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Evidence for Self-Organized Criticality in a Time
Series of Electric Power System Blackouts

Benjamin A. Carreras, David E. Newman, Ian Dobson, Senior Member, IEEE, and A. Bruce Poole

Abstract—We analyze a 15-year time series of North American
electric power transmission system blackouts for evidence of self-
organized criticality (SOC). The probability distribution functions
of various measures of blackout size have a power tail and rescaled
range analysis of the time series shows moderate long-time corre-
lations. Moreover, the same analysis applied to a time series from
a sandpile model known to be self-organized critical gives results
of the same form. Thus, the blackout data seem consistent with
SOC. A qualitative explanation of the complex dynamics observed
in electric power system blackouts is suggested.

Index Terms—Blackouts, complex systems, power system secu-
rity, reliability, risk analysis, time series.

I. INTRODUCTION

E LECTRIC power transmission networks are complex
systems that are commonly run near their operational

limits. Major cascading disturbances or blackouts of these
transmission systems have serious consequences. Individually,
these blackouts can be attributed to specific causes, such as
lightning strikes, ice storms, equipment failure, shorts resulting
from untrimmed trees, excessive customer-load demand, or
unusual operating conditions. However, an exclusive focus on
these individual causes can overlook the global dynamics of
a complex system in which repeated major disruptions from
a wide variety of sources are a virtual certainty. We analyze a
time series of blackouts to probe the nature of these complex
system dynamics.

Manuscript received May 28, 2002; revised March 18, 2004. Part of this work
was coordinated by the Consortium for Electric Reliability Technology Solu-
tions and was funded by the Assistant Secretary for Energy Efficiency and Re-
newable Energy, Office of Power Technologies, Transmission Reliability Pro-
gram of the U.S. Department of Energy under Contract DE-AC05-00OR22725
and Contract DE-A1099EE35075 with the National Science Foundation. Part
of this work was carried out at Oak Ridge National Laboratory, managed by
UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-
00OR22725. The work of I. Dobson and D.E. Newman was supported in part
by the National Science Foundation under Grant ECS-0085711, Grant ECS-
0085647, Grant ECS-0214369 and Grant ECS0216053. This paper was recom-
mended by Associate Editor I. A. Hiskens.

B. A. Carreras is with Oak Ridge National Laboratory, Oak Ridge, TN 37831
USA (e-mail: carrerasba@ornl.gov).

D. E. Newman is with the Physics Department, University of Alaska, Fair-
banks, AK 99775 USA (e-mail: ffden@uaf.edu).

I. Dobson is with the Electrical and Computer Engineering De-
partment, University of Wisconsin, Madison, WI 53706 USA (e-mail:
dobson@engr.wisc.edu).

A. B. Poole is with the Federal Energy Regulatory Commission, Washington,
DC 20426 USA (e-mail: dobson@engr.wisc.edu).

Digital Object Identifier 10.1109/TCSI.2004.834513

The North American Electrical Reliability Council (NERC)
has a documented list summarizing major blackouts1 of the
North American power grid [1]. They are of diverse magnitude
and of varying causes. It is not clear how complete this data
is, but it is the best-documented source that we have found for
blackouts in the North American power transmission system.
An initial analysis of these data [6] over a period of five years
suggested that self-organized criticality (SOC) [2], [3], [23]
may govern the complex dynamics of these blackouts. Here,
we further examine this hypothesis [7], [13] by extending the
analysis to 15 years. These extended data allow us to develop
improved statistics and give us longer time scales to explore.
We compare the results to the same types of analysis of time
sequences generated by a sandpile model known to be SOC.
The similarity of the results is quite striking and is suggestive
of the possible role that SOC plays in power system blackouts.
A plausible qualitative explanation of SOC in power system
blackouts is outlined in Section VI.

As an introduction to the concept, an SOC system is one in
which the nonlinear dynamics in the presence of perturbations
organize the overall average system state near, but not at, the
state that is marginal to major disruptions. SOC systems are
characterized by a spectrum of spatial and temporal scales of
the disruptions that exist in remarkably similar forms in a wide
variety of physical systems [2], [3], [23]. In these systems, the
probability of occurrence of large disruptive events decreases as
a power function of the event size. This is in contrast to many
conventional systems in which this probability decays exponen-
tially with event size.

It is apparent that large blackouts are rarer than small black-
outs, but how much rarer are they? Fig. 1 shows the probability
distribution of blackout size from the North American blackout
data that is discussed in detail in Section II. Fig. 2 shows a prob-
ability distribution of number of line outages obtained from a
blackout model that represents cascading failure and complex
dynamics [11]. These data suggest a power law relationship
between blackout probability and blackout size. For compar-
ison, Fig. 2 also shows the binomial probability distribution of
number of line outages and its exponential tail that would be
obtained if the line outages were independent. Blackout risk is
the product of blackout probability and blackout cost. Here, we
assume that blackout cost is roughly proportional to blackout
size, although larger blackouts may well have costs (especially

1The NERC data arise from government incident reporting requirements. The
thresholds for the report of an incident include uncontrolled loss of 300 MW
or more of firm system load for more than 15 min from a single incident, load
shedding of 100 MW or more implemented under emergency operational policy,
loss of electric service to more than 50 000 customers for 1 h or more, and other
criteria detailed in the U.S. Department of Energy form EIA-417.
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Fig. 1. Log–log plot of PDF of the number of customers unserved comparing
the total data set with the data excluding the weather related events.

Fig. 2. Log–log plot of PDF of number of line outages from blackout model
compared with binomial random variable with exponential tail.

indirect costs) that increase faster than linearly. In the case of
the exponential tail, large blackouts become rarer much faster
than blackout costs increase, so that the risk of large blackouts
is negligible. However, in the case of a power law tail, the larger
blackouts can become rarer at a similar rate as costs increase,
and then the risk of large blackouts is comparable to, or even
exceeding, the risk of small blackouts [11]. Thus power laws in
blackout size distributions significantly affect the risk of large
blackouts and the evidence for power laws in real blackout data
that we address in this paper is pertinent. Standard probabilistic

techniques that assume independence between events imply ex-
ponential tails and are not applicable to systems that exhibit
power tails.

Large blackouts are typically caused by long, intricate cas-
cading sequences of rare events. Dependencies between the first
few events can be assessed for a subset of the most likely or
anticipated events and this type of analysis is certainly useful
in addressing a part of the problem (e.g., [26]). However, this
combinatorial analysis gets overwhelmed and becomes infea-
sible for long sequences of events or for the huge number of all
possible rare events and interactions, many of which are unantic-
ipated, that cascade to cause large blackouts. One aim of global
complex systems analysis of power system blackouts is to pro-
vide new insights and approaches that could address these chal-
lenges. As a first step toward this aim, this paper analyzes ob-
served blackout data and suggests one way to understand the
origin of the dynamics and distribution of power system black-
outs. Indeed, we suggest that the slow, opposing forces of load
increase and network upgrade in response to blackouts shape
the system operating margins so that cascading blackouts occur
with a frequency governed by a power law relationship between
blackout probability and blackout size. Moreover, we discuss
the dynamical dependencies and correlations between blackouts
in the NERC data.

II. TIME SERIES OF BLACKOUT DATA

We have analyzed 15 years of data for North America from
1984 to 1998 that is publicly available from NERC [1]. There
are 427 blackouts in 15 years and 28.5 blackouts per year.
The average period of time between blackouts is 12.8 days.
The blackouts are distributed over the 15 years in an irregular
manner. We have detected no evidence of systematic changes in
the number of blackouts or periodic or quasi-periodic behavior.
However, it is difficult to determine long term trends or periodic
behavior in just 15 years of data. We constructed time series
from the NERC data with the resolution of a day for the number
of blackouts and for three different measures of the blackout
size. The length of the time record is 5479 days. The three
measures of blackout size are:

1) energy unserved (MW h);
2) amount of power lost (MW);
3) number of customers affected.

Energy unserved was estimated from the NERC data by multi-
plying the power lost by the restoration time.

III. ANALYSIS OF BLACKOUT TIME SERIES

In order to gain an understanding of the dynamics of a system
from analysis of a time series, one must employ a variety of
tools beyond basic statistical analysis. Among other measures
which should be employed, the tails of the probability distri-
bution function (PDF) should be investigated for normality and
frequency spectra should be viewed in order to begin to look at
dependencies in the time domain. The time domain is particu-
larly important as the system dynamics are expressed in time.
Periodicities and long-time correlations must both be exam-
ined and compared to systems with known dynamics. We will
present details of the analysis of the PDFs later; however, the
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Fig. 3. Complementary cumulative frequency of the number of customers
unserved.

first striking characteristic of the data is the power law tail of
these PDFs. This power law tail is shown in Fig. 1, where we
have plotted the PDF of the number of customers unserved for
all events (the squares) on a log–log plot. The PDF falls off with
a power of approximately , which implies a divergent vari-
ance. The PDF is clearly not a distribution with exponential tails.
In this paper, the PDFs are noncumulative PDFs obtained by
binning the data.2 An alternative way to estimate the distribution
is to plot the number of blackouts with more than customers
unserved against to give the complementary cumulative fre-
quency shown in Fig. 3. The empirical data in Fig. 3 falls off
with a power of approximately (all tail points considered)
or (last seven tail points neglected due to sparse data). The
relationship for an exact distribution is that a power law expo-
nent in a PDF yields a power law exponent of in the
corresponding complementary cumulative frequency. Thus the
power law exponents obtained from Figs. 1 and 3 are consistent.

Looking in the time domain, a time series is said to have
long-range dependence if its autocorrelation function falls off
asymptotically as a power law. This type of dependence is diffi-
cult to determine because noise tends to dominate the signal for
long time lags. One way to address this problem is the rescaled
range (R/S) statistics proposed by Mandelbrot and Wallis [24]
and based on a previous hydrological analysis by Hurst [21].
The R/S statistics consider blocks of successive points in the
integrated time series and measure how fast the range of the
blocks grows as increases. The calculation of the R/S sta-
tistics is further described in the Appendix.

It can be shown that in the case of a time series with
an autocorrelation function that has a power law tail, the R/S

2The bins are chosen to require a minimum number of points per bin. The
minimum number of points per bin is reduced when the weather-related black-
outs are excluded.

TABLE I
HURST PARAMETERH FROM R/S ANALYSIS OF BLACKOUT SIZE TIME SERIES

statistic scales proportionally to , where is the Hurst ex-
ponent. Thus, is the asymptotic slope on a log–log plot of
the R/S statistic versus the time lag. If , there
are long-range time correlations, for , the series
has long-range anticorrelations, and if , the process
is deterministic. Uncorrelated noise corresponds to .
A constant parameter over a long range of time-lag values
is consistent with self-similarity of the signal in this range [32]
and with an autocorrelation function that decays as a power of
the time lag with exponent .

We have determined the long-range correlations in the 15 year
blackout time series using the R/S method. The time series has
5479 days and 427 blackouts. The calculated Hurst exponents
[21] for the different measures of blackout size are shown in
Table I. The values are obtained by fitting over time lags
between 100 and 3000 days. In this range, the behavior of the
R/S statistic is power like. The values of obtained for all the
time series are close to 0.6. This seems to indicate that they are
all equally correlated over the long range. These values of
are somewhat lower than the previously obtained values [6], but
still significantly above 0.5. Note that the “events” in the time
series are the events that have produced a blackout and not all
the events that occurred. The latter are supposed to be random
( ); however, the events that produce a blackout may
indeed have moderate correlations because they depend on the
state of the system.

A method of testing the independence of the triggering events
has been suggested by Boffetta et al. [4]. They evaluated the
times between events (waiting times) and argued that the PDF
of the waiting times should have an exponential tail. Such is
clearly the case for the waiting times of sandpile avalanches
(Fig. 4). In the case of waiting times between blackouts, we also
have observed the same exponential dependence of the PDF tail
(Fig. 5). This observation is confirmed in [13]. This strengthens
the contention that the apparent correlations in the events come
from SOC-like dynamics within the power system rather than
from the events driving the power system dynamics.

Examining the R/S results in more detail, Fig. 6 shows the R/S
statistic for the time series of the number of customers affected
by blackouts. The average period of time without blackouts is
12.8 days, hence, in looking over time lags of this order we typ-
ically find either one blackout or none. For the shorter time lags
less than 50 days, we are unable to get information on correla-
tions between blackouts because the time intervals are too short
to contain several blackouts. We see a correlation between ab-
sence of blackouts, and because these time intervals tend to only
contain absences of blackouts, we see close to 1 (trivially de-
terministic). For time lags above 50 days, the R/S shows a power
behavior and gives a correct determination of blackout correla-
tion. The R/S calculation is sensitive to this change in regime
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Fig. 4. Distribution of waiting times between avalanches in a sandpile for two
values of the probability of adding grains of sand.

Fig. 5. PDF of the waiting times between blackouts.

and there is an obvious change of behavior for time intervals
around 50 days. An alternative method of determining correla-
tions is the scaled window variance method. We do not use the
scaled window variance method in this paper because in this
method, the correlations between absences of blackouts skew
the correlations between blackouts at larger time lags [7].

IV. EFFECT OF WEATHER

Approximately half of the blackouts (212 blackouts) are char-
acterized as weather related in the NERC data. In attempting
to extract a possible periodicity related to seasonal weather, we
consider separately the time series of all blackouts and the time
series of blackouts that are not weather related. An important

Fig. 6. R/S for the number of customers affected by blackouts.

TABLE II
HURST PARAMETERH FOR MEASURES OF BLACKOUT SIZE COMPARING ALL

DATA WITH DATA EXCLUDING BLACKOUTS TRIGGERED BY WEATHER

issue in studying long-range dependencies is the possible pres-
ence of periodicities. Both R/S analysis and spectral analysis of
this data do not show any clear periodicity. However, since the
weather related events may play an important role in the black-
outs, one may suspect seasonal periodicities. However, the data
combines both summer and winter peaking regions of North
America. Because of the limited amount of data, it is not pos-
sible to separate the blackouts by geographical location and redo
the analysis. What we have done is to reanalyze the data ex-
cluding the blackouts triggered by weather related events. The
results are summarized in Table II. As can be seen, the exclu-
sion of the blackouts triggered by weather related events does
not significantly change the value of . When looking solely at
the blackouts triggered by weather related events, the value of

is closer to 0.5 (random events), although the available data
is too sparse to be sure of the significance of this result.

Another question to consider is the effect of excluding the
weather related events on the PDF. We have recalculated the
PDF for all the measures of blackout size when the weather re-
lated events are not included. The PDFs obtained are the same
within the numerical accuracy of this calculation. This is illus-
trated in Fig. 1, where we have plotted the PDFs of the number of
customers unserved for all events and for the nonweather related
events. Therefore, for both long-range dependencies and struc-
ture of the PDF, the blackouts triggered by weather events do not
show any particular properties that distinguish them from the
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other blackouts. Therefore, both the long time correlations and
the PDFs of the blackout sizes remain consistent with SOC-like
dynamics.

In addition to weather effects, one might expect spatial struc-
ture of the grid to have an effect on the dynamics. However, anal-
ysis of the NERC data by Chen et al. in [13] suggests that sim-
ilar results are obtained when data for the eastern and western
North American power systems is analyzed separately. Since
the eastern and western power systems have different charac-
teristics, this interesting result tends to support the notion that
there are some underlying common principles for the system
dynamics.

V. COMPARISON TO SOC SANDPILE MODEL

The issue of determining whether power system blackouts
are governed by SOC is a difficult one. There are no unequiv-
ocal determining criteria. One approach is to compare charac-
teristic measures of the power system to those obtained from a
known SOC system. The prototypical model of a SOC system
is a one-dimensional idealized running sandpile [22]. The mass
of the sandpile is increased by adding grains of sand at random
locations. However, if the height at a given location exceeds a
threshold, then grains of sand topple downhill. The topplings
cascade in avalanches that transport sand to the edge of the sand-
pile, where the sand is removed. In the running sandpile, the
addition of sand is on average balanced by the loss of sand at
the edges and there is a globally quasi-steady state or dynamic
equilibrium close to the critical profile that is given by the angle
of repose. There are avalanches of all sizes and the PDF of the
avalanche sizes has a power law tail. The particular form of the
sandpile model used here is explained in [25] and the sandpile
length used in the present calculations is . We are, of
course, not claiming that the running sandpile is a model for
power system blackouts. We only use the running sandpile as a
black box to produce a time series of avalanches characteristic
of a SOC system.

It is convenient to assume that every time iteration of the sand-
pile corresponds to one day. When an avalanche starts, we inte-
grate over the number of sites affected and the number of steps
taken and assign them to a single day. Thus we construct a time
series of the avalanche sizes. The sandpile model has a free pa-
rameter , which is the probability of a grain of sand being
added at a location. is chosen so that the average frequency
of avalanches is the same as the average frequency of blackouts.

In evaluating the long-range time dependence of the black-
outs, we use the rescaled range or R/S [24] technique described
earlier. As stated before, the R/S technique is useful in deter-
mining the existence of a power law tail in the autocorrelation
function and calculating the exponent of the decay of the tail
(see Appendix for details). The same R/S analysis used for
the blackout time series is applied to the avalanche time series.
Fig. 7 shows the R/S statistic for the time series of avalanche
sizes from the sandpile and for the time series of power lost by
the blackouts. The similarity between the two curves is remark-
able. A similarly good match of the R/S statistics between the
blackout and sandpile time series is obtained for the other mea-
sures of blackout size.

Fig. 7. R/S for avalanche sizes in a running sandpile compared to R/S for
power lost in blackouts.

Fig. 8. Rescaled PDF of energy unserved during blackouts superimposed on
the PDF of the avalanche size in the running sandpile.

Fig. 8 shows the PDF of the avalanche sizes from the sandpile
data together with the rescaled PDF of the energy unserved from
the blackout data. The resemblance between the two distribu-
tions is again remarkable. The rescaling is necessary because of
the different units used to measure avalanche size and blackout
size. That is, we assume a transformation of the form

(1)

is the variable that we are considering, is the corre-
sponding PDF, and is the rescaling parameter. If the transfor-
mation (1) works, is the universal function that describes the
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PDF for the different parameters. Transformation (1) is used to
overlay the sandpile and blackout PDFs.

We can consider PDFs of the other measures of blackout size
and use transformation (1) to plot each of these PDFs with the
sandpile avalanche size PDF. In all cases, the agreement is very
good. Of course, the rescaling parameter differs for each mea-
sure of blackout size. The exponents obtained for these PDFs
tails are between and . These exponents imply diver-
gence of the variance, one of the characteristic features of sys-
tems with SOC dynamics. In fact, divergence of the variance
is a general feature of systems near criticality. This comparison
of the PDFs of the measures of blackout and avalanche sizes is
useful in evaluating the possible errors in the determination of
the power law decay exponent of the PDFs. One can see that for
the large size events where the statistics are sparse, there may
be deviations from the curve. These deviations can influence the
computed value of the exponent, but they are probably of little
significance for the present comparisons.

VI. POSSIBLE EXPLANATION OF POWER SYSTEM SOC

To motivate comparisons between power system blackout
data and SOC sandpile data, we suggest a qualitative descrip-
tion of the structure and effects in a large-scale electric power
transmission system which could give rise to SOC dynamics.
The power system contains many components such as gener-
ators, transmission lines, transformers and substations. Each
component experiences a certain loading each day and when
all the components are considered together, they experience
some pattern or vector of loadings. The pattern of component
loadings is determined by the power system operating policy
and is driven by the aggregated customer loads at substations.
The power system operating policy includes short term actions
such as generator dispatch as well as longer term actions such
as improvements in procedures and planned outages for main-
tenance. The operating policy seeks to satisfy the customer
loads at least cost. The aggregated customer load has daily and
seasonal cycles and a slow secular increase of about 2% per
year.

Events are either the limiting of a component loading to a
maximum or the zeroing of the component loading if that com-
ponent trips or fails. Events occur with a probability that de-
pends on the component loading. For example, the probability
of relay misoperation [13] or transformer failure generally in-
creases with loading. Another example of an event could be an
operator redispatching to limit power flow on a transmission line
to its thermal rating and this could be modeled as probability
zero when below the thermal rating of the line and probability
one when above the thermal rating. Each event is a limiting or
zeroing of load in a component and causes a redistribution of
power flow in the network and hence a discrete increase in the
loading of other system components. Thus events can cascade. If
a cascade of events includes limiting or zeroing the load at sub-
stations, it is a blackout. A stressed power system experiencing
an event must either redistribute load satisfactorily or shed some
load at substations in a blackout. A cascade of events leading to

blackout usually occurs on a time scale of minutes to hours and
is completed in less than one day.

It is customary for utility engineers to make prodigious efforts
to avoid blackouts and especially to avoid repeated blackouts
with similar causes. These engineering responses to a blackout
occur on a range of time scales longer than one day. Responses
include repair of damaged equipment, more frequent mainte-
nance, changes in operating policy away from the specific con-
ditions causing the blackout, installing new equipment to in-
crease system capacity, and adjusting or adding system alarms
or controls. The responses reduce the probability of events in
components related to the blackout, either by lowering their
probabilities directly or by reducing component loading by in-
creasing component capacity or by transferring some of the
loading to other components. The responses are directed toward
the components involved in causing the blackout. Thus the prob-
ability of a similar blackout occurring is reduced, at least until
load growth degrades the improvements made. There are sim-
ilar, but less intense responses to unrealized threats to system
security such as near misses and simulated blackouts.

The pattern or vector of component loadings may be thought
of as a system state. Maximum component loadings are driven
up by the slow increase in customer loads via the operating
policy. High loadings increase the chances of cascading events
and blackouts. The loadings of components involved in the
blackout are reduced or relaxed by the engineering responses
to security threats and blackouts. However, the loadings of
some components not involved in the blackout may increase.
These opposing forces driving the component loadings up and
relaxing the component loadings are a reflection of the stan-
dard tradeoff between satisfying customer loads economically
and security. The opposing forces apply over a range of time
scales. We suggest that the opposing forces, together with the
underlying growth in customer load and diversity give rise
to a dynamic equilibrium and conjecture that this dynamic
equilibrium could be SOC-like. It is important to note that this
type of system organizes itself to an operating point near to but
not at a critical value. This could make the system intrinsically
vulnerable to cascading failures from unexpected causes as the
repair and remediation steps taken to prevent a known failure
mode are part of the system dynamics.

We briefly indicate the roughly analogous structure and ef-
fects in an idealized sand pile model. Events are the toppling of
sand and cascading events are avalanches. The system state is a
vector of maximum gradients at all the locations in the sand pile.
The driving force is the addition of sand, which tends to increase
the maximum gradient, and the relaxing force is gravity, which
topples the sand and reduces the maximum gradient. SOC is a
dynamic equilibrium in which avalanches of all sizes occur and
in which there are long time correlations between avalanches.
The rough analogy between the sand pile and the power system
is shown in Table III. There are also some distinctions between
the two systems. In the sand pile, the avalanches are coinci-
dent with the relaxation of high gradients. In the power system,
each blackout occurs on fast time scale (less than one day), but
the knowledge of which components caused the blackout deter-
mines which component loadings are relaxed both immediately
after the blackout and for some time after the blackout.
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TABLE III
ANALOGY BETWEEN POWER SYSTEM AND SAND PILE

VII. CONCLUSION

We have calculated long time correlations and PDFs for
several measurements of blackout size in the North Amer-
ican power transmission grid from 1984 to 1998. These long
time correlations and PDFs seem consistent with long-range
time dependencies and PDFs for avalanche sizes in a running
sandpile known to be SOC. That is, for these statistics, the
blackout size time series seem indistinguishable from the sand-
pile avalanche size time series. This similarity suggests that
SOC-like dynamics may play an important role in the global
complex dynamics of power systems.

We have outlined a possible qualitative explanation of the
complex dynamics in a power system which proposes some of
the opposing forces that could give rise to a dynamic equilib-
rium with some properties of SOC. The opposing forces are,
roughly speaking, a slow increase in loading (and system aging)
weakening the system and the engineering responses to black-
outs strengthening parts of the system. Here we are suggesting
that the engineering and operating policies of the system are im-
portant and integral parts of the system long-term complex dy-
namics. Carlson and Doyle have introduced a theory of highly
optimized tolerance (HOT) that describes power law behavior
in a number of engineered or otherwise optimized applications
[5]. After this paper was first submitted, Stubna and Fowler [33]
published an alternative view based on HOT of the origin of the
power law in the NERC data.3

The PDFs of the measures of blackout size have power tails
with exponents ranging from to and therefore have
divergent variances. Thus large blackouts are much more fre-
quent than might be expected. In particular, the application of
traditional risk evaluation methods can underestimate the risk of
large blackouts. R/S analysis of the blackout time series shows
moderate ( ) long time correlations for several mea-
sures of blackout size. Excluding the weather related blackouts
from the time series has little effect on the results. The expo-
nential tail of the PDF of the times between blackouts supports
the contention that the correlations between blackouts are due
to the power system global dynamics rather than correlations in
the events that trigger blackouts.

3To apply HOT to the power system, it is assumed that blackouts propagate
one dimensionally [33] and that this propagation is limited by finite resources
that are engineered to be optimally distributed to act as barriers to the propa-
gation [5]. The one-dimensional assumption implies that the blackout size in
a local region is inversely proportional to the local resources. Minimizing a
blackout cost proportional to blackout size subject to a fixed sum of resources
leads to a probability distribution of blackout sizes with an asymptotic power
tail and two free parameters. The asymptotic power tail exponent is exactly�1
and this value follows from the one dimensional assumption. The free param-
eters can be varied to fit the NERC data for both MW lost and customers dis-
connected. Moreover, [33] shows that a better fit to both these data sets can be
achieved by modifying HOT to allow some misallocation of resources.

The strength of our conclusions is naturally somewhat limited
by the short time period (15 years) of the available blackout data
and the consequent limited resolution of the statistics. To further
understand the mechanisms governing the complex dynamics of
power system blackouts, modeling of the power system is indi-
cated. There is substantial progress in modeling and analyzing
the approach inspired by SOC outlined in Section VI [8]–[12],
[17] and in modeling blackouts and cascading failure from other
perspectives [14]–[16], [18]–[20], [27], [29]–[31], [34].

If the dynamics of blackouts are confirmed to have some char-
acteristics of SOC, this would open up possibilities for moni-
toring statistical precursors of large blackouts or controlling the
power system to modify the expected distribution of blackout
sizes [11]. Moreover, it would suggest the need to revisit the tra-
ditional risk analysis based on random variables with exponen-
tial tails since these complex systems have statistics with power
tails.

APPENDIX

Consider the time series .
We construct the series that is
the original series integrated in time: . For
the series and for each a new series

is generated. The ele-
ments of the series are blocks of elements of so that

. We then calculate the range
and standard deviation within each of the blocks of
elements of , and compute for each block . The
R/S statistic as a function of the time lag is then the average

.
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