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Abstract

As power system loading increases, larger blackouts due
to cascading outages become more likely. We investigate a
critical loading at which the average size of blackouts in-
creases sharply to examine whether the probability distri-
bution of blackout sizes shows the power tails observed in
real blackout data. Three different models are used, includ-
ing two simulations of cascading outages in electric power
transmission systems. We also derive and use a new, an-
alytically solvable model of probabilistic cascading failure
which represents the progressive system weakening as the
cascade proceeds.

1. Introduction

Analyses [5, 8] of 15 years of North American black-
out data [1] show a probability distribution of blackout size
which has heavy tails and evidence of power law depen-
dence in these tails [5, 8]. These analyses show that large
blackouts are much more likely than might be expected
from, say, a Gaussian distribution of blackout size in which
the tails decay exponentially. The power tails of probability
distributions of blackout size merit attention because of the
enormous cost to society of large blackouts.

In complex systems, power tails in probability distribu-
tions are associated with systems at criticality. Other indi-
cators of criticality are changes in gradient or a discontinu-
ity in some measured quantity. One purpose of this paper
is to examine the occurrence of power tails and criticality
as power system loading is varied. We examine expected
blackout size and pdfs as loading is varied in three differ-
ent models. The first model is a simple analytic model of
cascading failure and the second and third models are simu-
lations of cascading outages in electric power transmission
systems. In any power system, at zero loading there are no
blackouts and at any absurdly large loading there is always
a blackout. We examine the nature of the transition between
these two extremes.

2. CASCADE model

We want to capture some general features of probabilis-
tic cascading failure in a new model simple enough to allow
exact analysis. The general features are:

1. Multiple components, each of which has a random ini-
tial loading.

2. When a component overloads, it fails and transfers
some load to the other components.

Property 2 can cause cascading failure: an overload addi-
tionally loads other components and some of these other
components may also overload, leading to a possible cas-
cade of overloads. The extent of the cascade depends on
the random initial component loadings. The components
which are not (yet) overloaded become progressively more
loaded as the cascade proceeds. Thus CASCADE models
the weakening of the system as the cascade proceeds.

2.1. Description of model

The CASCADE model has n identical transmission lines
with initial loadings (power flows) which are random. For
each line the minimum loading is Lmin and the maxi-
mum loading is 1. For j=1,2,...,n, line j has initial load-
ing Lj which is a random variable uniformly distributed on
[Lmin, 1]. The average loading L = (Lmin + 1)/2. Also
Lmin = 2L− 1. L1, L2, · · · , Ln are independent.

Lines are outaged when their loading exceeds 1. When
a line is outaged, a fixed amount of load ∆ is transferred to
each of the lines. Thus ∆ is the amount of load increase on
any line when another line outages. Let p be the probability
thatL1 lies in an interval of length ∆ contained in [Lmin, 1]:

p =
∆

1− Lmin =
∆

2− 2L
(1)

It is convenient to assume that the values of ∆ are quantized
so that q = 1/p = (1 − Lmin)/∆ is an integer. Then
[Lmin, 1] can be partitioned into q intervals of length ∆.



To start the cascade, we assume an initial disturbance
which loads each line by an additional amount ∆. Other
lines may then outage depending on their loadings Lj and
the outage of any of these lines will distribute an additional
loading ∆ that can cause further outages in a cascade.

The model parameters are summarized in Table 1. All
the model parameters can be specified in terms of the aver-
age line loading L, the amount of load ∆ distributed to each
line upon an overload, and the number of lines n.

Table 1. CASCADE parameters

description comment

n number of lines
L average line loading
1 max line loading

Lmin min line loading Lmin = 2L− 1
∆ load increase at each

line when outage
p probability L1 in p = ∆/(2− 2L)

interval of length ∆
q the integer 1/p q∆ = 1− Lmin

2.2. Discussion of model

It is plausible that the general features of cascading fail-
ure captured in CASCADE can be present in cascading fail-
ure of power system transmission lines. However, CAS-
CADE is much too simple to represent with realism most
of the detailed and probably significant aspects of a power
system. Obvious deficiencies of CASCADE include the
transfer of loading upon overload without regard to net-
work structure, an artificial uniformity in the transmission
lines and their interactions, and no representation of gener-
ation changes or failure. Analysis of CASCADE can only
suggest general qualitative behavior that may be present in
power system cascading failures.

We discuss the parameter ∆. In a power system, sup-
pose that a transmission line has maximum loading 1 and
it overloads by a small amount so that the loading just be-
fore outage is approximately 1. Then, assuming a DC load
flow model, the outage causes the other line flows to change
according to line outage distribution factors [12]. The pa-
rameter ∆ in CASCADE corresponds to line outage distri-
bution factors averaged over all lines and all outaged lines.
In practice, the line outage distribution factors vary consid-
erably according to the lines considered. Only a subset of
lines may have loading significantly increased or decreased
by an outage.

If ∆ is very roughly estimated by averaging line outage
distribution factors, then it depends on the average amount

of parallel paths in the network. In the special case of a net-
work of all parallel lines, the amount of load transferred to
other lines is 1/(number of intact lines− 1) ≈ 1/n, at least
for the first few outages. In the case of the 179 bus model
of the WSCC system with number of lines n = 204, the
average line outage distribution factor is 0.0026 ≈ 1/(2n).
More highly meshed networks such as those in the Mid-
western United States would tend to have smaller average
line outage distribution factors.

In some cascading failures, power is redispatched so that
an overload on a line is relieved. This also transfers power
to other lines, but much less power is transferred than when
the line outages. This process corresponds to a smaller
value of ∆. There are also many other ways in which a
disturbance can outage lines, including interactions via dy-
namics and via the protection system.

The overload of a line by redistribution of the power flow
when another line outages depends both on the line load-
ing and the line outage distribution factor. The CASCADE
model has a fixed ∆ corresponding to the line outage dis-
tribution factor but represents random variation in the line
loadings.

2.3. Distribution of blackout size

Measure blackout size by S, the number of lines out-
aged. S is a discrete random variable on 0, 1, 2, ..., n. The
distribution of S is derived in appendix A and is given by
the following formulas:

If np ≤ 1 then

P [S = r] =
1

r + 1

(
n
r

)
((r + 1)p)r(1− (r + 1)p)n−r

(2)

If np ≥ 1, then q = 1/p ≤ n and

P [S = r] =




equation (2) ; r ≤ q − 1
0 ; q ≤ r ≤ n− 1
1−

∑n−1
s=0 P [S = s] ; r = n

(3)

Note that (2) gives P [S = q − 1] = 0 and that (2) and (3)
agree for np = 1.

Consul [9] introduced the following quasibinomial dis-
tribution to model an urn problem in which the player makes
strategic decisions:

P [X = r] =
(
n
r

)
p(p+ rφ)r−1(1− p− rφ)n−r (4)

for r = 0, 1, ..., n and p + nφ ≤ 1. For the special case
φ = p and (n + 1)p ≤ 1, we have X = S and that S has
the quasibinomial distribution. Consul [9] has derived the



mean of distribution (4) and by setting φ = p in Consul’s
formula, we obtain

ES = np

n−1∑
r=0

(n− 1)!
(n− r − 1)!

pr , np ≤ 1 (5)

2.4. Results

The distribution of blackout size S defined by (2), (3)
depends on p and n. For the first series of results we use 100
lines (n = 100). The mean blackout size ES as a function
of p is shown in Figure 1. There is a change in slope near
p = 0.01 = 1/100 and, for larger p, the mean blackout size
saturates at 100 lines.
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Figure 1. Mean blackout size ES versus prob-
ability p for n = 100.

Choose ∆ = 0.005 = 1/(2n). Then the mean blackout
size ES as a function of average loading L is shown by the
solid line in Figure 2. For a fixed ∆, Figure 2 is obtained
from Figure 1 by changing the horizontal axis quantity ac-
cording to L = 1 − ∆/(2p). For ∆ = 0.005, the change
in slope in Figure 2 corresponds to p near 0.01 and occurs
near loading L = 1− 0.005/0.02 = 0.75.

In the CASCADE model we can roughly approximate
the mean power served as proportional to the average line
loading and to the average number of intact lines:

mean power served ∝ L(n− ES) (6)

Mean power served is plotted in Figure 2. The maximum
mean power served occurs at the critical loading as a conse-
quence of the sharp rise in ES becoming dominant in (6).

Figure 3 shows the distribution of S for p = 0.005 on a
log-log plot. The distribution of S falls off for larger black-
outs in a more exponential fashion and the probability of
most or all of the lines blacking out is negligible.

Figure 4 shows the distribution of S when p is increased
to the critical value of p = 1/n = 0.01. There is a heavy tail
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Figure 2. Mean blackout size ES and mean
power served versus loadingL. Power served
has arbitrary units and n = 100.

in the distribution in which there is non-negligible probabil-
ity of most or all of the lines blacking out. The distribution
of S over an initial range of say, 0 to 25, is close to, but
not exactly a power law. The region of behavior close to a
power law is maximized for p ≈ 1/n = 0.01.

Figure 5 shows the distribution of S when p is further in-
creased to p = 0.015. The probability of the entire network
blacking out is 0.60. There is also significant probability of
short cascades and the distribution of these short cascades
falls off in a more exponential fashion.
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Figure 3. PDF of blackout size S.
(P[S=0]=0.61 is not plotted.)

Now we briefly examine the scaling of the critical change
in slope in Figure 1 with the number of lines n. It is use-
ful to express the mean blackout size as the mean fraction
of lines failed and to examine the mean blackout size as a
function of the scaled probability np. Figure 6 shows the
slope change for n = 20, 100, 500. The change in slope
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Figure 4. PDF of blackout size S.
(P[S=0]=0.37 is not plotted.)
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Figure 5. PDF of blackout size S.
(P[S=0]=0.22 not plotted; note P[S=100]=0.60)

in Figure 6 occurs at np = 1 and becomes sharper as n
increases. The slopes of the curves in Figure 6 peak at
np = 1. These features of Figure 6 suggest a type 2 phase
transition at np = 1. There is also a change in regime from
formula (2) to formula (3) when np = 1.

We can analytically approximate the pdf of blackout size.
Using Stirling’s formula m! ≈

√
2πm (m/e)m to approxi-

mate the factor n!/((r + 1)!(n− r)!) in (2),

P [S = r] ≈
e√
2π

√
n

n− r
(np)r

(r + 1)3/2

(
1 +

r − (r + 1)np
n− r

)n−r
(7)

and, for large enough n−r, using (1+y/(n−r))(n−r) ≈ ey
and

√
1− r/n ≈ 1, we get

P [S = r] ≈ (np)re(1−np)(r+1)

√
2π (r + 1)3/2

(8)

In approximation (8), the distribution of S depends only on
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Figure 6. Fractional mean blackout size ES/n
versus scaled probability np.

np. Moreover, if np = 1, then

P [S = r] ≈ 1√
2π (r + 1)3/2

(9)

and (9) predicts that the slope in Figure 4 is ≈ −1.5. The
actual slope in Figure 4 varies between −1.0 and −1.3 for
2 ≤ S ≤ 45 and is ≈ −1.3 for 6 ≤ S ≤ 28. For np not
close to 1, the expression (np e(1−np))r in (8) will cause the
distribution to decrease more exponentially for r << n.

The increased prevalence of large blackouts near criti-
cal loading can be attributed to the progressive loading and
weakening of the network as lines outage. If one removes
the progressive loading so that there is no increase of load
when lines outage (∆ = 0), but retain the initial disturbance
of ∆, then the distribution of blackout sizes becomes bino-
mial:

P [S = r] =
(
n
r

)
pr(1− p)n−r (10)

3. Hidden Failure Model

When a transmission line trips, there is a small but sig-
nificant probability that lines connected to either end of the
tripped transmission line may incorrectly trip due to relay
misoperation. These further line trippings are called hid-
den failures because they do not become apparent until the
first line tripping “exposes” the adjacent lines to the possi-
bility of relay misoperation. Recent NERC reports [1] show
that hidden failures in protection systems have played a sig-
nificant role in cascading disturbances. In this section, we
summarize the hidden failure model presented in [8] and
show simulation results about how the blackouts depend on
system loading.



The hidden failure model uses the DC load flow approx-
imation, in which the linearized, lossless power system is
equivalent to a resistive circuit with current sources. In par-
ticular, transmission lines may be regarded as resistors and
generation and load may be regarded as current sources and
sinks. The probability of an exposed line tripping incor-
rectly is modeled as a increasing function of the line flow
seen by the line relay. The probability is low below the line
limit, and increases linearly to 1 when the line flow is 1.4
times the line limit.

The simulation begins by randomly choosing an initial
line trip. This action exposes all lines connected to the ends
of the initial line and also may overload lines. If one line
flow exceeds its preset limit then the line is tripped. Other-
wise, a line protection hidden failure mechanism [2, 11] is
applied to let the chosen exposed line trip. After each line
trip, the line flows are recalculated and checked for viola-
tions in line limits. The process is repeated until the cascad-
ing event stops.

As a final step, an optimal distribution of generation and
load is calculated. Linear programming is used to mini-
mize the amount of load shed subject to the constraints of
the generation and load lying within their upper and lower
limits, the line flows not exceeding the maximum flow, and
overall generation matching the overall load.

The above simulation is repeated over an ensemble of
randomly selected transmission lines as the initiating fault
location.

We discuss an improvement of the hidden failure model.
Suppose that a line is exposed multiple times by trippings
of multiple lines connected to it. One would expect that, if
relay misoperation occurs, it will occur on the first expo-
sure of the line and is unlikely to occur on the subsequent
exposures. However, the previous version of the model in
[8, 2, 11] allowed relay misoperation with equal probabil-
ity on all the line exposures. The improved model reduces
or zeros the probability of misoperation after the first expo-
sure.

We simulate a WSCC equivalent system with 179 buses,
29 generators, 60 transformers, and 203 transmission lines.
The initial load flow data is based on the December 12, 1994
conditions, from which the required DC load flow data is
derived.

NERC reports [1] show that there are only about 150
events during the past 16 years in the WSCC region. A di-
rect simulation of these rare events would require an unreal-
istically huge amount of computation. One way out of this
quandary is to use importance sampling [3]. In importance
sampling, rather than using the actual probabilities, the sim-
ulation uses altered probabilities so that the rare events oc-
cur more frequently. Associated with each distinct sample
path, SPi, a ratio of actual probability of the event pactuali

divided by the altered probability psimulatei is computed.

We then form the estimated probability of SPi as

ρ̂i =
Noccurring
Ntotal

· p
actual
i

psimulatei

(11)

where Noccurring is the number of times that SPi occurred
and Ntotal is the total number of samples. The mean value
of ρ̂i is unbiased [3]. The power loss Pi associated with
each sample path is also recorded.

Figure 7 shows the expected power loss

EP =
∑

Pi ρ̂i (12)

as a function of loading level L. The change in slope occurs
near loading L = 0.75.
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Figure 7. Variation of expected blackout size
EP with loading L

To find out the probability distribution of blackout size
P , binning of the data is used. Assume there are K sample
points in bin j, and that each of the K points has the asso-
ciated data pair (Pi, ρ̂i). The representative (P̄j , ¯̂ρj) for bin
j is defined as

P̄j =
1
K

K∑
i=1

Pi and ¯̂ρj =
∑K
i=1 Piρ̂i

P̄j
(13)

The variable binning used here is such that each bin starts
with the minimum width and ends with at least a minimum
number of samples.

Figures 8, 9, 10 show the pdf of blackout size P at the
critical loading level 0.75, a higher level 0.85, and a lower
level 0.62. The pdfs for loading levels 0.75 and 0.85 show
some evidence of power tails. The 4 data points in Figure 9
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Figure 8. Distribution of blackout size P at
loading L = 0.75
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Figure 9. Distribution of blackout size P at
loading L = 0.85
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Figure 10. Distribution of blackout size P at
loading L = 0.62

that lie well above the dotted line indicate a higher proba-
bility of medium size blackouts. This arises from artificial
limitations on the further spread of blackouts of medium
size, particularly the suppression of tripping in 45 nega-
tive impedance lines that represent highly equivalenced por-
tions of network and in 60 lines that represent transformers
(transformer failures are not modelled).

4. OPA model

The OPA model was developed to assess the possibil-
ity of self-organized criticality in series of electric power
blackouts [10, 5, 7]. The self organization arises from the
opposing forces of load growth and network upgrades in re-
sponse to blackouts. In this paper we use a version of OPA
with no load growth and a fixed network and it is this ver-
sion which is summarized. For more detail see [10, 5, 7].

The OPA model represents transmission lines, loads and
generators with the usual DC load flow assumptions. Start-
ing from a solved base case, blackouts are initiated by a ran-
dom line outage. Whenever a line is outaged, the generation
and load is redispatched using standard linear programming
methods. The cost function is weighted to ensure that load
shedding is avoided where possible. If any lines were over-
loaded during the optimization, then these lines are outaged
with probability p1. The process of redispatch and testing
for outages is iterated until there are no more outages. Thus
OPA represents generic cascading outages which are con-
sistent with basic network and operational constraints. A
record is kept of the line overloads and outages and the load
shed so that the blackout extent can be studied. p1 = 0 en-



sures there are no line outages and only line overloads are
considered whereas p1 = 1 ensures that all overloaded lines
outage.

We consider a fixed network with parameters chosen so
that the system will be constrained by its transmission ca-
pacity as the load is increased. The network has 94 nodes,
12 generators and 82 loads arranged in a regular network
with a tree-like form [6]. Most nodes have 3 incident trans-
mission lines. A random fluctuation in loads is assumed up
to a maximum of 20%. Blackout size is measured by the
amount of load shed.
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Figure 11. Mean blackout size versus loading.

Figure 11 shows mean blackout size as measured by the
amount of load shed versus loading for three values of p1.
There is a critical loading P = 15392 at which the mean
blackout size increases.

Figure 12 shows pdfs of blackout size as loading in-
creases through the critical loading for p1 = 1. The pdfs
are shifted vertically so that their form may be seen.

At load P = 15210 (below the critical loading) the num-
ber of blackouts is small. The load fluctuations cause lines
to overload and outage and hence some load shed. It com-
mon for a single line to outage so that only one load node
is blacked out. This causes the pdf at lower blackout sizes
to have a series of peaks associated with values of load at a
single node.

At the critical loading P = 15392 there is some indica-
tion that a power tail develops with a decay index of about
−1.5. The fall off after 0.08 is a network size effect. Above
the critical loading the pdf is more Gaussian and is localized
at a high value of the load shed.

The OPA model contains multiple critical points associ-
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Figure 12. Distributions of blackout size.

ated with limits on both transmission and generation. In [7],
we choose parameters so that the generation critical loading
is reached first and scan through the critical loading by fix-
ing the load and increasing the load fluctuations from zero
to 98%. The results again show a power tail at the critical
loading and a more exponential decay below and above the
critical loading [7].

5. Discussion and Conclusions

We have examined expected blackout size and black-
out size pdfs as load is increased in three different models:
CASCADE, a hidden failure model, and the OPA model.
All three models show a sharp increase in slope of the ex-
pected blackout size at a critical loading.

All three models show some evidence of power tails in
the pdf at this critical loading, but there remain some differ-
ences and uncertainties in this result. In particular,

(1) CASCADE shows approximate power law behavior
over a substantial range of blackout sizes near the critical
loading. The CASCADE model is analytic so that the re-
sults are exact. CASCADE may represent processes occur-
ring in cascading failure in power system but CASCADE is
too simple to represent some presumably significant power
system features.

(2) The hidden failure model shows power tails at and
above the critical loading, except for some medium size
blackouts. Below the critical loading the form of the pdf
is not clear. This model represents hidden failures in the



protection system well and models power system cascading
outages and overloads using the DC load flow approxima-
tion and LP redispatch. The results are obtained on a 179
bus equivalenced WSCC system.

(3) The OPA model shows some evidence of a power
law region at critical loading and a more Gaussian form at
higher or lower loadings. This model represents generic
cascading power system outages and overloads using the
DC load flow approximation and LP redispatch. The re-
sults are obtained on an artificial symmetric power system
network of 96 nodes.

Since the three models are quite different and even the
two simulation models are very approximate power system
models, one cannot expect detailed agreement between the
models or, for that matter, between the models and a real
power system. (For example, [7] shows that the critical be-
havior of the OPA model is complicated and certainly can-
not be reproduced in detail by CASCADE.) However, the
broad agreement between the models is consistent with and
supportive of the hypothesis that power tails in the pdf ap-
pear at a critical loading at which mean blackout size in-
creases sharply. Moreover, it is possible that general fea-
tures of cascading outages in power systems are captured by
all three models; and in this case, the strengthened hypothe-
sis is progress towards a global analysis and understanding
of cascading failures in power systems. Further work test-
ing the hypothesis to gain sharper conclusions is indicated.

Indeed, the hypothesis, if fully established, would have
significant consequences for power system operation. For
then the NERC blackout data [1, 5, 8] suggests that the
North American power system has been operated near criti-
cality. Moreover, it is then plausible that the power tails and
the consequent risk of large blackouts could be substantially
reduced by lowering power system loading to obtain an ex-
ponential tail for large blackouts. It would be better to an-
alyze this tradeoff between catastrophic blackout risk and
loading instead of just waiting for the effects to manifest
themselves in the North American power system!

Why would power systems be operated near a critical
loading? One possible answer is that overall forces, includ-
ing the system engineering and operational policies, orga-
nize the system towards criticality as proposed in [4, 5, 10,
6, 7].

A notable outcome of this paper is the CASCADE model
and the derivation of formulas for its pdf. This pdf ex-
hibits heavy tails near critical loading and more exponen-
tial tails far from critical loading (high loading also yields a
significant chance of total failure). This is a new model of
probabilistic cascading failure that is of general interest in
studying the distribution of sizes of failures of large inter-
connected systems in which the successive failure of loaded
components progressively weakens the system.
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A. Derivation of CASCADE distribution

It is convenient to to work in terms of line mar-
gins M1,M2,M3, · · · ,Mn where Mj = 1 − Lj . Then
M1,M2,M3, · · · ,Mn are independent random variables
uniform on [0, 1 − Lmin]. Recall that the integer q =
(1− Lmin)/∆ = 1/p.

We suppose that r ≤ q − 1 and examine the event
[S = r], which is a cascade of exactly r lines. Suppose we
renumber the lines so that the r lines outaged in the order
1, 2, ..., r. The initial disturbance increased the loading on
line 1 by ∆. Since line 1 outaged, its marginM1 must have
been less than ∆. The outage of line 1 caused an additional
increase of loading ∆ on all the lines. Since line 2 outaged,
its margin M2 must have been less than 2∆. Similarly, for
j ≤ r, since line j outaged, its margin Mj must have been
less than j∆. After line r outages, the remaining intact lines
all have had their loadings increased by (r+1)∆. ((r+1)∆
comprises the initial disturbance ∆ and ∆ for each of the r
lines outaged.) Since none of the remaining intact lines out-
aged, their margins must all exceed or equal (r + 1)∆. To
summarize:

M1 < ∆,M2 < 2∆, · · · ,Mr < r∆,
Mk ≥ (r + 1)∆ for r + 1 ≤ k ≤ n.

The same argument without renumbering the lines and ac-
counting for the possible permutations of lines yields

[S = r] =⋃
π∈Sn

[Mπ(1) < ∆,Mπ(2) < 2∆, · · · ,Mπ(r) < r∆,

Mπ(r+1) ≥ (r + 1)∆, · · · ,Mπ(n) ≥ (r + 1)∆] (14)

where the union runs over all permutations π of 1, 2, · · · , n
in the symmetric group Sn. The union in (14) is not a dis-
joint union.

We consider the case r > q − 1. If the cascade extends
to a size r > q − 1, then the total increase in load on the
remaining intact lines is (r+1)∆ > q∆ = 1−Lmin. Since
1 − Lmin is the maximum line margin, all the remaining
intact lines must outage, and so S = n and P [S = r] = 0
for q − 1 < r < n.

In the case r = q−1, (14) applies but, since (r+1)∆ =
q∆ = 1 − Lmin, the event [Mπ(n) ≥ (r + 1)∆] becomes
the probability zero event [Mπ(n) = 1 − Lmin] and hence
P [S = q − 1] = 0.

Now we assume r < q − 1 for the rest of this appendix.
Define intervals I1, I2, · · · , Iq so that

Ij = [(j − 1)∆, j∆) ; 1 ≤ j ≤ q (15)

Then [Mπ(�) < �∆] =
⋃

a�∈{1,2,...,�}
[Mπ(�) ∈ Ia� ]

[Mπ(�) ≥ (r + 1)∆] =
⋃

a�∈{r+2,...,q}
[Mπ(�) ∈ Ia� ]

and (14) can be written as

[S = r] =
⋃
π∈Sn

⋃
(a1,a2,...,an)∈B

[Mπ(1) ∈ Ia1 ,Mπ(2) ∈ Ia2 , · · · ,Mπ(n) ∈ Ian ] (16)

where B = {(a1, a2, ..., an) |
a1 ∈ {1}, a2 ∈ {1, 2}, ..., ar ∈ {1, 2, ..., r},
ar+1 ∈ {r + 2, ..., q}, ..., an ∈ {r + 2, ..., q}}

In (16) it is equivalent to permute the intervals Iai instead
of permuting the marginsMi:

[S = r] =
⋃
π∈Sn

⋃
(a1,a2,...,an)∈B

[M1 ∈ Iaπ(1) ,M2 ∈ Iaπ(2) , · · · ,Mn ∈ Iaπ(n) ] (17)

and (17) may be rewritten as

[S = r] =
⋃

(a1,a2,...,an)∈Bπ

[M1 ∈ Ia1 ,M2 ∈ Ia2 , · · · ,Mn ∈ Ian ]

(18)
where Bπ is the set of permuted elements of B:

Bπ =
⋃
π∈Sn

{(aπ(1), aπ(2), ..., aπ(n)) |

a1 ∈ {1}, a2 ∈ {1, 2}, ..., ar ∈ {1, 2, ..., r},
ar+1 ∈ {r + 2, ..., q}, ..., an ∈ {r + 2, ..., q}}

(19)

For each i with 1 ≤ i ≤ n, the event [Mi ∈ Iai ] has
probability p. Since M1,M2, · · · ,Mn are independent, the
event [M1 ∈ Ia1 ,M2 ∈ Ia2 , · · · ,Mn ∈ Ian ] has probability
pn. Equation (18) expresses [S = r] as a disjoint union of
events [M1 ∈ Ia1 ,M2 ∈ Ia2 , · · · ,Mn ∈ Ian ]. Therefore,
writing |Bπ| for the number of elements of Bπ ,

P [S = r] = |Bπ| pn (20)



and the computation of P [S = r] reduces to counting the
number of elements of Bπ .

Define Ar =
⋃
π∈Sr
{(aπ(1), aπ(2), ..., aπ(r)) |

a1 ∈ {1}, a2 ∈ {1, 2}, ..., ar ∈ {1, 2, ..., r}} (21)

A′r =
⋃

π∈Sn−r
{(aπ(1), aπ(2), ..., aπ(n−r)) |

a1 ∈ {r + 2, ..., q}, ..., an−r ∈ {r + 2, ..., q}]

Each element of Bπ can be uniquely specified by first
choosing which n−r of {a1, a2, ..., an} are in {r+2, ..., q},
or, equivalently, which r of {a1, a2, ..., an} are less than
r + 1, and then making a choice of one element of Ar, and
then making a choice of one element of A′r. Therefore

|Bπ| =
(

n
n− r

)
|Ar||A′r| =

(
n
r

)
|Ar||A′r| (22)

It is straightforward that |A′r| = (q − (r + 1))n−r and
Lemma 1 below yields |Ar| = (r + 1)r−1. Hence

|Bπ| =
(
n
r

)
(r + 1)r−1(q − (r + 1))n−r (23)

It follows from (20), (23) and pq = 1 that

P [S = r] =
1

r + 1

(
n
r

)
((r + 1)p)r(1− (r + 1)p)n−r

(24)

Lemma 1 Define the set Ar by (21). Then

|Ar| = (r + 1)r−1 (25)

Proof: Define

Σr+1 = {(a1, a2, ..., ar) |
ai ∈ {1, 2, ..., r + 1}, i = 1, 2, ..., r} (26)

Then Ar ⊂ Σr+1 and |Σr+1| = (r + 1)r.
Define the permutation σ1 on {1, 2, ..., r + 1} by

σ1(a) =
{
a+ 1 ; 1 ≤ a ≤ r
1 ; a = r + 1 (27)

Define σ : Σr+1 → Σr+1 by

σ((a1, a2, ..., ar)) = (σ1(a1), σ1(a2), ..., σ1(ar)) (28)

σr+1 is the identity and {1, σ, σ2, ..., σr} is a cyclic group
acting on Σr+1.

Consider the following union of subsets of Σr+1:

Ar ∪ σ(Ar) ∪ σ2(Ar) ∪ · · · ∪ σr(Ar) (29)

To prove the Lemma it is sufficient to show that (29) is a
partition of Σr+1 into r + 1 sets of equal size. For then
(r + 1)|Ar| = |Σr+1| = (r + 1)r.

The equal size of Ar, σ(Ar), σ2(Ar), · · · , σr(Ar) fol-
lows from σ being a bijection. To prove that (29) is a parti-
tion, we needAr, σ(Ar), σ2(Ar), · · · , σr(Ar) to be disjoint
and that (29) is equal to Σr+1.

Let k satisfy 1 ≤ k ≤ r.

σk(Ar) =
⋃
π∈Sr
{(aπ(1), aπ(2), ..., aπ(r)) |

a1 ∈ {k + 1},
a2 ∈ {k + 1, k + 2}, · · · ,
ar+1−k ∈ {k + 1, ..., r + 1},
ar+2−k ∈ {k + 1, ..., r + 1, 1},
ar+3−k ∈ {k + 1, ..., r + 1, 1, 2}, · · · ,
ar ∈ {k + 1, ..., r + 1, 1, 2, ..., k − 1}}(30)

By inspection of (21) and (30), each element of Ar has
at least k entries from {1, 2, ..., k} and each element of
σk(Ar) has no more than k − 1 entries from {1, 2, ..., k}.
Therefore Ar and σk(Ar) are disjoint for 1 ≤ k ≤ r.
Then Ar, σ(Ar), σ2(Ar), · · · , σr(Ar) are disjoint, for if
not, then there are m, � with 0 ≤ m < � ≤ r and
1 ≤ � − m ≤ r and there is a b ∈ σm(Ar) ∩ σ�(Ar)
and σ−m(b) ∈ Ar ∩ σ�−m(Ar), which is a contradiction.

To show that the subset (29) of Σr+1 is equal to Σr+1,
we choose any b = (b1, b2, ..., br) ∈ Σr+1 and show that
b is in (29). Define |b| = |(b1, b2, ..., br)| = b1 + b2 +
... + br. Choose k which minimizes |σk(b)| and write c =
(c1, c2, ..., cr) = σk(b).

We now show that c ∈ Ar. Since Ar contains all permu-
tations of its elements, we can reorder (c1, c2, ..., cr) with-
out loss of generality so that c1 ≤ c2 ≤ ... ≤ cr. According
to (21), ci ∈ {1, 2, ..., i}, i = 1, 2, ..., r implies c ∈ Ar. We
prove ci ∈ {1, 2, ..., i}, i = 1, 2, ..., r by induction on i.
c1 ∈ {1}, for if c1 > 1, then cj ≥ 2 for j = 1, 2, ..., r

and σ−1
1 (cj) = cj − 1 for j = 1, 2, ..., r and |σ−1(c)| =

|c| − r < |c| which is a contradiction.
Now suppose that i satisfies 2 ≤ i ≤ r and that c� ∈

{1, 2, ..., �} for � < i. Then σ−i1 (cj) = cj + r + 1 − i for
j = 1, 2, ..., i − 1. Suppose that ci �∈ {1, 2, ..., i}. Then
cj ≥ i + 1 for j = i, i + 1, ..., r and σ−i1 (cj) = cj − i for
j = i, i+1, ..., r. Now |σ−i(c)| = |c|+(i−1)(r+1− i)−
(r+1−i)i = |c|−(r+1−i) < |c|which is a contradiction.
Therefore ci ∈ {1, 2, ..., i}.

Thus c ∈ Ar. It follows that b = σ−k(c) =
σr+1−k(c) ∈ σr+1−k(Ar) is in (29).


