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The properties of the spectral energy transfer for a two-dimensional fluid representation of 
dissipative trapped ion convective cell turbulence are studied numerically using a spectral 
method. It is established that the spectral energy flow is from long to short wavelength, as 
governed (under the dynamics of the E X B nonlinearity) by a single quadratic invariant, the 
energy. This flow is correctly predicted by equilibrium statistical mechanics, as is the 
equilibrium spectrum. Examining the locality of energy flow, strong nonlocal energy transfer is 
observed, a process that efficiently transfers the energy of a mode across the spectrum in a 
correlation time. This transfer process deviates dramatically from the canonical self-similar 
cascade dynamics of Kolmogorov that typifies the cascade of two- and three-dimensional 
Navier-Stokes and Hasegawa-Mima drift wave turbulence. Anisotropy of the spectral transfer 
dynamics is also observed. 

1. INTRODUCTION 

The possibility that turbulence driven by unstable 
trapped ion modes plays a role in core fluctuations and trans- 
port in tokamaks has generally been discounted throughout 
the past decade. At one time, however, trapped ion modes 
were thought to represent a potentially serious confinement 
problem for auxiliary heated (multikilovolt) plasmas. ’ In- 
deed, catastrophic Bohm-like transport was predicted. This 
prediction was premised on a presumed inverse cascade of 
energy from the already long wavelengths of the unstable 
fluctuations, and the fact that fluctuation levels would be 
large, given the long radial correlation length of the turbu- 
lence. The successful operation of the Princeton Large Torus 
device’ at temperatures in excess of 4 keV without cata- 
strophic confinement problems was generally taken as an 
indication that trapped ion mode activity was somehow ab- 
sent from hot auxiliary heated tokamak discharges. Except- 
ing some early efforts to explain this seeming lack of trapped 
ion mode turbulence3 and some work on low collisionality 
ion-temperature-gradient-driven turbulence,4 trapped ion 
turbulence has generally been ignored. 

Recent work on trapped ion mode turbulence based on 
approximate analytic solution of renormalized Kadomtsev- 
Pogutse fluid equations’ contends that these fluctuations 
cannot be discounted as an important component of core 
turbulence and may, in fact, comprise the low-frequency 
large-amplitude extreme of experimental spectra. Contrary 
to the predictions of Bohm-like transport,’ this work asserts 
that trapped ion convective cell turbulence drives transport 
that is not excessively large, but is comparable in magnitude 
to the transport produced by trapped electron turbulence. 
This contention is supported by two facts. The first is that 
the turbulent radial flow associated with trapped ion convec- 
tive cell turbulence is small, offsetting the large fluctuation 
level in the quadratic moments that determine the transport 

fluxes. The second is the prediction that spectral energy 
transfer is not characterized by an inverse cascade, but rath- 
er is directed to short wavelengths. The latter precludes cata- 
strophic condensation of energy at the largest scales of the 
system. 

There is mounting experimental evidence that fluctu- 
ations with large radial correlation length are present in the 
core of tokamak plasmas. Observed spectra from scattering 
diagnostics have long exhibited an increase of spectral ener- 
gy toward the smallest resolved wave numbers, typically 
with no turnover evident over the range of wave numbers for 
which measurement is possible. Recently, new fluctuation 
diagnostics with the capability of providing spatially re- 
solved local measurements of core turbulence have been de- 
veloped. Both beam emission spectroscopy6 and correlation 
reflectometry’ find evidence for fluctuations inside r/a of 
0.7 with radial correlation lengths of several centimeters. In 
both cases, the frequency of the fluctuations is very low or 
nearly zero, once the rotation induced Doppler shifts are 
subtracted. Intriguing links with global confinement are evi- 
dent. While it has not been possible to associate these fluctu- 
ations with any given model, trapped ion convective cell tur- 
bulence is clearly a candidate. 

In this paper, we describe a numerical study of dissipa- 
tive trapped ion convective cell turbulence. Motivated by the 
issue of the energy transfer direction in wave number space 
for trapped ion turbulence, key facets of the spectral energy 
transfer process are examined. In order to isolate basic phys- 
ical processes and enable comparison with analytic theory, a 
simple two-dimensional (2-D) single field model is utilized. 
This model is based on the fluid responses for trapped ions 
and electrons first used by Kadomtsev and Pogutse. The link 
between electrons and ions provided by quasineutrality en- 
ables a single field description. Rapid trapped particle 
bounce motion, restricting the development of parallel dy- 
namics, provides the rationale for a two-dimensional treat- 
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ment. The model incorporates the E X3 nonlinearity, the 
dominant nonlinear transfer mechanism for long wave- 
length fluid plasma turbulence. Consequently, the turbulent 
transfer properties of dissipative trapped ion convective cell 
turbulence, as described by the model, apply to a broader 
class of long wavelength fluctuations, including those result- 
ing from trapped electron modes. 

In addition to determining the direction of energy trans- 
fer in wave number space, an investigation of other proper- 
ties relating to the spectral transfer process is described in 
detail. This includes the degree to which transfer in wave 
number space is local, as implicit in Kolmogorov-type simi- 
larity arguments, which envision an energy transfer through 
all scales at precisely the same rate; or nonlocal, and there- 
fore at variance with the standard view of cascades. The de- 
gree of isotropy or anisotropy in the energy transfer process 
and in the spectrum itself is also investigated. Finally, the 
direction of energy transfer is examined in relation to the 
quadratic invariants of the nonlinearity and the equilibrium 
spectrum. The latter ties in with statistical mechanics calcu- 
lations frequently used to infer the direction of cascades.“’ 
Clearly, these properties impact the spectrum, the turbu- 
lence level, and the magnitude ofspatial transport. At a more 
fundamental level, they affect the basic characterization of 
turbulence and turbulent cascades. 

Spectral transfer and its characterization in terms of 
cascades has long been a central part of the conceptualiza- 
tion of turbulence. In Navier-Stokes turbulence, for exam- 
ple, it is well established that the energy transfer can be rep- 
resented by a self-similar cascade process. In three 
dimensions, this process conservatively transfers energy to 
small scales. In two dimensions, the invariance of an addi- 
tional quantity, enstrophy, or mean square vorticity, pre- 
cludes the self-similar transfer of energy to small scale. It is 
possible to conserve both quantities, however, if enstrophy is 
transferred to small scale and energy to large scale. By analo- 
gy with 2-D Navier-Stokes turbulence, it might be inferred 
(mistakenly, as will become apparent) that dissipative 
trapped ion convective cell turbulence undergoes an inverse 
energy cascade (cascade to long wavelength) I However, it is 
the simultaneous invariance of energy and enstrophy that 
directly underlies the dual cascade of 2-D Navier-Stokes 
turbulence and not the number of dimensions (except 
through the number of invariants). 

It is often possible to infer the direction of spectral trans- 
fer from closure equations. These describe the average trans- 
fer consistent with the statistical ansatz invoked to obtain 
the closure. The statistical hypotheses upon which closures 
are predicated are, in general, very difficult to validate and 
are known to be violated by fluctuations that are spatially 
intermittent. Furthermore, a number of other approxima- 
tions and simplifications typically enter into analytical re- 
sults obtained from closure equations. In particular, the clo- 
sure is most often applied to one-point equations. While 
one-point analyses simplify the determination of a satura- 
tion level, they neglect the incoherent transfer process re- 
quired for energy conservation. For these reasons, other 
methods for inferring the spectral transfer have been devel- 
oped. 

The most widely used method is based on equilibrium 
statistical mechanics, *,=+ This method is app ealing for its di- 
rect use of the dynamical invariants in obtaining equilibrium 
spectra of the invariant quantities. Its weakness lies in the 
somewhat tenuous connection between equilibrium quanti- 
ties and the properties of turbulence, which generally are far 
from equilibrium. At the minimum, the use of an equilibri- 
um spectrum to infer a spectral transfer direction requires a 
knowledge of the steady state spectrum set up under forcing 
and dissipation, and the assumption that nonlinear transfer 
in the steady state is in the direction that would tend to drive 
the spectrum toward its equilibrium configuration. An addi- 
tional weakness arises from the possibility that additional 
invariants exist that constrain the transfer but are not among 
those known and included in the calculation of the equilibri- 
um spectrum, thereby compromising the equilibrium pre- 
diction. Not withstanding these difficulties, equilibrium sta- 
tistical mechanics correctly predicts the direction of spectral 
transfer in two-dimensional and three-dimensional (3-D) 
Navier-Stokes turbulence,8*9 and has been used in many 
other types of turbulence.“** ’ 

In the present work, nonlinear transfer in the numerical 
simulation of the Kadomtsev-Pogutse fluid model is direct- 
ly measured in distinct regions of wave number space. In 
order to eliminate the transfer imposed by any particular 
wave number space distribution of sources and sinks in favor 
of the conservative transfer produced by the nonlinearity, 
transfer is determined for undriven/undamped turbulence 
starting from a finite-amplitude initial state with a given 
spectrum. These results establish the direction of inertial 
transfer of energy in a steady state whose spectrum is similar 
to the spectrum chosen as an initial condition. The initial 
spectrum relaxes under the inertial transfer, producing time 
asymptotically an equilibrium spectrum that can be com- 
pared with the spectrum predicted by equilibrium statistical 
mechanics on the basis of the known dynamical invariants. 
These studies therefore provide a test of the validity of the 
methodology of equilibrium statistical mechanics for pre- 
dicting spectral transfer directions, as well as a check on the 
predictions of the closure theory. 

The concept of a wave number cascade is usually 
thought of as a local process, whereby energy is passed be- 
tween scales that are adjacent in wave number space. The 
renormalized Kadomtsev-Pogutse equation provides for 
both local and nonlocal transfer of internal energy IA, [’ in 
wave number space. According to the renormalized equa- 
tion, 

1 dlfiJ --..-.. 
2 dt 

y&12+ T, =O, (1) 

the evolution of energy in the mode k is governed, apart from 
linear driving and damping (‘/k ), by a transfer rate T, with 
local and nonlocal components. Specifically, the transfer 
rate, as given from a standard statistical closure, is 

T, = C liin12tii,,t2[ANL(k,k’) +A(k,k’)] 
k’ 

+ ,*xk l%121~iyE2Qw), (2) 

where 
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&,(k,k’) =const(k~k’*z)~L?$,(k;~-k;), 
A(k,k’) = const(kxk’*z)2L“;k’,k;2, 

are coupling coefficients, and reflection symmetry in k,, has 
been assumed for convenience in this discussion. Aside from 
the E X B geometrical factor (k X k’az) * and the nonlinear 
response time Yw’, (to be defined in the next section), 
these coefficients are governed by the factors ( ki2 - k :) 
and k ;‘. The factor in A,, indicates transfer that is negligi- 
ble fork comparable to k ‘, but large for disparate values, i.e., 
transfer that is nonlocal. Also, the sign of A,, is such that 
energy is depleted from the mode k when k I” > k :, and de- 
posited into that mode when kJ* <k:. This clearly implies 
transfer to large wave number. By contrast, the factor in A is 
positive definite, indicating transfer that is always out of 
(rather than into) the mode k, and independent of the rela- 
tive positions of k and k ’ in wave number space. (Note that 
for this term, nonlocal transfer is not precluded.) 

The strong interaction and direct energy exchange be- 
tween modes of widely disparate wave numbers suggested by 
A,, is a fundamental departure from the cascade dynamics 
implicit in steady state spectra formulated according to the 
similarity concepts of Kolmogorov. If nonlocal transfer 
dominates, it is possible that the steady state wave number 
spectrum in an inertial range will strongly deviate from a 
self-similar spectrum. It is difficult to determine precisely 
the relative magnitudes of local and nonlocal transfer from 
renormalized equations without knowing the spectrum. 
Moreover, nonlocal transfer may be offset by the term A, 
which is not restricted to purely local triads. In the simula- 
tions, nonlocal and local transfer rates are directly measured 
throughout the relaxation. 

The dominant nonlinearity governing mode coupling at 
long wavelengths is the E x B nonlinearity. This nonlinearity 
is anisotropic with respect to the two cross-field directions. 
The anisotropy carries over to the closure equations, where 
highly anisotropic transfer, particularly nonlocal, is evident. 
In contrast, the equilibrium spectrum, derived from a single 
isotropic invariant (energy) is isotropic in the two cross- 
field directions. This seeming contradiction is examined in 
detail from the simulation results in order to determine the 
degree of anisotropy in the spectrum and local and nonlocal 
transfer rates. 

The results of this paper are now summarized. Inertial 
energy transfer by trapped ion convective cell turbulence has 
been examined numerically for a 2-D Kadomtsev-Pogutse 
fluid model. Numerical solution of the equations was accom- 
plished with a spectral code containing up to 41 x 41 modes. 
The spectrum evolution and transfer rate time histories of 
spectra initially peaked at low wave number were observed 
with two distinct regimes of evolution in evidence. In the 
first, there is a strong transfer of energy to high wave number 
occurring over several eddy turnover times and resulting in 
the relaxation ofthe spectrum to a configuration with notice- 
able peaking at high k,, (u is the cross-field direction perpen- 
dicular to the inhomogeneity in density). Nonlocal transfer 
in k,, plays an important role in the relaxation process and is 
responsible for the peaking in k,. Enstrophy increases 
throughout this regime. In the second regime the spectrum 

further relaxes to an approximately equipartitioned state un- 
der the action of sloshing in wave number space. The final 
spectrum is roughly consistent with the predictions of equi- 
librium statistical mechanics based on a single invariant cor- 
responding to the internal energy. A slight peaking in k,, is 
apparent in this time-asymptotic spectrum. The peaking 
represents a minor deviation from the predicted equilibrium 
spectrum, but one that strengthens, rather than weakens, the 
equilibrium statistical mechanics prediction that energy 
transfer is to small scale. For an initial spectrum that is flat, 
net transfer to small scale in the k,, direction is again evident, 
but is weaker than that of the peaked spectrum case. This 
transfer is highly nonlocal, producing a spectrum that is 
slightly peaked in k,, and similar to the spectrum of the slosh- 
ing regime when reached from a peaked initial condition. 
The flat initial spectrum case is important because stationary 
turbulence driven at long wavelengths, damped at short 
wavelengths, and having an inertial range in intermediate 
scales, results in a stationary spectrum that is only weakly 
peaked at low k. 

Nonlocal transfer in k, derives from the direct coupling 
of modes, which are widely separated in wave number space. 
For initial spectra with indices a less that 3, where 
lnj2 = k Y-a, the nonlocal transfer in k, dominates local 
transfer, thus invalidating Kolmogorov similarity range ar- 
guments for inertial range transfer. For a > 3, the coupling 
between disparate scales is strongly reduced by the large- 
amplitude disparity and transfer is dominantly local until 
the spectrum has relaxed to a - 3. The local and nonlocal 
rates are comparable in the k, direction. This represents a 
pronounced anisotropy in the spectral transfer of energy. 
Because the local transfer tends to be isotropic, anisotropies 
in the spectrum are less pronounced. 

The remainder of this paper is organized as follows: the 
basic model, its properties, and the basic computational pro- 
cedure are presented in Sec. II. In Sec. III, the equilibrium 
spectrum and similarity-range stationary spectrum are de- 
rived and the prediction for spectral transfer direction is for- 
mulated. The simulation results are detailed in Sec. IV, and 
conclusions are given in Sec. V. 

II. BASIC EQUATIONS AND COMPUTATIONAL 
PROCEDURE 

In order to study nonlinear processes in detail, a simple 
model is used. This model, based on Kadomtsev-Pogutse 
equations, treats dissipative trapped ion convective cell tur- 
bulence as a turbulent fluid described by a single scalar relat- 
ed to both the fluctuating density and the flow streamfunc- 
tion (electrostatic potential). This model therefore allows 
contact with the considerable body of knowledge existing for 
Navier-Stokes turbulence and similar fluid plasma models, 
such as the Hasegawa-Mima equationI and its dissipative 
analogs. I3 At the same time, the model is sufficiently com- 
plete to capture many essential elements of trapped ion tur- 
bulence. The model equation is given by 
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a2fi - $+D- 
8Y” 

+v”& 
2 aY 

+ % f.,~ - 
4&D aii L/2 v -xz*vfl = 0, 

E aY 
where ii = e1’2ntr/n0 is the normalized trapped ion density, 
V, = &‘*(cT,/eB) L ; i is the effective diamagnetic drift 
velocity for trapped ions, D = V:/~Y,,, is an inverse diffu- 
sivity describing the destabilization of trapped ion modes by 
electron collisions, vCveff,i is the effective collision frequency of 
ion-ion collisions with Y~~,~ = vi/e, E = r/R is the inverse 
aspect ratio parametrizing the fraction of trapped particles, 
and L, is the density gradient scale length. This equation 
incorporates the dynamics of both trapped electrons and 
trapped ions with quasineutrality providing the link between 
their densities. The turbulent fluid flow is the E X B flow. 
This flow couples to the density fluctuations through the 
E X B advection of the mean density gradient. 

The electron dynamics incorporates adiabatic (pass- 
ing) and nonadiabatic (trapped) electrons. As a result of the 
very low frequency of the fluctuations, the trapped electrons 
are collisional, i.e., trapped electrons experience multiple 
collisions over a fluctuation period. Consequently, electron 
dynamics are governed by collisional scattering as opposed 
to nonlinear advection. This results in a linear relation be- 
tween the fluctuation source (given by the E x B advection 
of the average density) and the trapped electron density. 
Trapped electrons are therefore laminar, with a density that 
is proportional to the potential and 90” out of phase due to 
the collisions. Electron collisions access the density gradient 
free energy through an inverse damping process and thus 
provide the basic instability that feeds the turbulence. 

The combination of electron and ion densities into a sin- 
gle field using the laminar electron response constitutes an 
“is” approximation ( fi, - 1 $6, where 6 = 4L,, D  /d” is the 
nonadiabatic electron response). It is worth noting that be- 
cause electron inertia is negligible, the nonadiabatic electron 
response, or function 6, has no explicit dependence on the 
frequency. Thus, the need to approximate the nonadiabatic 
response by evaluating an explicit frequency dependence at 
w* or a linear frequency does not arise. Explicit frequency 
dependence in other types of drift-wave fluctuations (colli- 
sionless trapped electron modes, universal modes, etc. ) rep- 
resents a serious shortcoming of the iS approximation, but 
one that does not occur in the present case. 

The ion response is hydrodynamic and consists of E X B 
advection, the polarization drift, and ion-ion collisions. The 
latter affects the fluctuations at very long wavelengths, pro- 
viding a low k cutoff for the instability. The long wave- 
lengths of the fluctuations restrict the extent to which the 
polarization drift plays any role in the dynamics. As a conse- 
quence, the fluctuations are essentially nondispersive in the 
energy containing scales fed by the instability. Similarly, the 
polarization drift nonlinearity [ n,V*vj”, where 
v(l) = B&‘(c/e)z~v,.Vv, and vE = - V$xz], familiar 
f:om the Hasegawa-Mima equation, is small compared to 
the E X B nonlinearity (v,Vii, ). The E X B nonlinearity is 
nonzero only through the nonadiabatic electron response 
and produces dissipative coupling, which breaks enstrophy 

conservation.‘3 The E x B nonlinearity dominates at long 
wavelengths where kp <S (p is the ion gyroradius at the 
electron temperature). The present study is concerned with 
the long wavelength lim it, so only the E X B nonlinearity is 
retained in the model, Because energy transfer in regions 
dominated by the E x B nonlinearity is toward small scales 
(a principal conclusion of this paper), energy eventually 
reaches regions where the polarization drift nonlinearity be- 
comes important and other effects occur, such as coupling to 
smaller wavelength trapped electron modes. Future work 
wilI address the dynamics at shorter wavelengths where the 
two nonlinearities participate in the transfer process. 

As indicated previously, the Kadomtsev-Pogutse equa- 
tion, Eq. (31, accurately represents many essential elements 
of trapped ion turbulence. These include the correct electron 
dissipation-induced linear growth rate of the driving insta- 
bility. The linear frequency is also correctly represented as 
nondispersive, in the direction of the electron diamagnetic 
drift, and offset from the diamagnetic frequency by the 
trapped particle fraction. Energy transfer is appropriately 
governed by the E XB nonlinearity. This model does not 
account for parallel dynamics (and hence radial mode struc- 
ture) or coupling to short wavelength fluctuations. 

The computational method employed is spectral. Thus 
the time evolution of Fourier modes (coupled by the convo- 
lution sum of the E X B nonlinearity) is solved according to 

ai?, 
-=DkzS?, -i-$k,fi, -vy,,,,n, at 

-92 (kxk’*z)k;ii,,Et,_,,. 
k’ 

(4) 

A truncation of Fourier space lim its the spatial resolution of 
the solution. Time advancing is accomplished using a gear- 
type solver with an explicit Jacobian. The code is purely 
spectral, treating Eq. (4) as it is written, as opposed to pseu- 
dospectral, which uses fast Fourier transforms to calculate 
the convolution term in real space, where the fields are a 
simple product. The use of a spectral method lim its the reso- 
iution relative to that possible with a pseudospectral code; 
however, subtle issues involving dealiasing are thus avoided. 
In particular, pseudospectral methods require dealiasing, a 
process that distorts the Fourier modes in the shorter wave- 
length part of the spectrum. The portion of the spectrum that 
is usable is affected by anisotropies in the nonlinear coupling, 
and has subtleties which depend on whether the spectrum 
represents second-order moments such as energy, or higher- 
order moments. I4 In the present work, the energy and en- 
strophy transfer rates are computed. These quantities are 
calculated from triplet correlations. The effect of dealiasing 
on third-order correlations with anisotropic coupling is not 
well documented and for the purpose of developing such 
diagnostics, the spectral environment provides easier imple- 
mentation and more reliable interpretation. The results pre- 
sented here are obtained using a maximum of 4 1 X 4 1 modes. 
For the study of spectrum relaxation and energy transfer in 
turbulence that is undriven/undamped, this resolution is 
adequate, as verified by changing the number of modes. 

A key feature of the computations reported in this paper 
is the calculation of the energy and enstrophy transfer rates 

602 Phys. Fluids 6, Vol. 4, No. 3, March 1992 Newman, Terry, and Diamond 602 

Downloaded 29 Aug 2011 to 137.229.53.151. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



T, and U, in wave number space. Energy and enstrophy are 
defined as 2, Jiik 1’ and 2, k 2)fik 12. Thus, rates ofenergy and 
enstrophy transfer from a given mode k are obtained by mul- 
tiplying the last term of Eq. (4) by @  and k ‘iif giving, 
respectively, 

T _ 4iL,D 
k- - Im C (kxk’*z)k;ii,,fi,-,,ftz 

&/2 
k’ 

(5) 

and 

u, = 
4iL, D 

FImx (kXk’*z)k2k;fik,hk-k,ii:. (6) 
E k’ 

These quantities are evaluated at each step of the computa- 
tion yielding instantaneous rates of transfer between the 
mode k and all other coupled modes in the spectrum. Posi- 
tive TA represents a net flow of energy into the mode k; nega- 
tive Tk represents net outflow. Because energy is conserved 
by the nonlinear transfer, the energy flow into or out of a 
mode must be equal to the flow out of or into all remaining 
modes. Enstrophy, on the other hand, is not conserved. If 
energy is transferred conservatively to short wavelength, as 
occurs in 3-D Navier-Stokes turbulence, it follows from 

I 

simple dimensional arguments that enstrophy will be gener- 
ated. If energy flows to long wavelength, the converse will 
hold. Consequently, the evolution of total enstrophy, ob- 
tained from the time history of 2, uk, provides an additional 
indicator of energy transfer direction and is the principal 
enstrophy diagnostic utilized. 

The closure representation of the energy transfer rate 
[ Eq. (2) ] follows from Eq. (5) by a straightforward iter- 
ation on each of the density fluctuation factors. Consistent 
with quasi-Gaussian statistics, the iterated density factors, 
or driven fluctuations, are directly excited by a single triplet 
interaction, with the remaining triplets acting to nonlinearly 
decorrelate the interaction. The directly acting triplet is the 
one yielding closure, e.g., 

2 
k-k’ 

ii,-,. = - (4iL,D/e”*) 

x (k’xk*z)(k,, + k;)fi/&, 

where Yk--k, is the nonlinearly broadened propagator, 
consisting of linear growth, damping, diamagnetic rotation, 
and the nonlinear decorrelation. Carrying out this proce- 
dure yields 

Tk = 2c WxW2k;(k; -k,)~~ki,,k-k,~~k~21R,12+(~)2 k’ 

x C Wxk*z)2(k;2 - k$Y,‘.,k-k, iiiki2ilik* t2+ ($$*.+Fzk bx~z)2p,(&z -~y)~~p~q~fiip~2~fiiy~2, (7) 
k’ 

where 

-Y-k -I- Aw,, -I- Am,-,. + Am-,) 
is the triplet interaction correlation time, yk = Dk: - veK,e 
is the linear growth rate, and 

Aw, = [ (4L,,D)*/e] 2 (k’xk.z)‘k;’ 
k’ 

Xp4Pk~~‘t,k-~,liik~12 

is the nonlinear decorrelation rate. 
The first term of Eq. (7) comes from the iteration of 

nk _ k, and describes advection of density by the turbulent 
flow. The third term arises from the iteration of ii: and in- 
corporates the incoherent transfer process neglected in one- 
point closures.‘5 The second term is obtained by iterating on 
n,,, the fluctuation representing the turbulent flow 
p** aik,ii,,]. Consequently, this term provides for the 
self-consistent back reaction of the density fluctuations on 
the turbulent flow. In closures of Vlasov-Poisson systems, 
this term represents the renormalization of the shielding 
cloud and is frequently neglected because it requires the so- 
lution of a nonlinear Poisson equation. In fluid treatments it 
has a similar meaning through the correspondence between 
f low and potential that underlies E X B motion. Likewise, it 
is often neglected in order to avoid a nonlinear eigenvalue 
problem. The nonlocal transfer produced by this term can be 
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thought of as the interaction between large-scale flow 
(shielding potential) and smaller-scale density fluctuations. 
As noted in the Introduction, the nonlocal transfer is une- 
quivocally toward small scale. 

In order to reduce the data required to establish the di- 
rection of energy transfer and examine other properties of 
the transfer process, the transfer into or from bands in wave 
number space is measured by summing Eqs. (5) and (6) 
over selected k values. The bands are chosen to represent 
slices in k, and k, in order to be sensitive to any anisotropies 
in the wave number space transfer. With the band structure, 
it is possible to track local energy flow in k space through 
adjacent bands. Nonlocal transfer is also easily observed. 
The definition of local versus nonlocal transfer is somewhat 
difficult to quantify. Typically, nonlocal transfer is used to 
signify exchange of energy with modes in the discrete spec- 
trum that are displaced by more than two or three wave 
numbers, i.e., an interaction with modes that are not nearest 
neighbors. However, with such a definition, observed nonlo- 
cal transfer could still be compatible with a self-similar 
transfer, provided it admitted a similarity range with a num- 
ber of these nonlocal steps. In order to identify energy flow 
that is incompatible with a similarity range, nonlocal trans- 
fer will be defined as energy exchange in interactions span- 
ning more than half (or occasionally one-third) of the iner- 
tial range. Local transfer will be the difference of the total 
transfer and the nonlocal transfer, i.e., the flow to modes that 
are not removed by approximately half of the k-space extent. 
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Hi. EQUILIBRIUM AND SIMILARITY RANGE SPECTRA 

In this section, the prediction that trapped ion turbu- 
lence produces a transfer of energy to short wavelength’ is 
reviewed. This prediction is based on a comparison of the 
equilibrium spectrum calculated from statistical mechanics, 
and the stationary spectrum describing the distribution of 
energy in a driven saturated state. The equilibrium spectrum 
is derived using the statistical probability distribution func- 
tion for a canonical ensemble consistent with the known in- 
variants of the nonlinearity. In applying these statistical 
tools, it is assumed that turbulent transfer in the steady state 
is in the direction in wave number space that would tend to 
drive the spectrum to the equilibrium configuration if the 
driving and damping were turned off. The testing of this 
assumption is one of the objectives of the present study. 
Clearly, the application of this method requires knowledge 
of the stationary spectrum established by the turbulently 
moderated balance of driving and damping. In this paper, 
the simplest stationary spectrum, consistent with a Kolmo- 
gorov-type similarity range, will be adopted as a benchmark. 
Because the validity of a similarity range spectrum is cast 
into doubt by the results of the next section, the issue of the 
appropriate stationary spectrum and its role in the predic- 
tion of transfer direction will be revisited at that time. 

In the absence of driving and damping, a single nontri- 
vial quadratic invariant is admitted by the Kadomtsev-Po- 
gutse equation. This invariant is the internal energy, 
fd *x F?, whose conservation follows from the fact that 

s 
V~xz%id2x=0. 

aY 
(8) 

A second integral, .fd *x dii2/dy, is also conserved by the 
nonlinearity. However, by symmetry, this integral is identi- 
cally zero for all time, and therefore imposes no constraint 
on the cascade dynamics. Enstrophy, an invariant of the 2-D 
Navier-Stokes and Hasegawa-Mima equations, is not con- 
served by the E ~3 nonlinearity. The nonconservation of 
enstrophy arises from the nonadiabatic electrons. I3 

With energy as the only nonzero quadratic invariant, 
the canonical probability distribution of equilibrium states is 

P= exp( - f- J$ lfik I’) , (9) 

where fi is an effective inverse temperature. The spectrum is 
given by the expectation value of the energy in a mode kj, 
yielding 

lfik,i2 = 

J Iii,, 12P dii,, dfikZ * ’ dfik,,, 

* $ Pd&, diik2*..diikmax 
(10) 

Equation ( 10) predicts an equipartition of the energy, 
If&l2 = l/p, (11) 

corresponding to a flat spectrum in the 2-D wave number 
space. In addition to equipartition, the equilibrium spectrum 
is isotropic, a feature that follows from the fact that the lone 
nonzero quadratic invariant has no explicit anisotropy. 

As stated previously, a similarity range stationary spec- 
trum is calculated for comparison with the equilibrium spec- 

trum. Assuming that unstable modes are confined to a local- 
ized region of wave number space where w < abit the balance 
of nonlinear transfer of energy ii2 at each scale in the spec- 
trum with the net energy input rate requires that E = k “fi:, 
where E is the fixed energy input rate and isotropy has been 
assumed, i.e., d/ax = d /ay -+ k. Solving for ii: and express- 
ing in terms of an isotropic integral distribution for a single 
wave number k [ JE(k)dk = ii’], the spectrum is 

E(k) = r?3k - 3, (121 
If the spectrum is anisotropic (d/ax #a /ay ), the balance of 
energy input rate with spectral transfer requires that 
E = k ck,iii. Writing the spectrum as an integral distribu- 
tion in two wave numbers [ .fE( k, ,ky )dk, dk, = ii”] yields 

E( k, ,k,, ) = 8”k ; 5’3k ; 7’3. (13) 
Note that the second spectrum is consistent with the first 
and reduces to it when k, = k,. It has an additional power of 
k - ’ because it is a distribution of energy in a two-dimen- 
sional wave number space. In contrast to the equilibrium 
spectrum, both similarity range spectra are peaked at long 
wavelength. The anisotropy in k, and k, of Eq. ( 13) arises 
directly from theanisotropy of the E x B nonlinearity. These 
spectra follow for an inertial cascade, regardless of its direc- 
tion in wave number space. Assuming that the nonlinear 
interactions of the inertial range attempt to drive the system 
toward equilibrium, transfer will be in such a direction as to 
establish the equilibrium spectrum, E1-1/3 - ‘. On this basis, 
transfer is predicted to be toward short wavelength. If a simi- 
larity range does not exist, but the stationary spectrum of 
driven turbulence remains peaked at the long wavelength, 
the transfer is again predicted to be toward short wave- 
length. 

The transfer of energy to short wavelength is a conse- 
quence of the existence of a single quadratic invariant. By 
contrast, the 2-D Navier-Stokes and Hasegawa-Mima 
equations have two invariants and thus a canonical probabil- 
ity distribution function that depends on the two integrals. 
The equilibrium spectra calculated from this distribution 
function have enstrophy weighted toward short wavelengths 
and energy weighted toward long wavelengths. Consequent- 
ly, enstrophy in these systems is predicted to flow to short 
wavelengths and energy to long wavelengths. 

IV. COMPUTATIONAL RESULTS 

The results reported in this section come principally 
from numerical experiments in which turbulence is initial- 
ized with finite amplitude in a variety of spectral distribu- 
tions and allowed to evolve with no forcing or dissipation. 
Initial spectra range from k - i to k - 6, bracketing the simi- 
larity range stationary values of k ; 5/3 k ; 7/3. Evolution is 
tracked for as many as 100 eddy turnover times. In all cases, 
the initial spectra relax to an identical time-asymptotic con- 
figuration. The instantaneous flow during the spectrum evo- 
lution is measured to indicate the flow that would occur in a 
driven/damped stationary situation having a spectrum like 
the instantaneous spectrum during relaxation. The time his- 
tory of energy is calculated throughout the runs as a check 
on the numerics. Energy is found to be conserved to better 
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FIG. 1. Spectrum of undriven/un- 
damped turbulence at the initial time. 
The initial phases are random and the in- 
itial spectrum fall-off index is CY = - 4. 

than one part in 10’ for tens of eddy turnover times. The 
nonlinear transfer diagnostics have also been benchmarked 
against hand calculations for a small k space in order to 
verify their accuracy. 

The time-asymptotic spectrum is found to be flat, in 
very good agreement with the predicted equilibrium spec- 
trum. This agreement is remarkable, given that the nonlin- 
earity that drives the relaxation and the measured wave 
number space flow are anisotropic; yet the final spectrum is 
isotropic and in good agreement with a prediction that takes 
no account of the anisotropy in the nonlinearity. Figures l-3 

show a sequence of spectra, starting with an initial spectrum 
given by E(k) = k - 4, an intermediate configuration that 
occurs a few mean fluctuation time scales after the initial 
time, and an equipartitioned time-asymptotic spectrum cor- 
responding to a fully relaxed state achieved tens of eddy 
turnover times after the initial time. 

The spectra in Figs. 2 and 3 represent two distinct re- 
gimes of nonlinear transfer. The first is a flow regime charac- 
terized by robust transfer to high k, and k,. The k,, transfer 
is strongly nonlocal and is responsible for the peak and valley 
at high and intermediate k,, values, respectively, which is 

FIG. 2. Spectrum of undriv- 
en/undamped turbulence to- 
ward the end of the flow regime 
and just prior to the beginning of 
the sloshing regime. Approxi- 
mately five to ten correlation 
times have elapsed from the ini- 
tial time. 
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FIG. 3. Spectrum of undriv- 
en/undamped turbulence in the 
sloshing regime. The spectrum 
has been averaged over several 
correlation times. This spectrum 
is in the time-asymptotic (re- 
laxed) configuration. (The cen- 
tral peak is the mode 
k, = k, = 0. Because this mode 
does not couple to any other 
mode, it retains its initial ener- 
gy.) 

evident in Fig. 2. The flow regime terminates five to ten eddy 
turnover times after the beginning of nonlinear transfer 
when all energy in the low k modes above the equilibrium 
value has been transferred to high k, thus depleting the low k 
spectrum peak. There is a noticeable peak at high k, in the 
spectrum at the end of the flow regime. This is due to the 
relatively greater efficiency of the nonlocal k,, transfer, com- 
pared to the local transfer of the k, flow. Because the spec- 
trum at the end of the flow regime is anisotropic and not 
quite at the equilibrium configuration, a second regime en- 
sues, characterized by sloshing of energy in wave number 
space. The sloshing regime exhibits rapid transfer of energy 
between modes, but with little net transfer. The spectrum is 
quickly isotropized and flattened by the sloshing. The time- 
asymptotic spectrum is nearly flat with a slight peak at high 
k,. The sloshing interaction incorporates a wide range of 
time scales, from an eddy turnover time to hundreds of eddy 
turnover times. The sloshing motion roughly produces the 
equipartitioned spectrum predicted by equilibrium statisti- 
cal mechanics. However, this regime is probably not relevant 
to the transfer occurring in a driven stationary state. Insofar 
as the nonlinear transfer of the steady state is concerned, it is 
essentially an artifact of the finite (truncated) k space cou- 
pled with the efficient nonlocal transfer, and the fact that 
there is no dissipation at short wavelengths to absorb the 
energy nonlinearly transferred from long wavelengths. 

While the two regimes of nonlinear transfer have a no- 
ticeable effect on the spectrum, their properties are most 
clearly seen in the energy transfer and enstrophy production 
diagnostics. Figure 4 shows the net energy transfer from 
bands of constant k, and k, in both the long and short wave- 
length parts of the spectrum. The flow regime is clearly ap- 
parent as the period over which there is a continuous outflow 
from low k, as evidenced by the negative value of T, for the 
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long wavelength bands, and an inflow to high k, as seen in 
the positive value of Tk for the short wavelength bands. 
After t = 2.5, the sloshing regime is reached and the transfer 
is oscillatory with no net sign apparent. Figure 5 indicates 
that the enstrophy production rate is positive throughout the 
flow regime and saturates at the transition to the sloshing 
regime. Positive enstrophy production results from the con- 
servative transfer of energy from long to short wavelength, 
with the net increase of enstrophy proportional to the ratio 

Time (arbitrary units) 

FIG. 4, Net energy transfer rates for long and short wavelength bands of 
constant k, and k,, Energy is seen to flow out of the long wavelength bands 
(?‘, negative) and into the short wavelength bands ( T, positive). Distinct 
flow and sloshing regimes are identifiable. 
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FIG. 7. Local and nonlocal transfer rates in the k, direction. The parity of 
local and nonlocal transfer rates in the k, direction and the disparity of local 
and nonlocal transfer rates in the k, direction indicates a clear anisotropy in 
the transfer process. 

FIG. 5. Time evolution of the enstrophy. Enstrophy production is clearly 
evident in the flow regime, coinciding with energy transfer to long wave- 
length. 

k k,, /k iin. The observed positive enstrophy production 
rate thus corroborates the results of the energy flow diagnos- 
tic. Note that the negative enstrophy production rate occur- 
ring transiently at the onset of sloshing coincides with the 
first wave of back-transfer. 

Nonlocal transfer and its magnitude relative to local 
transfer is now examined. Figure 6 shows the time evolution 
of local and nonlocal transfer rates from a long wavelength 
k, = const band. By symmetry, transfer measured from a k,, 
band is dominantly the transfer in the k,, direction. From 
Fig. 6, the transfer in the flow regime is almost entirely non- 
local with a small local component. The initial spectrum in 
this case is lfi,12- k - 4. Given the definition of nonlocal 
used in this study, this figure indicates that energy is effi- 

ciently passing directly from the low k,, modes to modes that 
are more than one-half of the wave number space removed. 
Stated in terms of the wave number triangles for the nonlin- 
ear interaction of k, k ‘, and k - k ‘, triangles that are highly 
elongated are strongly favored over equilateral triangles in 
carrying the energy to high k,, . By contrast, Fig. 7 indicates 
that the transfer from a long wavelength band with 
k, = const is divided roughly equally between local and 
nonlocal components. There is therefore a pronounced ani- 
sotropy in the energy transfer process during the flow re- 
gime. 

The anisotropy in transfer is also evident in the evolu- 
tion of isodensity contours throughout the relaxation. Fig- 
ures S-10 show isodensity contours at the initial time, in the 
flow regime, and in the sloshing regime when the spectrum 
has reached equilibrium in an average sense. As expected, 
the initial isodensity contour plot has just one or two struc- + Id flow from lo* k) 

-c- nonlocal flou fmm low ky 

I 1 , ---t-----t-i----j 30 
\ ’ 

I I \ ’ I Y 

ii::/ ) ‘I ((m)\(( 
QJ$)$-, 

0 5 10 15 20 25 30 

-0.0012 -t I , I 

0 0.5 I 1.5 2 2.5 3 
Time (arbitrary units) 

x (orbitrory units) 

FIG. 6. Local and nonlocal transfer rates in the k, direction. Transfer is 
clearly dominated by the nonlocal process, which here is defined as transfer 
between coupled modes separated by more than half of the wave number 
space. 

FIG. 8. Contours of constant density at the initial time in the relaxation of 
undriven/undamped turbulence. The peak at low kin the spectrum (Fig. 1) 
is evident in the large-scale structure of the contour plot. 
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FIG. 9. Contoursofconstant density in the flow regime. Small-scale motion 
has been  excited through the nonl inear transfer process with anisotropy due  
to the effect iveness of nonlocal transfer in the k, direction. 

tures, consistent with a  spectrum peak at low k. As the spec- 
trum evolves through the flow regime (excitation in the high 
k, modes is growing rapidly) the anisotropy in the transfer 
man ifests itself in an  anisotropy in the isodensity contours. 
Small-scale structures appear  in the k, direction while few 
appear  in the k, direction. This can be  easily m isinterpreted 
as stretching in the k, direction, but it should be  remem- 
bered that the system is evolving by energy transfer from 
large-scale to small-scale structures. Hence, it is not stretch- 
ing, but rather a  breakup of the structure in the k, direction 
that is occurring. In the sloshing regime, the contours relax 
to an  approximately isotropic configuration, consistent with 
the isotropic equipartit ioned equil ibrium spectrum. 

Transfer during the sloshing regime tends to be  domin- 
antly nonlocal in both the k, and k, directions. This is un- 
derstandable because the mechanism that keeps the transfer 
local in k, is suppressed in the sloshing regime, This mecha-  
nism is generally responsible for the locality of transfer in 
most systems, and  stems from the amp litude dependence of 

FIG. 10. Contours of constant density in the sloshing regime (see Fig. 3). 
Sloshing has  isotropized the contours. 

the transfer coupled with the fact that the amp litude distri- 
bution generally falls off with higher k. If the spectrum de- 
cays as n--n, k -a, then the transfer coupl ing between 
modes k and k’>k goes as T,-tI’??, 
-@ --2a(k’- k) - 2a  [using the closure representafio:, 
Eq. (2) J. Clearly, for a  > 0, transfer to neighboring modes 
k ’ 2  k is strongly favored over transfer to distant modes 
(k ’ > k). However, when the spectrum becomes nearly flat 
and  cz z 0  (as in the case at the end  of the flow regime), all 
modes have equal  amp litude and the ratio of nonlocal to 
local transfer must increase. 

This notion suggests that the strong nonlocal transfer in 
ky exhibited in F ig. 6  should be  suppressed if the initial spec- 
trum is made  sufficiently steep. Indeed, when the initial 
spectrum slope exceeds k - 3, nonlocal transfer is sup- 
pressed. In this case, transfer is local, producing a  slow relax- 
ation of the spectrum. Once the spectrum has relaxed to the 
k - 3  slope, nonlocal transfer quickly begins and  relaxation 
proceeds to the equil ibrium spectrum at a  much increased 
rate. 

The  dominance of nonlocal transfer over local transfer, 
as evidenced in F ig. 6, is strongly incompatible with the no- 
tion of a  self-similar cascade that underl ies the Kolmogorov- 
type spectrum [ Eqs. ( 12) and  ( 13  ) 1. A similarity range can- 
not exist, at least in the k,, direction, as energy is transferred 
out of a  mode  and across the entire spectrum range in one  
correlation time. Indeed, the spectrum of steady state turbu- 
lence with driven modes at extremely low k, an intermediate 
inertial range over most of the spectrum, and  a  hypervisco- 
sity at the highest wave numbers,  bears no  resemblance to 
the similarity range stationary spectrum of Eq. ( 13). F igure 
11  reveals the stationary spectrum to be  nearly flat with 
slight peaking at low k and strong quenching of the amp li- 
tudes in the dissipation range. W h ile the inertial range is of 
lim ited extent in this spectrum (approximately one  decade),  
the flatness is a  robust feature independent of the strength of 
driving and  the saturated turbulence level. Moreover,  theo- 
retical work based on  the solution of a  two-point equat ion 
likewise indicates that a  flattening of the spectrum occurs as 
a  result of the nonlocal transfer of the E x B nonlinearity.‘6  
Because the similarity range stationary spectrum differs so 
markedly from the numerical spectrum of stationary driv- 
en/damped turbulence, it is important to determine the di- 
rection of energy transfer in situations with spectra like that 
of F ig. 11. The  transfer associated with the spectrum of F ig. 
11  is found to be  directed to large k, as would be  expected 
from the configuration of sources and  sinks. Moreover,  the 
transfer from an  initially flat spectrum in the undriven un- 
damped case is also toward high k, producing a  transfer rate 
history similar to that of F ig. 4, but with reduced magn itude. 
In this situation, nonlocal transfer proceeds in both direc- 
tions whereas local transfer is directed to high k,. Conse- 
quently, the spectrum develops a  slight peak in k,, and a  
sloshing regime ensues. 

It is valid to ask whether the anisotropy in the transfer 
and  the dominantly nonlocal transfer in the I<,, direction are 
artifacts of the size of the k space. W h ile it is not possible to 
say definitively that it is not an  artifact, all evidence suggests 
that it is real. The  wave number  space has been varied from 
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FIG. 11. Spectrum of turbulence 
driven at long wavelength and 
damped by a hyperviscosity at short 
wavelength with an inertial range in 
the intermediate modes. The spec- 
trum is only slightly peaked in the in- 
ertial range, a result that differs mar- 
kedly from the similarity range 
stationary spectrum [ Eq. (9) 1. The 
flatness of the spectrum is a result of 
the nonlocal transfer. 

13 X 13 modes to 41 X 41 modes with the nonlocal and aniso- 
tropic features becoming more pronounced in the case of a 
larger k space, rather than the contrary. Furthermore, both 
the nonlocality and anisotropy are corroborated by the 
structure of the one-point closure equations and, to a lesser 
degree, the nonlinearity itself. 

V. CONCLUSIONS 

A numerical study of dissipative trapped ion convective 
cell turbulence has been described. This study is based on the 
spectral solution of the Kadomtsev-Pogutse equation. The 
primary focus has been on basic physics issues associated 
with the transfer dynamics of the dominant nonlinearity for 
long wavelength fluid plasma turbulence, the E x B nonlin- 
earity. The principal results concern the equilibrium spec- 
trum and its relation to statistical mechanics predictions, the 
direction of energy transfer in k space, and the nonlocality 
and anisotropy of the transfer process. 

Finite-amplitude turbulence evolving in the absence of 
driving and damping has been found to undergo a relaxation 
in which spectra initially peaked at low k evolve to a flat, 
equipartitioned, and isotropic spectrum. The time-asympto- 
tic spectrum is in good agreement with the predictions of 
equilibrium statistical mechanics and validates the assertion 
underlying the statistical mechanics calculation that the sole 
invariant constraining the dynamics of spectral transfer is 
the energy. The observed time-asymptotic spectrum also 
validates the statistical mechanics prediction that for a driv- 
en steady state with a spectrum peaked at low k, spectral 
energy flow will proceed from long to short wavelengths. 
The agreement with statistical mechanics is remarkable in 
that the analysis takes no account of a pronounced anisotro- 
py in the nonlinearity and nonlinear transfer rate. 

The transfer of energy occurring during the relaxation 
from a spectrum peaked at long wavelength to the equilibri- 
um is measured to be in the direction of high k. Energy trans- 
fer occurs throughout the relaxation phase, with net time 
average transfer becoming zero when the equilibrium con- 
figuration is reached. A monotonically increasing enstrophy 
coincides with the phase of spectrum relaxation and net en- 
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ergy transfer to short wavelength. Enstrophy production is 
zero thereafter. With respect to its invariant properties and 
gross energy flow characteristics, it is clear that dissipative 
trapped ion convective cell turbulence is closer to 3-D Na- 
vier-Stokes turbulence than to its 2-D counterpart of Ha- 
segawa-Mima drift wave turbulence. On the other hand, 
long wavelength drift wave turbulence (e.g., trapped elec- 
tron mode turbulence) is closely related to the present mod- 
e1.13 

On closer inspection, details of the energy transfer are 
found to deviate dramatically from the self-similar cascade, 
which represents the conventional wisdom for Navier- 
Stokes turbulence and inertial ranges in general. In particu- 
lar, a robust and efficient nonlocal energy transfer process is 
observed that is capable of carrying energy from a low k 
mode to the other extreme of the spectrum in a correlation 
time. In the k,, direction this process dominates local cascad- 
ing, except when the spectrum is sufficiently steep. Transfer 
in the k, direction is divided equally between local and non- 
local components, implying a strong anisotropy in the trans- 
fer process. Nonlocal transfer violates the self-similarity hy- 
pothesis of Kolmogorov. Indeed, the inertial range spectrum 
in a driven/damped steady state is found to differ markedly 
from the Kolmogorov prediction. 

The existence of a direct transfer of energy corroborates 
a key assertion of Ref. 4 and confirms the real possibility that 
dissipative convective cell turbulence plays a significant role 
in core fluctuation activity in hot tokamak discharges. 
Clearly, further work is needed, particularly is studying the 
transfer at smaller scales where the polarization drift nonlin- 
earity becomes important and coupling to other short wave- 
length fluctuations becomes possible. The effect of the non- 
locality of transfer on spectra, spatial transport, and other 
descriptive measures of turbulence also represents an issue 
requiring additional work. 
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