gr
separation problems unless a limit is set forl in some way
@for example, throughDe in Eq. ~1!#. As noted previously,e
represents the envelope of the density fluctuation level
when we refer to oscillations ine it should be regarded a
bursts in the fluctuation level. In the calculations, the os
latory behavior starts at, roughly, half the power thresh
for the transition. A systematic study of the onset condit
givesPosc5(0.5060.09)Pth .

Figure 3 is a contour plot of the time evolution of thee
profile showing these oscillations and their propagation.
tially, e is steep in the region close to the shear reve
position (r /a50.35 in this example!, which coincides with

FIG. 2. Time traces of the density fluctuation level atr /a50.25 and the
energy confinement time in a calculation where the neutral beam injec
~NBI! power was slowly ramped up. The critical conditionvs;g is met at
Pth'18 MW. The oscillatory activity starts atPosc'9 MW.

FIG. 3. Onset of the oscillations. The system is allowed to evolve from
equilibrium (t50) at a power slightly abovePosc. Data values range from
zero ~black! to the maximum~white!.
oaded 29 Aug 2011 to 137.229.53.151. Redistribution subject to AIP licens
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the region of separation between low@through f ( ŝ)] and
high g. The steepest gradients in the pressure profile are
found in this region, which is where the shearing rate reac
its maximum value, thus giving the maximum ratiovs

2/g2.
When and where the peak of the ratio~Fig. 4! reaches a
threshold value, the system becomes unstable giving ris
the oscillations shown in Fig. 3. This threshold value for t
maximum ratio before the oscillations start has been foun
be vs

2/g2'0.3 in all our calculations.
The oscillations ine are translated, through the anom

lous transport, into oscillations in the gradient and the c
vature of the pressure profile~i.e., the ratiovs

2/g2 itself de-
velops propagating oscillations!. For this reason, the region
of a non-negligible ratio around the peak in the ratio~see
Fig. 4! can easily reach the unstable limit after the first pu
is initiated, which implies that the point of origin of th
subsequent oscillations moves inward, as illustrated in Fig
The oscillations rapidly diffuse away when they reach t
region of large growth rate as a result of both the enhan
transport~that tends to smooth the pressure profile! and the
small shearing rate. Therefore, the radial extent of the os
lations depends on the peakedness of the ratiovs

2/g2.
When the power approachesPth , the ratio can surpas

locally and periodically the transition threshold valuevs

;g. However, the fast propagation prevents the feedb
mechanism from having time to build up the pressure pro
enough to trigger the transition. Furthermore, the outw
propagating oscillations cause an added effective transpo
particles and heat across the region of steep gradients to
region of poor confinement outsideqmin ~Fig. 5!. This propa-
gation increases the power needed to reach the critical
dients. Therefore, the propagation velocity,Vp , plays an im-
portant role in delaying the formation of a transport barri
The relationDe;l2f 5Vp

2/ f , wherel is the average wave
length of the oscillations andf is their frequency, holds rea
sonably well in this model@Fig. 6~a!#. On the other hand, we
have f ;g, which gives a dependence close toVp;ADeg
@Fig. 6~b!#. De sets a limit for the minimuml attainable, but
does not have any physical meaning otherwise. Thus,Vp is
fundamentally governed by the growth rate in this model

The data in Fig. 6~b! require some comment: At consta

n

e

FIG. 4. The radial profile of the ratio between the driving and suppress
terms in the fluctuation level evolution equation just before the onset of
oscillations.
e or copyright; see http://pop.aip.org/about/rights_and_permissions
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power we obtainedVp;De
0.260.1. However, a modification

in De affects the transport throughVp , thus also affectingl.
We decided to calculate the dependencies ofVp at constant
Pth2P, that is, constant distance to the critical point in p
rameter space, assuming the power as the control param
In this way we obtainedVp;De

0.460.1 for Pth2P'0 ~just
before the transition! andVp;De

0.560.2 for Pth2P'10. This
last case corresponds to the data in Fig. 6.

FIG. 5. Radial profiles of the density,n, and the effective particle diffusivity
~calculated asDeff52*rS(r)dr/“n) immediately before the transition fo
two cases characterized by different propagation velocities of the osc
tions in the fluctuation level.

FIG. 6. ~a! The relation between the diffusivityDe and the parameterl2f ,
wherel is the wavelength of the oscillations andf is their frequency.~b!
Velocity at which the oscillations ine propagate as a function of the param
eterADeg, whereg is the local linear growth rate andDe is the diffusivity
in the e-evolution equation.
oaded 29 Aug 2011 to 137.229.53.151. Redistribution subject to AIP licens
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ter.

After the transition, there is a region of suppressede in
which vs.g. The point wherevs;g (r /a;0.35 in Fig. 1!
limits the region of suppressed fluctuations, and can be s
as the location of the transport barrier. Therefore, just outs
the transport barrier the growth rate and the shearing rate
close to each other, giving a ratio above the threshold for
onset of the oscillations. As a result, the oscillations at
barrier front should be present, even after the transition. T
was numerically tested in a number of cases, one of whic
shown in Fig. 7. The figure is a contour plot of thee profiles
around the time of the transition (t51.5 s) and shows both
the precursor bursts around the location of near critical g
dients and the bursty behavior at the barrier after the tra
tion. Note also that, at the moment of the transition, there
a transient reduction in the fluctuation level that almo
reaches the plasma edge. This is caused by a transient re
tion in the fluxes when the transport barrier is formed.

From the time trace ofe at the barrier front a Fourie
time series analysis was performed to find the possible
pendence of the frequency of the oscillations on the pow
Figure 8 shows the power spectrum ofe evaluated atr /a

a-

FIG. 7. A contour plot of the time evolution of thee profiles@see Eq.~1!# as
the neutral beam injection~NBI! power is slowly ramped up from below to
above the transition power thresholdPth . The transition is produced att
'1.5 s and is preceded by bursts ine ~not resolved in this time scale! around
the radial position that eventually becomes the barrier front. After the tr
sition, the bursty behavior persists at the barrier edge.

FIG. 8. The power spectrum of the time trace ofe(r /a50.39) att51.6 s
~see Fig. 7!. The location corresponds to the barrier front. The signal h
been averaged.
e or copyright; see http://pop.aip.org/about/rights_and_permissions
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50.39 in Fig. 7, which is characterized by a broadband sp
trum as a consequence of the strong nonlinearities of
system. Because the variablee represents the envelope of th
density fluctuation level, its local frequency spectrum~Fig.
8! indicates that this envelope itself has a rather bursty
havior. When the same analysis is performed for increas
neutral beam injection~NBI! powers,PNBI , the frequency
associated with the maximum amplitude in the power sp
trum, f max, shifts to higher values~Fig. 9!. A power law fit
gives f max;PNBI

2 , although the data are compatible with
linear fit. From dimensional estimates, the power fl
through the transport barrier is proportional to the therm

FIG. 9. Dependence of the frequency associated to the maximum ampl
in the power spectrum ofe, f max, on the neutral beam injection~NBI! power
at the transport barrier front. The dashed line is a power law fit with
result shown.
oaded 29 Aug 2011 to 137.229.53.151. Redistribution subject to AIP licens
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conductivity@Eq. ~3!#. Using the saturation condition outsid
the barriere5g/a1 , we see from Eqs.~3! and~4! thatg;x.
As mentioned previously, there is also a roughly linear re
tion betweeng and f, which explains the increase inf for
increasingPNBI .

IV. CHARACTERISTIC PROPERTIES OF THE
OSCILLATIONS

The fact that there is a threshold for the onset of
oscillations independent of the transport model suggests
there is an intrinsic mechanism, provided by how Eq.~1!
determines the evolution of the anomalous transport,
makes the system unstable when the shearing rate and
growth rate are close enough to each other. Two quest
are addressed here:~1! What is the dynamical mechanism fo
the oscillations? and~2! why do the pulses propagate? T
gain insight on question~1!, the stability of the system ha
been checked by perturbinge locally and following its evo-
lution. It is found that the imposed pulse damps away@Fig.
10~a!# with a time decay constant that decreases with
local value of the ratiovs

2/g2. This decay constant eventu
ally becomes negative@Fig. 10~b!# for values of the ratio
above a threshold. These figures show the value of boe
and the ratio atr /a50.25, where the perturbation is gene
ated. The maximum ratio in these cases corresponds tor /a
50.31 and its value for the case, Fig. 10~b!, was
vs

2/g2(0.31)50.28. Although a negative time decay consta
would cause divergent oscillations, the damping mechani
set a limit for the amplitude. This amplitude has been fou
to increase with the power as well, which can be translate
a dependence between the amplitude and the value of
local time average of the ratio. Figure 11 is a plot of t

de

e

-

d

s by

.

FIG. 10. The time traces ofe and the ratiovs
2/g2 at

(r /a50.25). Case ‘‘a’’ shows the relaxation of an im
posed pulse ine at t50 ~centered inr /a50.25) starting
from the equilibrium slightly below the power threshol
for the onset of the oscillatory behavior,Posc. In case
‘‘b,’’ the power is increased to slightly overPosc and
the system becomes unstable, generating the pulse
itself ~i.e., it becomes oscillating!. The amplitude of
these oscillations is limited by the nonlinear damping
e or copyright; see http://pop.aip.org/about/rights_and_permissions
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amplitude of the oscillations for increasing~circles! and de-
creasing~filled squares! power. The plot is reminiscent of
Hopf bifurcation diagram, where there is a threshold for
onset of a finite-amplitude limit cycle and an inaccessi
region that translates into the system exhibiting hystere
Note that the limit cycle description may apply to a featu
of the system that is dominant in this small region of para
eter space but that is really embedded in a more complic
dynamical system.

The explanation for the existence of the thresholdPosc is
that the fluctuation level is able to respond to slight pert
bations in the profiles only when the shearing term in Eq.~1!
is close enough to the growth rate. This is a response to
feedback mechanism provided by thee-dependent anoma
lous transport: A perturbation ine is translated into a pertur
bation in the pressure profile~i.e., in its gradient!, which, in
turn, affectsEr @see Eq.~2!#, and consequentlyvs . The
feedback is closed through Eq.~1!. When the ratio is below
the threshold, a perturbation ine will also affect the pressure
profile, but the feedback is not strong enough to cause
amplified reaction back on the fluctuation level, in whi
case the perturbation decays with the relaxation of the p
sure profile as shown in Fig. 10~a!. It has been suggested31,32

that the“Ti contribution to“P/n5“Ti1(Ti /n)“n in Er

@Eq. ~2!# should be canceled by the neoclassical poloi
velocity (Vu;2“Ti) in the collisionless regime.33 In this
case the threshold power for the transition can increase
nificantly if the same suppression coefficient,a2 , is used,
but we have found that the oscillatory mechanism is s
operative.

If the pulses could not move away from the near-critic
region, the threshold for the transition would actually bePosc

because of the dynamo mechanism provided by the“P con-
tribution to the shearing rate, that is, oncee starts to locally
decrease, the local transport is reduced and the profiles b
up, further increasingvs with respect tog. To investigate
this aspect, we turn to the remaining question of what ma
the pulses propagate. To clarify this we make explicit
dependencies ofg andvs on the pressure gradient:

FIG. 11. The amplitude~maximum departure from the steady value! of the
ratio vs

2/g2 at r /a50.25 as a function of increasing~circles! and decreasing
~filled squares! neutral beam injection~NBI! power. The threshold for the
onset of the oscillations is higher in the forward case, and they appear
a finite amplitude. In the backward case, the oscillations disappear fro
much smaller amplitude, although it may also be finite.
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where we have dropped the flows in Eq.~2!. In a smooth
function with an inflection point~like the pressure profile!,
there is a natural shift between the maxima for the first a
second derivatives. The expressions in Eq.~5! clearly show
that this can cause a shift between the maxima ing andvs

whenever the second derivatives are not negligible compa
to the first derivatives. In this case, a local increase in¹2P
~an increase invs) will cause a local reduction of the trans
port. This, in turn, will cause an enhancement of the lo
gradient~and hence ofg!, pushing the maxima in¹2P to
both sides of the inflection point, which will shift the sam
mechanism to other radial locations. Obviously, this can o
occur as long as the reaction invs can affect the value ofe
in the manner explained in the previous paragraph. In
absence of the curvature term in Eq.~5! there is no possible
propagation, although the transition is still possible. An e
ample of this is given in Fig. 12, where the term¹2P was
eliminated from Eq.~5!. The transition is still possible sinc
the dependencies ofg and vs on “P in Eq. ~5! are still
different. Nevertheless, a much higher power is needed
reach the transition, which proves that the¹2P term is an
important contribution to the shearing rate in our calcu
tions. This is clear when Fig. 12 is compared to Fig. 2. Bo
calculations are similar, except that the suppression co
cient used to obtain Fig. 12 isa250.2 instead ofa250.1 in
Fig. 2. Using the samea2 for cases with and without¹2P in
vs would give even larger differences inPth . The system
shows no oscillatory behavior without¹2P, but the pretran-
sition maximum ratiovs /g turns out to be about the same
for the onset of the oscillations when¹2P is present. This
means that, effectively, the instability limit that causes t
oscillatory behavior through an amplification mechanism
now responsible for pushing the system to the transit
(vs /g51) from a state with a ratio ofvs /g,1. As sug-
gested before, the propagation mechanism through

ith
a

FIG. 12. Time traccs ofe at r /a50.25 and the energy confinement time
a calculation with the neutral beam injection~NBI! power slowly ramped up
for a case without the¹2P contribution to the shearing rate.
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gradient–curvature interplay protects the fluctuation le
from an early rollover to the transitioned state by pushing
pulses out to the region of highg, where they diffuse away
very quickly. This situation is depicted in Fig. 13, where w
trace schematically the local dependence ofe, near the RS
region, on the input power: in the absence of oscillations,
solutions with finite and null fluctuation levels are connec
through only one unstable region~dashed lines! starting at
Posc, in which casePth5Posc ~see also Fig. 12!. If the oscil-
lations are present, the first unstable region drives the sys
to the oscillatory phase, characterized by an initially low
average level of fluctuations, which can be sustained du
the effective transport caused by the oscillations themse
~see also Fig. 2!. A larger power is needed to access t
second phase transition.

In summary, three stable phases~low confinement, oscil-
latory regime, and high confinement! can be accessed usin
the input power as a control parameter. The schematic in
14 shows these three phases in terms of2“P and the input
power. As the power is increased, the local gradient
creases at a rate dictated by the anomalous transport co
cients. WhenPosc is reached, a first phase transition is ch
acterized by an average higher pressure gradient, but
with the transport dominated by the turbulence. A furth
increase in the power then leads the system to the ‘‘ha
transition, characterized by a local suppression of the fl
tuation level and, consequently, of the anomalous transp

V. CONCLUSIONS

We have reviewed, from a numerical point of view, t
oscillatory behavior of the envelope of the density fluctu
tion level in a model of the transition to the high confineme
regime based onE3B shear flow suppression of the turb
lence. In addition to the threshold for the transition, anot
lower threshold for the onset of oscillations in the envelo
of the density fluctuation level was found in the region whe
the shearing rate~suppression of the turbulence! is compa-
rable to the growth rate~drive of the turbulence!. In this case,
the evolution of the shearing rate can indeed affect the le
of fluctuations and, therefore, the anomalous transport. T
in turn, modifies the pressure profile. There is a feedb

FIG. 13. Schematic variation of the local density fluctuation level a
function of the input power, depending on whether the oscillations
present.
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loop, caused by the nonlinear dependence of the shea
rate on the pressure profile, that can be positive for a gi
closeness between the rates of shearing and growth. In
case, there is an amplification process limited by the non
ear damping in the fluctuation level evolution equation.
causes perturbations that propagate from the critical reg
generating oscillations with a speed that depends mainly
the local growth rate,Vp;g1/2. The mechanism that cause
this propagation is the interplay between the gradient and
curvature of the pressure profile. The onset of the oscillati
prevents the system from undergoing an early transition
the enhanced confinement mode.

The extent and structure of the oscillations in the en
lope of the fluctuation level depend on the details of the
of transport equations. The oscillations start when and wh
the system starts to undergo the phase transition, but
oscillations themselves prevent it by expelling the steep g
dients to the region of high transport and convectively
creasing the flux of heat and particles. If the power is furth
increased, the transition can take place. After the transit
the local time traces of the fluctuation level at the barr
position have a wide power spectrum. The dominant f
quencies shift to higher values for increasing NBI powe
~i.e., for increasing particle and heat flux through the tra
port barrier!.
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