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Abstract

Scintillometer measurements of the turbulence inner-scale length lo and refractive index

structure function C2
n allow for the retrieval of large-scale area-averaged turbulent fluxes

in the atmospheric surface layer. This retrieval involves the solution of the non-linear

set of equations defined by the Monin-Obukhov similarity hypothesis. A new method

that uses an analytic solution to the set of equations is presented, which leads to a sta-

ble and efficient numerical method of computation that has the potential of eliminating

computational error. Mathematical expressions are derived that map out the sensitivity

of the turbulent flux measurements to uncertainties in source measurements such as lo.

These sensitivity functions differ from results in the previous literature; the reasons for

the differences are explored.
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1 Introduction

1.1 Atmospheric Boundary Layer Turbulent Fluxes

Energy and momentum exchange between the Earth’s crust and its atmosphere oc-

curs at the Earth’s surface. Before energy and momentum can be re-distributed by large

scale atmospheric flows, they pass through a layer of air which interacts directly with the

ground. Due to surface roughness and convection, the atmospheric flow forms a bound-5

ary layer near the ground. This atmospheric boundary layer typically has a depth of

between a few meters to a couple of kilometers, and the bottom portion is deemed the

surface layer. In the surface layer, turbulence due to thermal and humidity gradients and

mechanical shearing dominates the process of energy, water, and momentum exchange.

10

Vertical turbulent surface layer fluxes of sensible heat, latent heat and momentum

are important to measure for the validation of ecological, atmospheric, and large scale

climate models [e.g., Beyrich et al., 2002; Marx et al., 2008]. These turbulent fluxes rep-

resent temporally averaged bulk movement of extensive quantities through imaginary

horizontal planar surfaces above the terrain [e.g., Sorbjan, 1989]. As pressure is a single15

quantity which is a measure of the momentum transfer of countless molecular collisions

and electromagnetic interactions [e.g. Schroeder, 2000], turbulent fluxes are singular quan-

tities which represent statistical averages of some aspect of the movements of countless

molecules and their associated energies and inertia.

20

On the scales that will be discussed here, the continuum approximation is valid; this is

the realm of classical physics. While in theory the heat fluxes could be calculated by solv-

ing for the fluid flow and thermodynamics of the entire three dimensional field of the at-

mospheric surface layer in time, this is highly impractical. First of all, the equations which
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describe such processes are the thermodynamic equations coupled to the Navier-Stokes25

equations, neglecting non-inertial reference frame effects such as the Coriolis effect. The

Navier-Stokes equations follow from the fundamental Newton’s laws applied to a con-

tinuous fluid, with the introduction of viscosity to take into account the electromagnetic

interactions of passing (shearing) particles [e.g., Landau and Lifshitz, 1959]. While it is pos-

sible with known boundary conditions to numerically solve the Navier-Stokes equations,30

there is no known general solution to them. Furthermore, in practice the entire set of

boundary conditions cannot be realistically measured with a high degree of accuracy. As

such, equations are desired which relate measureable quantities to the turbulent fluxes.

These equations may be based on fundamental equations such as the Navier-Stokes equa-

tions, but they will describe the situation at a “higher” level, with less explicit information35

involved.

The Buckinham-Pi Theorem allows such “higher” level equations to be derived to

represent physical processes such as turbulence as seen in Sorbjan [1989]. The functional

form of the relationships between measureable variables can be inferred with assump-40

tions about the physical process under study. This is accomplished through an analysis of

the dimensionality of physical variables involved in the problem, and as such it can only

work well if the right assumptions are made about the appropriate variables dominating

the physical process. The functional relationships which can be derived through this the-

ory generally involve unknown dimensionless functions which are resolved empirically,45

or which may be derived theoretically outside the context of Buckingham-Pi Theorem.

As an example of an application of the Buckinham-Pi Theorem, in the 1940’s, Taylor

used it to estimate the energy released from a nuclear bomb while the only data at his

disposal was a series of photographs of the explosion with a spacial and temporal scale50

embedded [e.g., Taylor, 1950a,b]. With assumptions about the relations between key vari-

ables in explosions resulting from energy (not gas) suddenly released in a small area, he

estimated the bomb payload energy to a high degree of accuracy. He accomplished this

estimate without introducing any details about the payload of the bomb.
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55

In the case of atmospheric boundary layer studies, the quantity which needs to be es-

timated is, for example, the area-average large scale sensible heat flux through the surface

layer. As an analogy, the sensible heat flux is the payload energy, the exact details of the

turbulence is the information which is hidden (the nuclear physics behind the bomb in

the case of Taylor), and the theoretical relationships which relate the data to the sensible60

heat flux emerge from the Monin-Obukhov similarity hypothesis [e.g., Sorbjan, 1989]. The

Monin-Obukhov similarity hypothesis is also derived from Buckinham-Pi theory; it orig-

inated in the 1950’s and it has been applied frequently in boundary layer physics [e.g.,

Wilson, 2008]. The Monin-Obukhov similarity hypothesis is a model of energy and mo-

mentum exchange via turbulence in the surface layer of the atmosphere. It assumes that65

large scale effects such as the Coriolis effect and large scale advection are negligible, and it

reduces turbulent motions in the surface layer to statistical variables which are related to

each other via their physical dimensions, as well as through empirically resolved dimen-

sionless functions. Turbulent kinetic energy is generated at the surface layer in the form

of large eddies through conduction of heat from the ground and mechanical shearing of70

airflow. These large eddies subsequently break apart into smaller eddies in a cascading

process until a critical eddy size at which point viscosity dissipates the kinetic energy into

heat. This critical eddy size is called the turbulence inner scale length, denoted by lo.

These dynamic interactions between the air and the surface are represented by scalar75

variables such as the friction velocity u?, the temperature and humidity scales T? and

Q?, and the Obukhov length L. These are statistical variables; they are only expected to

satisfy Monin-Obukov theory if measured over a certain averaging time in homogeneous

and stationary turbulence. These variables are defined as
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u? = ((u′w′)2 + (v′w′)2)1/4 (1.1)

T? = −w′T′

u?
(1.2)

L =
u2
?T

gκT?
(1.3)

where u, v and w are the east-west, north-south, and vertical wind components, g is grav-80

itational acceleration, κ is the von Kármán constant, T is temperature (or virtual tempera-

ture if water vapor is present), and primes denote deviations from temporal average due

to turbulence, while bars denote time averages as seen in Sorbjan [1989]. Dimensional

analysis leads to the conclusion that many aspects of the surface layer are functions of u?

and T?, and of the dimensionless variable z/L (which is an indicator of dynamic stability).85

From dimensional analysis alone, the behaviour of the unknown functions of z/L can only

be specified in asymptotic regimes [e.g., Sorbjan, 1989].

The turbulent fluxes of interest are given by

HS = −ρcpu?T? (1.4)

HL = −Lvu?Q? (1.5)

τ = ρu2
? (1.6)

where HS is the sensible heat flux, HL is the latent heat flux, τ is the momentum flux,90

cp is the specific heat capacity at constant pressure, ρ is the density, and Lv is the heat

of vaporization. Since ρ, cp and Lv are direct functions of source measurement variables

such as temperature T, pressure P, and humidity Q, the main difficulty in resolving, say,

HS, is to resolve u? and T?. While it is possible to measure the turbulent components of

wind and temperature directly in order to resolve u? and T? through Eqs. (1.1) and (1.2),95

this is not easily done over a large scale. Typical instruments for direct measurements of
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turbulent components of wind and temperature are eddy covariance systems consisting

of sonic anemometers, or fast gas measuring devices. These instruments are well estab-

lished and reliable, however they have a relatively small footprint compared to the size of

an agricultural field or a space-borne instrument’s pixel resolution. There are two disad-100

vantages with a small footprint: firstly the turbulence must be sampled for a long enough

averaging time to sample the full spectrum of eddies, and secondly, the field site may be

heterogeneous with gradients in fluxes. In order to measure turbulent fluxes at a larger

scale, the turbulence itself can be sampled at a larger scale. As Taylor took “snapshots”

of the atomic bomb explosion from a distance, variables which describe the turbulence105

statistically can be sampled at large scales. The variables which are recorded are the tur-

bulent structure functions such as the structure function for temperature C2
T, as well as

the turbulence inner scale length lo. Structure functions are described in Tatarskii [1961];

they are a statistical description of the strength and spacial frequency of inhomogeneities

in the air due to turbulent perturbations.110

Structure functions such as C2
T, and the turbulence inner scale length lo, along with

other measurable quantities such as P and T, are related to the turbulent fluxes through

the Monin-Obukhov similarity hypothesis by

C2
Tz2/3

T2
?

= g(z/L) (1.7)

κzε

u3
?

= φ(z/L) (1.8)

where z is the height above the surface, ε is the rate at which energy is transferred from115

large eddies to smaller eddies (which is related to lo for a given turbulence spectrum),

and g(z/L) and φ(z/L) are empirical dimensionless functions [e.g., Sorbjan, 1989; Andreas,

1992]. While the statistical variables T? and u? are assumed to be independent of height

in the constant flux surface layer, C2
T and ε are functions of the height above the surface

z. Generally the set of equations which resolve T? and u? are coupled. C2
T and lo may be120

sampled over large areas through an instrumentation strategy called optical scintillation.
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1.2 Scintillation

On a hot day, if one looks out over a vast field, distant objects viewed through the

atmospheric surface layer often appear blurry and wavy; they dance in the air. This is125

an effect of turbulence. Mixing, diffusion, and swirling of eddies in the air create inho-

mogeneities in the temperature and humidity of the air. The index of refraction of the

air is a function of temperature and humidity, thus it demonstrates rapidly evolving in-

homogeneities over a vast range of spacial and temporal scales. A scintillometer records

quantitative information about these inhomogeneities in the index of refraction by trans-130

mitting and receiving pulses of narrow-band photons through a significant path of surface

layer turbulence. The photons are scattered by these inhomogeneities. With an assump-

tion about the form of the turbulent spectrum, records of the statistics of the intensity of

electromagnetic radiation received at the scintillometer can be converted into information

about the structure function of the index of refraction of the air C2
n, as well as the tur-135

bulence inner scale length lo [e.g., Tatarskii, 1961; Ochs and Wang, 1974; Hill, 1988; Sasiela,

1994]. The electromagnetic wave equations which follow from the Maxwell equations are

solved in a medium with a stochastically varying index of refraction for the cylindrical

boundary conditions involved. The solution for a large aperture scintillometer is given by

σln(I) = 4π
2k2

Lp∫
0

∞∫
0

Kψn(K,C2
n, lo)sin2

(
K2x(Lp−x)

2kLp

)
dKdx (1.9)

where σln(I) is the variance of the logarithm of the intensity at the receiving end of a coher-140

ent plane wave, k is the optical wavenumber, K is the turbulence spacial wavenumber, ψn

is the turbulence spectrum, Lp is the propagation distance, and x is the position between

the transmitter and receiver along the line of beam propagation [e.g., Ochs and Wang, 1974;

Hill, 1988].

145

The area-average measurements of C2
n and lo are a potential alternative to the direct

measurement of turbulent components of wind, temperature and humidity. The large
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footprint of scintillometers is ideal for studies on an ecosystem or basin scale such as

in the LITFASS experiment [e.g., Beyrich et al., 2002; Beyrich and Mengelkamp, 2006; Mei-

jninger et al., 2006]. Remote sensing of turbulence also avoids complications such as the150

instrument affecting airflow. However, these gains are not without complications. One

such complication is the fact that some photon wavelengths have non-negligible absorp-

tion which may be a function of fluctuating variables such as humidity; this results in an

over-estimation of C2
n [e.g., Solignac et al., 2012]. This is solved, in some cases, with the

application of dual transmitters, or with a selection of wavelengths which are essentially155

not absorbed. Another complication is the potential for “saturation” of the C2
n signal at a

certain level of intensity fluctuations, above which C2
n is under-estimated [e.g., Wang et al.,

1978]. In some cases this can be resolved by raising the scintillometer to a higher height

where the turbulence is more dissipated, or by shortening the beam propagation distance

of the beam path. Both z and L are variables which are taken into account in the theoretical160

relations which translate the set of source measurements into turbulent fluxes.

The structure function of the index of refraction can be decomposed into its individual

structure function components representing fluctuations in temperature and humidity as

C2
n =

A2(T,P,Q,λ)
T2 C2

T +
2A(T,P,Q,λ)B(T,P,Q,λ)

TQ
CTQ +

B(T,P,Q,λ)
Q2 C2

Q (1.10)

where T is the average temperature in the air mass, Q is the average absolute humidity, P165

is the average pressure, λ is the wavelength of photons, and A and B are functions specific

to the medium [e.g., Andreas, 1989]. As such, C2
n is a measure of how “blurry” objects

appear when viewed at a specific wavelength through an air mass. It is thus not only a

measure of the turbulence strength, but it is also a measure of how sensitive the index of

refraction of the air is to perturbations in temperature and humidity. Since a scintillome-170

ter using a single wavelength only measures one value of C2
n, three separate values of C2

n1
,

C2
n2

and C2
n3

can be measured at different wavelengths λ1, λ2 and λ3 in order to resolve

the values of the structure functions C2
T, CTQ and C2

Q in Eq. (1.10), if one of them cannot
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otherwise be neglected or parametrized.

175

In order to resolve variables such as T?, the measured C2
T may be input into, for ex-

ample, Eq. (1.7) along with the height z at which the C2
T was sampled at. This height z

is important to resolve accurately, since it can be seen from Eq. (1.7) that C2
T dissipates

nonlinearly in height. The simplest theoretical field site is that of a “nearly” flat area with

homogeneous terrain properties such as roughness length, thermal properties, and water180

availability. In this case, a single value of z may be representative; the variability of z can

be incorporated into its measurement uncertainty as considered in Andreas [1989] and An-

dreas [1992].

There are many types of scintillometers, some which measure only C2
n such as large185

and extra large aperture scintillometers [e.g., Kohsiek et al., 2002; Kleissl et al., 2008], and

others such as displaced beam scintillometers which measure both C2
n and lo [e.g., Hill,

1988; Andreas, 1992]. There are also many wavelengths used, from near infra-red to the

radio end of the spectrum [e.g., Andreas, 1989, 1990; de Bruin et al., 2002]. As such, there

are many instrument strategies which have been deployed. In order to resolve the three190

components of Eq. (1.10) and a path averaged u? measurement, a triple wavelength strat-

egy may be considered in which one of the scintillometers is measuring lo as well as C2
n,

and the other two scintillometers are measuring C2
n at other wavelengths. If two separate

wavelengths are being used, the assumption that CTQ =
√

C2
TC2

Q is made in order to resolve

Eq. (1.10) for each value of C2
n [e.g., Andreas, 1989]. When using a single wavelength, the195

index of refraction at this wavelength should only be influenced by temperature fluctu-

ations in order to measure the sensible heat flux. In this case the latent heat flux can be

inferred by measuring radiative and ground storage energy flux terms, and by invoking

energy conservation while assuming that there is negligible advection of energy and stor-

age of energy in chemical potential in the vegetation [Monteith and Unsworth, 2008].200

If none of the scintillometers being used measures lo, then the friction velocity u? can

either be measured at a small footprint scale by an eddy covariance system near the center
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of the beam path, or it can be a partially path-averaged measurement by invoking the

Businger-Dyer relation given by205

u? =
κu(z1)

ln(z1/z0)−ψm(z1/l) + ψm(z0/l)
(1.11)

where u(z1) is the wind speed at height z1, z0 is the roughness length (or effective rough-

ness length over variable terrain), and ψm is a unit-less similarity function [e.g., Panofsky

and Dutton, 1984; Sorbjan, 1989; Solignac et al., 2009]. While u(z1) is a point measurement,

L is still resolved in this case mostly at the path length scale through the rest of the cou-

pled equations in the set by incorporating C2
n. This feature of mixing point source mea-210

surements such as T and P with path averaged source measurements such as C2
n and lo

is unavoidable in scintillometer strategies. The assumption of representativity of point

measurements such as T on the whole beam path scale may introduce systematic error

which is temporally evolving. This problem can be treated alongside general uncertainty

analyses.215

In previous studies, the coupled set of equations relating u?, T?, and Q? to L via knowl-

edge of the structure functions and lo has been solved via an iterative algorithm in which

many variables are free to change, and in which convergence is assumed upon reach-

ing a cut-off value for relative change between successive iterations. [e.g., Andreas, 1989;220

Lagouarde et al., 2002; Hartogensis et al., 2003; Solignac et al., 2009].

1.3 Uncertainty Propagation

Knowledge of the uncertainty of measurements is important for comparison of data

with hypotheses based on theory. Much focus is placed on uncertainty in numerical

weather prediction and climate forecasting. Uncertainty propagates from measurements225

through atmospheric models to the model output in sometimes surprising ways due to

the inherrent nonlinearity the large set of equations involved.

Scintillometer measurement techniques involve a set of coupled equations with vari-
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ables that are representative of varying scales. Uncertainty analyses are thus both crucial,230

and difficult. The distinction can be made between two types of variables: source mea-

surements, and derived variables. Source measurements are either those variables which

are measured directly, or they are calculated from variables which are independent of the

rest of the source measurements (i.e., C2
n is calculated from σln(I), however C2

n can be con-

sidered to be a source measurement). Derived variables are those which are calculated235

from the source measurements via the set of (coupled) equations.

There are two types of errors possible on source measurements: systematic, and ran-

dom. Random error is easiest to deal with when it is independent and Gaussian dis-

tributed. In this case, error is propagated from the source measurements to the derived240

variables by

σf =
N

∑
i=1

(
∂f
∂xi

)
σxsi

+

√√√√ N

∑
i=1

(
∂f
∂xi

)2

σ2xri
+ σfc , (1.12)

where the derived variable f is a function of source measurement variables x1,x2, ...,xN

with respective systematic error σxs1
,σxs2

, ...,σxsN
and with respective independent Gaus-

sian distributed uncertainties with standard deviations σxr1
,σxr2

, ...,σxrN
as seen in Taylor

[1997]. The numerical indices indicate different independent variables, such as T, p, or z,245

for example. Computational error f due to the inaccurate solution of the theoretical equa-

tions is represented by σfc . The first and last terms in Eq. 2.29 represent an offset from the

true solution (inaccuracy), whereas the central square-root term represents the breadth of

uncertainty due to random error (imprecision). Even in more complicated cases involving

correlated errors, partial derivatives in equations similar to Eq. (1.12) must still be solved250

for as seen in Taylor [1997]. From a mathematical perspective, source measurements are

independent variables, and derived variables are dependent variables.

The solution of Eq. (1.12) can be pursued numerically or analytically. Monte Carlo nu-

merical analyses have been produced for the equations involved with scintillometer mea-255

surements of turbulent fluxes as seen in Moroni et al. [1990]. If the problem is approached
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analytically, total differential expansions may be used to solve for the partial derivative

terms in Eq. (1.12 as seen in, for example, Andreas [1989] and Andreas [1992]. Otherwise,

the partial derivatives may be evaluated directly as seen in, for example, Hartogensis et al.

[2003].260

1.4 Thesis Goals and Outline

One goal of this thesis is to introduce efficient and accurate methods of solution of the

turbulent heat fluxes which eliminate computational error. Another goal is to introduce

new methods of solution for sensitivity functions in order to investigate error propaga-

tion in scintillometer strategies, as well as to reduce these functions to a closed, compact265

form for routing data analysis. Another goal is to take the first step to expanding previous

studies of uncertainty propagation to the more realistic case of variable topography.

The manuscript (chapter 2) focuses on new and improved methods of solution and

uncertainty analysis for scintillometer deployment over flat and homogeneous terrain. A270

focus is made on displaced-beam scintillometers which measure path averaged friction

velocity u?. General conclusions are made in chapter 3.
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2 A New Sensitivity Analysis and Solution Method for Scintillometer

Measurements of Area-Average Turbulent Fluxes 1

Abstract

Scintillometer measurements of the turbulence inner-scale length lo and refractive index

structure function C2
n allow for the retrieval of large-scale area-averaged turbulent fluxes

in the atmospheric surface layer. This retrieval involves the solution of the non-linear

set of equations defined by the Monin-Obukhov similarity hypothesis. A new method

that uses an analytic solution to the set of equations is presented, which leads to a sta-

ble and efficient numerical method of computation that has the potential of eliminating

computational error. Mathematical expressions are derived that map out the sensitivity

of the turbulent flux measurements to uncertainties in source measurements such as lo.

These sensitivity functions differ from results in the previous literature; the reasons for

the differences are explored.

1In press Boundary Layer Meteorology, M. Gruber and G. J. Fochesatto.
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2.1 Introduction

Scintillometers detect fluctuations in the intensity of a beam of light that passes through

a path length of 50 m to 5000 m of near-ground turbulence in the surface layer [Kleissl et al.,

2008]. These fluctuations are related to the structure function of the index of refraction C2
n,

and the turbulence inner-scale length lo [Tatarskii, 1961; Hill, 1988; Sasiela, 1994]. The in-5

dex of refraction is a function of temperature and humidity; thus C2
n can be decomposed

into structure functions of temperature T and humidity q as C2
T, CTq and C2

q. Scintillome-

ter wavelengths are selected that are each more sensitive to fluctuations in one variable

(such as temperature) than others (such as humidity), so that C2
T, CTq and C2

q may be re-

solved. For example, intensity fluctuations of visible and near-infrared beams are more10

sensitive to temperature fluctuations than humidity fluctuations, while microwave beams

are more sensitive to humidity fluctuations [Andreas, 1990]. Structure functions such as

C2
n are described in Tatarskii [1961], and represent the strength and spacial frequency of

perturbations in variables; thus C2
n is a measure of turbulence intensity weighted by the

susceptibility of the index of refraction of the medium to changes in variables such as15

temperature and humidity.

The goal of this study is to solve for the sensible heat flux HS and the momentum

flux τ as functions of source measurements such as C2
n and lo, as well as to quantify the

propagation of uncertainty from source measurements to the calculated values of HS and20

τ. Another type of turbulent flux is the latent heat flux HL. The turbulent fluxes are given

by

HS = −ρcpu?T?, (2.1)

HL = −Lvu?q?, (2.2)

τ = ρu?
2, (2.3)

where T? and q? are the temperature and humidity scales, u? is the friction velocity, ρ is

the density of the air, cp is the specific heat at constant pressure, and Lv is the latent heat
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of vaporization. Determining area-averaged turbulent fluxes involves solving for T? and25

q?, which are related to the path-length scale structure-function measurements through

the non-linearly coupled Monin-Obukhov similarity equations [Sorbjan, 1989]. This pro-

cedure also involves solving for u? in Eqs. 2.1, 2.2 and 2.3. The friction velocity u? can be

related either to path-length scale lo measurements as with displaced-beam scintillometer

strategies described in Andreas [1992], or to the wind profile and roughness length with30

large-aperture scintillometer strategies via the Businger-Dyer relation [Panofsky and Dut-

ton, 1984; Sorbjan, 1989; Lagouarde et al., 2002; Hartogensis et al., 2003].

We consider here a displaced-beam scintillometer strategy in which path-averaged

measurements of C2
n and lo are obtained. Other required measurements include temporally-35

averaged pressure p, temperature T, humidity q, as well as the height of the beam above

the underlying terrain z. Thus C2
n, lo, p, T, q and z are referred to as the source mea-

surements. Each of these measurements demonstrates temporal and spacial variability as

well as measurement uncertainty. Uncertainty propagates from the source measurements

to the derived variables via the set of equations being considered. Uncertainties in lo and40

C2
n are described in Hill [1988], while uncertainties in p, T and q depend on the particular

instrument being used. Here, we explore the use of scintillometers over flat and homo-

geneous terrain, thus the height of the beam z is considered to be a single value with its

associated uncertainty. While C2
n and lo are representative of turbulent fluctuations along

the whole beam, p, T and q are typically point measurements representative of localized45

areas near their respective instruments.

Applications for scintillometers include agricultural scientific studies such as Hoedjes

et al. [2002] and Foken et al. [2008], and aggregation of surface measurements to satellite-

retrieval scales for weather prediction and climate monitoring as in Beyrich et al. [2002]50

and in Marx et al. [2008]. The unique spacial scale of scintillometer measurements gives

them the potential for a key role in bridging the gap between ground-based instruments

with footprints on the order of 100 m2 and model and satellite-retrieval scales on the order

of 1 km2.
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55

The scale of scintillometer measurements introduces an additional complexity in the

retrieval of the turbulent fluxes. This retrieval combines the large-scale scintillometer

measured variables C2
n and lo with source measurements that are not necessarily repre-

sentative of the same scale. The only exception to be considered is the atmospheric pres-

sure p. In particular, measurements of T and q may be representative of smaller footprints60

around their respective instruments. Specifically, assuming that variables such as average

temperature T represent the entire beam path introduces a form of uncertainty. This un-

certainty is somewhat similar to a systematic error, although it may be difficult to quantify

because of its temporal variability.

65

Of previous scintillometer sensitivity studies, some stand out as possibly contradict-

ing each other. For instance, the conclusion of the error analysis in Moroni et al. [1990] for

a lo and C2
n strategy was that “The Monte Carlo analysis of the propagation of the statistical

errors shows that there is only moderate sensitivity of the flux calculations to the initial errors in

the measured quantities.” The error analysis of Andreas [1992], however, results in sensi-70

tivity functions that feature singularities. The sensitivity functions presented there imply

that the resolution of u? and consequently of HS, HL and τ by scintillometer lo and C2
n

measurements is intrinsically restricted to low precision over a certain range of environ-

mental conditions. While these two studies use different methods and present results over

slightly different ranges in variables, they produce sensitivity functions that for the same75

range differ significantly.

In Sect. 2.2 below, we decouple the set of equations including those of the Monin-

Obukhov similarity hypothesis for lo and C2
n scintillometer strategies for the example of

unstable surface-layer conditions to arrive at single equations in single unknowns. The80

variable inter-dependency is mapped out as illustrated by tree diagrams. In Sect. 2.3,

we take advantage of the mapped out variable inter-dependency to guide us in using

the chain rule to solve the global partial derivatives in sensitivity functions to investigate

error propagation. We produce sensitivity functions for HS, τ and u? as functions of both
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lo and z. In Sect. 2.4 we explore the ramifications of our results and compare them to85

previous literature, and we give conclusions in Sect. 2.5.

2.2 Measurement Strategy Case Study: Displaced-Beam Scintillometer System in Un-

stable Conditions

We consider here a two-wavelength system as introduced in Andreas [1989], where

one of the scintillometers measures both lo and C2
n as in Andreas [1992]. With this strategy,90

our measurements can resolve humidity and temperature fluctuations separately since

the two scintillometers have different wavelengths λ1 and λ2 that have differing sensi-

tivities in the index of refraction to humidity and temperature. This technique therefore

requires fewer assumptions than the corresponding single-wavelength strategies as seen

in Andreas [1989].95

The following set of equations determines T?, q? and u? from the source measurements,

and subsequently determines the turbulent fluxes:

ρ =
p

RT
, (2.4)

lo =
(9Γ(1/3)KD(ρ,T))3/4

ε1/4 , (2.5)

ζ =
zgκ

u?
2T

(
T? +

0.61T
ρ + 0.61q

q?

)
, (2.6)

u?
3 =

κzε

φ(ζ)
, (2.7)

C2
n1

= z−2/3g(ζ)(A1(λ1,p,T,q)T? + B1(λ1,p,T,q)q?)2, (2.8)

C2
n2

= z−2/3g(ζ)(A2(λ2,p,T,q)T? + B2(λ2,p,T,q)q?)2, (2.9)

where g is the local acceleration due to gravity, Γ is the Gamma function, ε is the turbu-

lent energy dissipation rate, R is the specific gas constant, κ is the von Kármán constant,100

ζ≡ z/L, where L is the Obukhov length, K is the Obukhov-Corrsin constant, ν(T,ρ) is the

viscosity of air and D(T,ρ) is the thermal diffusivity of air (Andreas, 1989; 1992; 2012)
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C2
n1

and C2
n2

are structure functions of the refractive index for the separate wavelengths λ1

and λ2. Eqs. 2.4 and 2.5 determine ε directly from lo and the other source measurements.

Inherent in Eqs. 2.8 and 2.9 is the assumption that CTq =
√

C2
TC2

q, which is validated pre-105

viously [Hill, 1989; Andreas, 1990].

The similarity functions g(ζ) and φ(ζ) are given by

g(ζ) = a(1−bζ)−2/3, (2.10)

φ(ζ) = (1 + d(−ζ)2/3)3/2, (2.11)

for L < 0 which corresponds to unstable conditions. The form of the similarity functions

and their parameters follow from Wyngaard et al. [1971] and Wyngaard and Coté [1971]; the110

values are taken to be a = 4.9, b = 6.1, and d = 0.46 [Andreas, 1988].

The source measurements may not determine the sign of L, which is unknown a priori

for every set of source measurements at any one time interval. We follow Andreas [1989]

in solving for T? and q? from Eqs. 2.8 and 2.9, making sure to note that the signs of115 (
A1,2T? + B1,2q?

)
are not yet solved by introducing unknowns sign1 and sign2:

sign1

√
C2

n1
z1/3(1−bζ)1/3

√
a

= A1T?

(
1 +

B1

A1

q?
T?

)
, (2.12)

sign2

√
C2

n2
z1/3(1−bζ)1/3

√
a

= A2T?

(
1 +

B2

A2

q?
T?

)
, (2.13)

where the roots on the left-hand side are considered to be positive. Following Andreas

[1989], these can be re-arranged to isolate T? and q? with the as yet undetermined signs:
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T? =
(1−bζ)1/3z1/3

√
a

sign1

√
C2

n1
B2− sign2

√
C2

n2
B1

A1B2−A2B1

 , (2.14)

q? =
(1−bζ)1/3z1/3

√
a

sign2

√
C2

n2
A1− sign1

√
C2

n1
A2

A1B2−A2B1

 , (2.15)

where

sign1,2 = sign[A1,2T?(1 +
B1,2

A1,2

q?
T?

)]. (2.16)

It is useful to include the definition of the Bowen ratio as120

β≡HS/HL =
ρcp

Lv

T?

q?
. (2.17)

We can solve for β as

β = E

 sign1

√
C2

n1
B2− sign2

√
C2

n2
B1

sign2

√
C2

n2
A1− sign1

√
C2

n1
A2

 , (2.18)

where E(T,p) = ρcp/Lv. It is useful to consider β as well as ζ as unit-less independent

variables in our sensitivity analyses that represent certain meteorological regimes. They

represent the ratio of the sensible to latent heat fluxes and an indicator of surface-layer

stability, respectively.125

Since we are considering unstable conditions, we have ζ < 0 since L < 0, so from Eq.

2.6 we have
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T?(1 +
0.61T

ρ + 0.61q
q?
T?

) < 0, (2.19)

(1−bζ) > 0, (2.20)

(1 + d(−ζ)2/3)3/2 > 0, (2.21)

We begin decoupling the set of equations by taking Eqs. 2.14 and 2.15 and substituting

into Eq. 2.6, then cubing the resulting equation as well as squaring Eq. 2.7 to arrive at130

ζ
3 =

z4g3κ3(1−bζ)
u?

6T3a3/2

[
F3(1 + H/β)3] , (2.22)

u?
6 =

κ2z2ε2

(1 + d(−ζ)2/3)3 , (2.23)

where F(T,p,q,λ1,λ2,C2
n1
,C2

n2
) and H(T,p,q) are defined as

F(T,p,q,λ1,λ2,C2
n1
,C2

n2
) =

sign1

√
C2

n1
B2− sign2

√
C2

n2
B1

A1B2−A2B1
, (2.24)

H(T,p,q) = E
(

0.61T
ρ + 0.61q

)
. (2.25)

We then combine Eqs. 2.22 and 2.23 to obtain a final equation in ζ:

ζ
3 = M(1−bζ)(1 + d(−ζ)2/3)3, (2.26)

where

M≡ g3z2κ[F3(1 + H/β)3]
T3ε2a3/2 , (2.27)

is determined directly from the source measurements. Here we note that the left-hand

side is negative, and so the term in square brackets in M is negative as well. From any135

set of measurements we know the sign of A1B2−A2B1, and we also know the values of
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Figure 2.1. Visualization of the solution of Eq. 2.26 using fixed-point recursion, with
M =−1/3. The function ζ = V(ζ) is used, where
V(ζ) ≡M1/3(1− bζ)1/3(1 + d(−ζ)2/3). Real roots of M1/3 are chosen. The recursive series
[V(ζguess),V(V(ζguess)),V(V(V(ζguess))),V(V(V(V(ζguess))))...] converges for any ζguess < 0.

the two terms that multiply the unknown signs. Occasionally these relations are enough

to determine all the signs; otherwise the signs remain ambiguous and they are evaluated

from observations of the temperature and humidity stratification as seen in Andreas [1989].

140

Eq. 2.26 can be solved with a fixed-point recursive technique as illustrated in Fig. 2.1.

The recursive function

ζ = V(ζ)≡M1/3(1−bζ)1/3(1 + d(−ζ)2/3) (2.28)

is used. A solution of Eq. 2.26 using fixed-point recursion is seen in Fig. 2.2.

A good estimate of the uncertainty in the derived variables that results from small145

errors in source measurements is given by
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Figure 2.2. Solution of Eq. 2.26 using fixed-point recursion on the function ζ = V(ζ) where
V(ζ) ≡ M1/3(1− bζ)1/3(1 + d(−ζ)2/3). Real roots of M1/3 are chosen. Note that for M =
−1/3, we have ζ≈−5.5 as in Fig. 2.1. Computational error was verified to be completely
negligible with minimal running time involved.
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σf =
N

∑
i=1

(
∂f
∂xi

)
σxsi

+

√√√√ N

∑
i=1

(
∂f
∂xi

)2

σ2xri
+ σfc , (2.29)

where the derived variable f is a function of source measurement variables x1,x2, ...,xN

with respective systematic error σxs1
,σxs2

, ...,σxsN
and with respective independent Gaus-

sian distributed uncertainties with standard deviations σxr1
,σxr2

, ...,σxrN
as seen in Taylor

[1997]. The numerical indices indicate different independent variables, such as T, p, or z,150

for example. Computational error f due to the inaccurate solution of the theoretical equa-

tions is represented by σfc . The first and last terms in Eq. 2.29 represent an offset from the

true solution (inaccuracy), whereas the central square-root term represents the breadth of

uncertainty due to random error (imprecision).

155

It is practical for the purpose of a sensitivity study to rewrite Eq. 2.29 as

σf

f
=

N

∑
i=1

Sf ,x
σxsi

xsi

+

√√√√ N

∑
i=1

S2
f ,x

σ2xri

xri
2 +

σfc

f
, (2.30)

where Sf ,x are unitless sensitivity functions defined by

Sf ,x ≡
x
f

(
∂f
∂x

)
. (2.31)

The sensitivity functions are each a measure of the portion of the error in the derived vari-

able f resulting from error on each individual source measurement x. In addition to the

error on source measurement variables, we can also recognize that a, b and d have been160

resolved to some level of certainty by fitting field data. We thus treat them here in the

same way as source measurements.

In the application of Eqs. 2.29 and 2.30, we recognize the addition of the computa-

tional error σfc . In previous field and sensitivity studies [Lagouarde et al., 2002; de Bruin165

et al., 2002; Solignac et al., 2009; Andreas, 2012], the full set of equations has been incorpo-

rated into a cyclically iterative algorithm which cycles through the full set of equations,
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allowing multiple variables to change. This numerical algorithm sometimes fails to con-

verge, as demonstrated in Andreas [2012].

170

The problem of resolving the uncertainty on the derived variables is a matter of iden-

tifying the magnitude and character of the source measurement uncertainties, and then

solving for the partial derivative terms in Eqs. 2.29 and 2.31. These derivatives are global2

; that is, they take into account all the relationships in all of the relevant equations through

which the variable f is derived. Without an analytic solution of the set of coupled equa-175

tions we could either solve for the partial derivatives through a total-differential expan-

sion of each equation individually, followed by a re-grouping of all differential terms as

seen in Andreas (1989; 1992) or we could use numerical error propagation techniques as

in the Monte Carlo analysis of Moroni et al. [1990] or as in the analysis of Solignac et al.

[2009].180

We investigate inter-variable sensitivity analytically via Eq. 2.31, using Eq. 2.26 as a

starting point. We use Eq. 2.26 to determine the details of the variable inter-dependency to

define our use of the chain rule. A tree diagram representing the variable inter-dependency

is broken into three parts shown in Figs. 2.3, 2.4, and 2.5.185

Eq. 2.26 can be reduced to a choice of two algebraic equations

α > 0,−α
9 = M(1 + dα

2)3(1 + bα
3),ζ =−α

3,
∂ζ

∂α
=−3α

2 < 0,

(2.32)

α < 0,α9 = M(1 + dα
2)3(1−bα

3),ζ = α
3,

∂ζ

∂α
= 3α

2 > 0, (2.33)

2Global partial derivatives are those which propagate from the dependent (derived) variable down to the
independent (source measurement) variable through the entire tree diagram, whereas local partial deriva-
tives propagate as if the equation being differentiated were independent of the rest of the equations in the
set. An alternative to direct evaluation of global partial derivatives via the chain rule is a total-differential
expansion (where all derivatives are local) of each equation in the set. This approach can be used to solve for
global partial derivatives by re-grouping all total-differential terms into one equation. Readers may refer to
Sokolnikoff [1939].
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Figure 2.3. Variable inter-dependency tree diagram for a two-wavelength measurement
strategy inferring HL/S through path-averaged u? and q?/T? measurements via scintil-
lometer measurements of lo and C2

n under unstable meteorological conditions (ζ < 0).
Variables at the bottom of the tree are source measurements; all others are considered
to be derived variables. The “/” symbol is meant to delineate between two independent
tree diagrams. Note that HL is not a direct function of ρ; this branch is for the convenience
of including HS since the rest of their tree diagrams are identical. Figs. 2.4 and 2.5 feature
subtree1 and subtree2, respectively.

Figure 2.4. Subtree1 of variable inter-dependency for ζ < 0. The main tree diagram is seen
in Fig. 2.3.
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Figure 2.5. Subtree2 of variable inter-dependency for ζ < 0. The main tree diagram is seen
in Fig. 2.3.

with the substitution

α
2 ≡ (−ζ)2/3 > 0. (2.34)

Galois theory implies that, since Eqs. 2.32 and 2.33 are ninth order, there is no way to write

ζ = f (p,T,q,C2
n1
,C2

n2
,λ1,λ2,z, lo) for any general values of b and d, where f is an explicit190

function of the source measurements [Edwards, 1984]. It is thus simplest to extract
(

∂ζ

∂M

)
by implicit differentiation of Eq. 2.26; the results are in given in Appendix 2.A.

2.3 Results: Derivation of Sensitivity Functions

Following the solution method described above, we solve for global partial derivative

terms in Eqs. 2.29 and 2.31 through use of the general chain rule guided by the variable195

inter-dependency tree diagrams seen in Figs. 2.3, 2.4 and 2.5. We will obtain sensitivity

functions of the sensible heat flux HS and the momentum flux τ as functions of z and ε.

From Eqs. 2.1, 2.5 and 2.31 we have
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SHS,ε = ST?,ε + Su?,ε =−1
4

SHS,lo , (2.35)

SHS,z = ST?,z + Su?,z, (2.36)

and from Eqs. 2.3, 2.5 and 2.31, we have

Sτ,ε = 2Su?,ε =−1
4

Sτ,lo , (2.37)

Sτ,z = 2Su?,z, (2.38)

thus we seek solutions for ST?,z, Su?,z, ST?,ε, and Su?,ε.200

We first obtain ST?,ε with guidance from the tree diagram depicted in Fig. 2.4:

ST?,ε =
ε

T?

(
∂T?

∂ζ

)(
∂ζ

∂M

)(
∂M
∂ε

)
. (2.39)

The individual terms of Eq. 2.39 are given in Appendices 2.A and 2.B. Combining them,

we obtain

ST?,ε =
1
3

(
2bζ(−ζ)1/3(1 + d(−ζ)2/3)

(3−2bζ)(1 + d(−ζ)2/3)(−ζ)1/3 + 2dζ(1−bζ)

)
. (2.40)

We now obtain ST?,z:205

ST?,z =
z

T?

[(
∂T?

∂z

)
ζ

+
(

∂T?

∂ζ

)
z

(
∂ζ

∂M

)(
∂M
∂z

)]
. (2.41)

The individual terms of Eq. 2.41 are developed in Appendices 2.A and 2.C. Combining

them, we obtain

ST?,z =
1
3

[
1−

(
2bζ(−ζ)1/3(1 + d(−ζ)2/3)

(3−2bζ)(1 + d(−ζ)2/3)(−ζ)1/3 + 2dζ(1−bζ)

)]
. (2.42)
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We now obtain Su?,ε with guidance from the tree diagram depicted in Fig. 2.5. We have

Su?,ε =
ε

u?

[(
∂u?

∂ε

)
ζ

+
(

∂u?

∂ζ

)
ε

(
∂ζ

∂M

)(
∂M
∂ε

)]
. (2.43)

The individual terms in Eq. 2.43 are developed in Appendices 2.A and 2.D. Combining

them, we obtain210

Su?,ε =
1
3

[
1−
(

2dζ(1−bζ)
(3−2bζ)(1 + d(−ζ)2/3)(−ζ)1/3 + 2dζ(1−bζ)

)]
. (2.44)

We now obtain Su?,z. We have

Su?,z =
z

u?

[(
∂u?

∂z

)
ζ

+
(

∂u?

∂ζ

)
z

(
∂ζ

∂M

)(
∂M
∂z

)]
. (2.45)

The individual terms in Eq. 2.45 are developed in Appendices 2.A and 2.E. Combining

them we obtain

Su?,z =
1
3

[
1 +
(

2dζ(1−bζ)
(3−2bζ)(1 + d(−ζ)2/3)(−ζ)1/3 + 2dζ(1−bζ)

)]
. (2.46)

Combining our results in Eqs. 2.39, 2.41, 2.43, and 2.45, we can obtain SHS,ε and SHS,z from

Eqs. 2.35 and 2.36; the results are seen in Fig. 2.6.215

The absolute value of our results for SHS,lo given by Eqs. 2.35, 2.40 and 2.44 is similar to

the sensitivity multiplier found in Moroni et al. [1990] as seen in their Fig. 10. The absolute

value of our result of Sτ,lo given by Eqs. 2.37 and 2.44 is also compatible with the results

of Moroni et al. [1990] seen in their Fig. 9. However, our result for Su?,ε in Eq. 2.44 differs220

from that obtained in Andreas [1992] as seen in Fig. 2.7. Similarly, our result for Su?,z in Eq.

2.46 differs from that obtained in Andreas [1992] as seen in Fig. 2.8.

2.4 Discussion

The reason for the difference between our results and those of Andreas [1992] in Figs.

2.7 and 2.8 can be seen to have arisen in Eqs. A.7 and A.10 of Andreas [1992] . Even though225
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Figure 2.6. Sensitivity functions for HS with regards to measurements of ε and z in the
path-averaged u? scintillation measurement, for unstable conditions corresponding to ζ <
0.



32

−10
1

−10
0

−10
−1

−10
−2

−5

−4

−3

−2

−1

0

1

2

3

4

5

ζ = z/l

S
u *,ε

 

 
S

u
*
,εAndreas1992

S
u

*
,εGrubFoch2013
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there as Sε) along with Eq. 2.44 derived here for ζ < 0.
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there is a typographical error in Eq. A.7 in the application of the product rule (it should

be

∂ε

∂u?
=

3u?
2

κz
φε(ζ) +

u?
3

zκ

∂φε

∂ζ

∂ζ

∂u?
, (2.47)

where the second term contained u2
? originally), this is not the origin of the reason since

the result in Eq. A.8 follows from the modified Eq. A.7. The reason is found to be that

Eqs. A.7 and A.8 are not differentiated locally with respect to Eq. 1.3 of Andreas [1992] as230

they should be in a total-differential expansion. The local derivative is

∂ε

∂u?
=

∂

∂u?

(
u3
?

κz
φε(ζ)

)
=

3u?
2

κz
φε(ζ) =

3ε

u?
, (2.48)

keeping ζ constant regardless of the relationship between ζ and u?. The relationship be-

tween ζ and u? is taken into account when we re-group the full set of locally expanded

equations (which are coupled in ζ and u?). The second term on the right-hand side of Eq.

2.47 and Eq. A.7 of Andreas [1992] is thus not necessary and does not appear in Eq. 2.48.235

Taking into account the relationship between ζ and u? via the chain rule is appropriate

for direct evaluation of global derivatives, but not in individual derivatives of a total-

differential expansion of the full set of equations. Eqs. A.10 and A.11 of Andreas [1992]

have the same issues of not being differentiated locally with respect to Eq. 1.3 of Andreas

[1992]. The local derivative there is240

∂ε

∂z
=−ε

z
. (2.49)

A re-analysis of the Andreas [1992] differential expansion including the local derivatives

in Eqs. 2.48 and 2.49 is reproduced in Appendix 2.F; the results for Su?,ε and Su?,z are iden-

tical to those found here in Eqs. 2.43 and 2.45. Note that the left-hand side of Eq. 2.89

contains the terms (Su? − 2) and (Sz + 1) instead of (Su? − 4) and (Sz + 2) as in Eq. A.16 of

Andreas [1992]. These differences also influence the Andreas [1992] sensitivity functions245

for C2
n1 and C2

n2.
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The technique presented here for the direct evaluation of partial derivatives can be

applied to evaluate sensitivity functions for other variables involved in this scintillome-

ter strategy for both stable and unstable conditions, however we will now focus on the250

implications of our results on other previous studies. Another instance where we found

divergence in results is in the study of Hartogensis et al. [2003] where SHS,z in Eq. A2 and

Fig. A1 should be the same as the results of Andreas [1989] in Fig. 4, regardless of the

differences between a single and double wavelength strategy. Note that in Andreas [1989],

for ζ = 0, it was found that255

SHS,z(0) = ST?,z(0) = 1/3, (2.50)

for a scintillometer strategy involving independent u? measurements, whereas a value of

1/2 was found in Hartogensis et al. [2003]. The issue here is not due to the differences in

scintillation strategies (note that the Businger-Dyer relation is ignored in the sensitivity

study of Hartogensis et al. [2003]). The issue is that Eq. A1 of Hartogensis et al. [2003] is

coupled to Eqs. 5-6 of Hartogensis et al. [2003] in L. In the derivation of Eq. A1, Hartogensis260

et al. [2003] essentially have considered ZLAS to be the same z as in Andreas [1989], and

they have considered similar equations that assume an independent u? measurement (Eq.

7 of Hartogensis et al. [2003] is ignored). Including the coupling of Eq. 7 of Hartogensis

et al. [2003] (the Businger-Dyer relation) in L adds complication; however if we continue

to assume an independent u? measurement, we achieve the same results as in Andreas265

[1989], viz:

SHS,z = ST?,z =
1−2bζ

3−2bζ
6= 1−2bζ

2−2bζ
=

z
HS

(
∂HS

∂z

)
L
. (2.51)

A similar example is in the analysis of Hartogensis et al. [2002], when the sensitivity of u?

to lo is being examined. Eq. 13 of Hartogensis et al. [2002] is not a “direct” relation of u?

to source measurements, since L is a derived variable. There is coupling to L and thus we

may investigate the sensitivity with270
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(
∂u?

∂lo

)
=

((
∂u?

∂ε

)
ζ

+
(

∂u?

∂ζ

)(
∂ζ

∂M

)(
∂M
∂ε

))(
∂ε

∂l0

)
, (2.52)

where M is modified for the single scintillometer lo and C2
n strategy. Also in Hartogensis

et al. [2002], it is stated that errors in C2
T are attenuated in deriving θ? (here denoted T?)

due to the square-root dependence; however we can go a step further by realizing that

Eq. 9 of Hartogensis et al. [2002] is not yet decoupled from L. As follows from our analysis

applied to the case considered in Hartogensis et al. [2002] (modifying Fig. 2.4 for a single-275

wavelength strategy), we obtain

(
∂T?

∂C2
T

)
=
(

∂T?

∂C2
T

)
ζ

+
(

∂T?

∂ζ

)(
∂ζ

∂M

)(
∂M
∂C2

T

)
. (2.53)

Note that there may be no way to actually obtain “direct” relationships between the source

measurements and the derived variables if the implicit equation in ζ (such as Eq. 2.26) is

fifth order or higher.

280

2.5 Conclusions

A new method of deriving sensitivity functions for lo and C2
n scintillometer measure-

ments of turbulent fluxes has been produced by mapping out the variable inter-dependency

and solving for partial derivatives with the chain rule. We have bypassed the need for an

explicit solution to the theoretical equations by including one implicit differentiation step285

on Eq. 2.26, which is a bottleneck on the tree diagrams seen in Figs. 2.4 and 2.5. This al-

lows for the evaluation of sensitivity functions that are useful not only for optimizing the

measurement strategy and selecting the most ideal wavelengths, but the closed, compact

form of sensitivity functions produced using the method presented here is convenient to

incorporate into computer code for the analysis of data. It is noteworthy that the actual290

functional relations change at z/L = 0, which corresponds to neutral conditions. Thus, for

any set of source measurements we should calculate the set of all derived variables and

their respective uncertainties assuming both stable and unstable conditions. If errors on
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z/L overlap with z/L = 0 for either stability regime, we should then consider the combined

range of errors.295

In addition to the source measurements, the empirical parameters a, b and d have been

included in the tree diagrams. Future study should quantify the sensitivity of derived

variables to these parameters. In considering errors on the empirical parameters or on

other source measurements such as T, a total-differential expansion such as in Andreas300

(1989; 1992) may become intractable, whereas an analysis of the type presented here re-

mains compact.

Results obtained here have resolved some issues in the previous literature. For exam-

ple, we have confirmed the conclusion of Moroni et al. [1990] that lo and C2
n scintillometers305

can obtain fairly precise measurements of turbulent fluxes. In the range of−1≤ ζ≤−0.01,

the results derived here for Su?,ε and Su?,z are similar to those in Andreas [1992]; however

for ζ < −1 the separate results differ greatly in both magnitude and in the shape of the

curves as seen in Figs. 2.7 and 2.8. These sensitivity functions in Andreas [1992] contain

singularities near ζ ≈−6; this effectively implies that it is impossible to resolve u? in this310

stability regime. The sensitivity functions derived here demonstrate a small magnitude

for typical values of ζ including the range −10 < ζ < −1. The sensitivities of the sensible

heat flux to uncertainties in ε and z are found in Eqs. 2.35 and 2.36 and are seen in Fig. 2.6;

they are compatible with the results of Moroni et al. [1990] and they imply that, with op-

timal wavelengths, we can arrive at reasonably precise measurements of path-averaged315

turbulent fluxes and friction velocity.

An advantageous byproduct of having reduced the system of equations into a single

equation in a single unknown is that the error in the actual computation of the derived

variables can be essentially eliminated, or it can be estimated. Eqs. 2.32 and 2.33 are320

polynomials; numerical methods for their accurate solution are well established. Using

fixed-point recursion, the maximum computational error can be resolved, and monotonic

convergence can be guaranteed as seen in Traub [1964] and more recently in Agarwal et al.
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[2001].

325

In contrast, the classical iterative algorithm (Andreas, 1989; 2012; Hartogensis, 2003;

Solignac, 2009) may diverge or alternate about a potential solution. At worst, techniques

such as the classical algorithm may stop at a “bottleneck” and converge to a false solution

as illustrated in Press et al. [1992]. In their section on non-linear coupled equations, it is

stated:330

“We make an extreme, but wholly defensible, statement: there are no good, general (numeri-

cal) methods for solving systems of more than one non-linear equation. Furthermore, it is not hard

to see why (very likely), there never will be any good, general (numerical) methods...”

335

In Hill et al. [1992], similar one-dimensional iterative methods of numerical computa-

tion of ζ were used to eliminate computational error, however the fixed-point algorithm

we have presented converges for any ζguess (with the correct sign). We argue that at least

some of the spread of data in Figs. 5 and 6 in Andreas [2012] may be due to computational

uncertainty as well as the incorporation of T?, L, and u? measured at the scale of an eddy340

covariance system’s footprint while being forced to assume that they are representative of

the beam path scale. The scatter in these plots may not be entirely due to unreliable lo and

C2
n measurements.

Future expansions of the sensitivity analysis presented here may focus on taking into345

account field sites with heterogeneous terrain and variable topography. For stationary

turbulence with beams above the blending height, the line integral formulation for ef-

fective beam height given by Eq. B2 in Hartogensis et al. [2003] and Eqs. 10-12 in Kleissl

et al. [2008] could be incorporated. Two-dimensional footprint analyses involving sur-

face integrals that take into account variable roughness length and wind direction as in350

Meijninger et al. [2002] and in Liu et al. [2011] may be incorporated for flat terrain that is

heterogeneous enough to force the scintillometer beam to be below the blending height

[Wieringa, 1976; Mason, 1988]. Further theoretical developments may be anticipated that
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take into account both heterogeneity and variable topography. It is hoped that the gen-

eral mathematical approach presented here can help to keep track of uncertainty for any355

scintillometer application, as well as to eliminate the byproducts of iteration.
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2.A Relations between M and ζ

M =
ζ3

(1 + d(−ζ)2/3)3(1−bζ)
, (2.54)(

∂ζ

∂M

)
=

(
(1−bζ)(1 + d(−ζ)2/3)3

3ζ2 + M[2d(1−bζ)(1 + d(−ζ)2/3)2(−ζ)−1/3 + b(1 + d(−ζ)2/3)3]

)
,

(2.55)

M
(

∂ζ

∂M

)
=

(
ζ(1−bζ)(1 + d(−ζ)2/3)

(3−2bζ)(1 + d(−ζ)2/3) + 2dζ(−ζ)−1/3(1−bζ)

)
. (2.56)

2.B Individual terms in ST?,ε for unstable conditions (ζ < 0)365 (
∂T?

∂ζ

)
= T?

(
−b

3(1−bζ)

)
, (2.57)(

∂M
∂ε

)
= −2M/ε. (2.58)
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2.C Individual terms in ST?,z for unstable conditions (ζ < 0)(
∂T?

∂z

)
ζ

=
T?

3z
, (2.59)(

∂T?

∂ζ

)
z

= T?

(
−b

3(1−bζ)

)
, (2.60)(

∂M
∂z

)
= 2M/z. (2.61)

2.D Individual terms in Su?,ε for unstable conditions (ζ < 0)(
∂u?

∂ε

)
ζ

=
u?

3ε
, (2.62)(

∂u?

∂ζ

)
ε

= u?

(
d

3(1 + d(−ζ)2/3)(−ζ)1/3

)
, (2.63)(

∂M
∂ε

)
= −2M/ε. (2.64)

2.E Individual terms in Su?,z for unstable conditions (ζ < 0)(
∂u?

∂z

)
ζ

=
u?

3z
, (2.65)(

∂u?

∂ζ

)
z

= u?

(
d

3(1 + d(−ζ)2/3)(−ζ)1/3

)
, (2.66)(

∂M
∂z

)
= 2M/z. (2.67)

2.F Total differential expansion as in Andreas (1992) for unstable conditions (ζ < 0)

Here we reproduce the analysis of Andreas [1992]. Subscripts indicate the equation that is370

being differentiated locally. The coupled equations are
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ζ =
zgk
u2
?T

(T? +
0.61T

ρ + 0.61q
q?), (2.68)

ε =
u3
?

κz
φ(ζ) =

u3
?

κz
(1 + d(−ζ)2/3)3/2, (2.69)

T? =
(1−bζ)1/3z1/3√

(a)

sign1

√
C2

n1
B2− sign2

√
C2

n2
B1

A1B2−A2B1

 , (2.70)

q? =
(1−bζ)1/3z1/3√

(a)

sign2

√
C2

n2
A1− sign1

√
C2

n1
A2

A1B2−A2B1

 . (2.71)

We expand Eqs. 2.68 and 2.69 as

dζ =
(

∂ζ

∂z

)
2.68

dz +
(

∂ζ

∂T?

)
2.68

dT? +
(

∂ζ

∂q?

)
2.68

dq?, (2.72)

dε =
(

∂ε

∂u?

)
2.69

du? +
(

∂ε

∂z

)
2.69

dz +
(

∂ε

∂ζ

)
2.69

dζ. (2.73)

Combining these, we obtain
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dε =
[(

∂ε

∂u?

)
2.69

+
(

∂ε

∂ζ

)
2.69

(
∂ζ

∂u?

)
2.68

]
du?

+
[(

∂ε

∂z

)
2.69

+
(

∂ε

∂ζ

)
2.69

(
∂ζ

∂z

)
2.68

]
dz

+
(

∂ε

∂ζ

)
2.69

(
∂ζ

∂T?

)
2.68

dT?

+
(

∂ε

∂ζ

)
2.69

(
∂ζ

∂q?

)
2.68

dT?, (2.74)

dε

ε
=

u?

ε

du?

u?

[(
∂ε

∂u?

)
2.69

+
(

∂ε

∂ζ

)
2.69

(
∂ζ

∂u?

)
2.68

]
+

z
ε

dz
z

[(
∂ε

∂z

)
2.69

+
(

∂ε

∂ζ

)
2.69

(
∂ζ

∂z

)
2.68

]
+

T?

ε

dT?

T?

(
∂ε

∂ζ

)
2.69

(
∂ζ

∂T?

)
2.68

+
q?
ε

dq?
q?

(
∂ε

∂ζ

)
2.69

(
∂ζ

∂q?

)
2.68

, (2.75)

where the local derivatives are given by
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(
∂ε

∂u?

)
2.69

=
3ε

u?
, (2.76)(

∂ζ

∂u?

)
2.68

=
−2ζ

u?
, (2.77)(

∂ε

∂ζ

)
2.69

=
ε

φ(ζ)
∂φ

∂ζ
(ζ), (2.78)(

∂ε

∂z

)
2.69

=−ε

z
, (2.79)(

∂ζ

∂z

)
2.68

=
ζ

z
, (2.80)

ζT ≡
zgκ

u2
?T

T?, (2.81)

ζq ≡
zgκ

u2
?T

(
0.61T

ρ + 0.61q

)
q?, (2.82)

ζ = ζT + ζq, (2.83)(
∂ζ

∂T?

)
2.68

=
ζT

T?
, (2.84)(

∂ζ

∂q?

)
2.68

=
ζq

q?
. (2.85)

Thus the expansion becomes375

dε

ε
=

du?

u?

(
3− 2ζ

φ(ζ)
∂φ

∂ζ
(ζ)
)

+
dz
z

(
−1 +

ζ

φ(ζ)
∂φ

∂ζ
(ζ)
)

+
dT?

T?

ζT

φ(ζ)
∂φ

∂ζ
(ζ)

+
dq?
q?

ζq

φ(ζ)
∂φ

∂ζ
(ζ), (2.86)

where dT? and dq? have been expanded in Andreas [1989] as
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dT?

T?
= Sz

dz
z

+ Su?

du?

u?
+ STCn1

dCn1

Cn1

+ STCn2

dCn2

Cn2

, (2.87)

dq?
q?

= Sz
dz
z

+ Su?

du?

u?
+ SQCn1

dCn1

Cn1

+ SQCn2

dCn2

Cn2

. (2.88)

Thus we have

dε

ε
=

du?

u?

(
3 +

ζ

φ(ζ)
∂φ

∂ζ
(ζ)(Su?−2)

)
+

dz
z

(
−1 +

ζ

φ(ζ)
∂φ

∂ζ
(ζ)(Sz + 1)

)
+ (...)

dCn1

Cn1

+ (...)
dCn2

Cn2

, (2.89)

which gives us

Su?,ε =
(1/3)

(1 + 1
3

ζ

φ(ζ)
∂φ

∂ζ
(ζ)(Su?−2))

, (2.90)

Su?,z =
1
3 (1− ζ

φ(ζ)
∂φ

∂ζ
(ζ)(Sz + 1))

(1 + 1
3

ζ

φ(ζ)
∂φ

∂ζ
(ζ)(Su?−2))

, (2.91)

where the terms (Su? −2) and (Sz + 1) are (Su? −4) and (Sz + 2) in Andreas [1992]. Eqs. 2.90

and 2.91 reduce to Eqs. 2.44 and 2.46. Also from Andreas [1989] we have380

Su? =
2bζ

3−2bζ
, (2.92)

Sz =
1−2bζ

3−2bζ
, (2.93)

where Su? would be denoted here as ST?,u? and Sz would be written here as ST?,z for a

large-aperture scintillometer strategy not involving the derivation of u? from Eq. 2.69.

Eqs. 2.92 and 2.93 can be derived directly from the expressions in Andreas [1989] or they

can be derived using the methodology outlined in this study. An alternative to using



45

the results from Andreas [1989] in Eqs. 2.87 and 2.88 is to perform the total-differential385

expansion in Andreas [1992] from all the equations including an expansion of Eqs. 2.70

and 2.71, although the results are the same as here.
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3 Conclusions

3.1 Sensitivity of Turbulent Fluxes to Uncertainties in Source Measurements

Compact sensitivity functions have been produced which map the uncertainty prop-

agation from source measurements to derived variables for various scintillometer strate-

gies. This was accomplished by mapping out the variable inter-dependency such that

partial derivatives could be evaluated directly using a combination of explicit and im-5

plicit differentiation with the use of the chain rule guided by tree diagrams. This is in

contrast to total differential expansion techniques such as in Andreas [1989] or numerical

Monte Carlo techniques such as in Moroni et al. [1990].

For homogeneous and flat terrain, the sensitivity functions produced in chapter 2 are10

functions of ζ only. Sensitivity functions for HS, τ, and u? as functions of ε and z were pro-

duced for a displaced beam scintillometer strategy. The sensitivity functions produced

are lower in magnitude than the same sensitivity functions produced in Andreas [1992],

especially in the range of ζ <−1. The sensitivity functions produced here are compatible

with the results of Moroni et al. [1990]. The sensitivity of HS as a function of z for a large15

aperture scintillometer strategy was also investigated and found to be slightly overesti-

mated in Hartogensis et al. [2003].

3.2 Validation of Flux Retrieval Techniques

Validating optical scintillometers for a role of retrieving large scale area averaged tur-20

bulent fluxes is difficult for two main reasons. Firstly, all scintillation measurement tec-

niques involve the combination of measurements which are representative of various spa-

cial scales. Tracking of uncertainty originating from the assumption of the representativity
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of variables such as temperature on the beam path scale may be difficult. Sensitivity func-

tions for variables such as temperature can be produced. While we have not produced25

these sensitivity functions here, we argue that as long as their values are not extremely

low, taking this uncertainty into account may be important in interpreting plots such as

Figures (4) and (5) in Andreas [2012]. In these plots, the functions g(z/L) and φ(z/L) are

evaluated with scintillometer data combined with eddy covariance data for T?, u?, and

L. These independent measurements must be included since the evaluation of T?, u? and30

L through scintillometer measurements alone forces g(z/L) and φ(z/L) to be satisfied re-

gardless of whether these functions represent reality. At least some of the scatter in 2012

Figures (4) and (5) must be due to the effect of varying scales of representativity of eddy-

covariance measurements of u? and T? compared to scintillometer measurements of C2
T.

Future studies should investigate the difficulty of varying temperature along the beam35

path.

3.3 Analytic Solution of Equations and Computation of Turbulent Fluxes

Of the three types of error which are possible in experiments, random error is unavoid-

able, systematic instrumentational error can be calibrated out (or taken into account if it’s40

due to measurements which are representative of varying scales), and computational er-

ror should be eliminated to the point of being at least several orders of magnitude smaller

than systematic errors. Solution of the coupled set of Monin-Obukhov equations using

the classical iterative algorithm may result in computational error. As illustrated in Press

et al. [1992], it is generally impossible to bracket a solution in multiple dimensions, and45

pursuing a solution via iteration on nonlinear equations can result in circulating around

solutions, stopping at a bottleneck, or diverging.

By reducing the set of equations into a single implicit equation in ζ, the solution can be

found to arbitrary accuracy. The resulting implicit equation in ζ may be below fifth order,50

in which case explicit solutions can be derived [e.g., Edwards, 1984], or it may be above

fifth order or non-algebraic. In any case, it was found to be practical to manipulate the
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equations into fixed point form in a way which guarantees rapid monotonic convergence

with fixed point recursion. The computer code involved with this solution method is very

simple and compact.55

3.4 Extension to Variable Topography and Heterogeneous Terrain

Complications of scintillometry include the fact that real field sites are likely to demon-

strate variable topography and heterogeneous surface conditions such as roughness length,

temperature, and water availability. This is difficult for the reason that the Monin-Obukhov

hypothesis is based on stationary flow over flat terrain with homogeneous surface proper-60

ties. Homogeneous conditions involve constant fluxes throughout the surface layer, while

heterogeneous conditions involve gradients in the fluxes [e.g., Sorbjan, 1989; Meijninger

et al., 2002]. Fluxes over patches of terrain with differing roughness length, temperature,

or water availability may be different from neighboring patches, although above a certain

height the gradients in the fluxes dissipate. If the beam is above this “blending height”65

then it can be safely assumed that height profiles of C2
T, for instance, satisfy the Monin-

Obukhov hypothesis [e.g., Meijninger et al., 2002]. The blending height is the height at

which the internal boundary layers of each individual terrain patch blend to become in-

distinguishable from adjacent patches, thus dissolving any horizontal gradients in fluxes

[e.g., Wieringa, 1976; Mason, 1988; Claussen, 1990; Braden, 1995; Claussen, 1995; Meijninger70

et al., 2002; Hartogensis et al., 2003; Stoll, 2007; Lu et al., 2009]. Even if the height profiles

of structure functions can be assumed to satisfy the Monin-Obukhov hypothesis at any

point over the terrain via the assumption of stationary turbulence over terrain with ho-

mogeneous surface properties (or a beam above the blending height over heterogeneous

terrain) and negligible effects due to air interaction with terrain gradients, the beam is still75

sampling turbulence at variable heights above the underlying terrain.

The next simplest theoretical field site from a flat and homogeneous one is one with

variable topography, homogeneous surface properties such as roughness length and tem-

perature, weak topographic gradients and stationary flow. Equivalent to this is a site with80

variable topography and heterogeneous surface properties, but with a beam which is in-
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stalled above the blending height under stationary flow conditions. It is still assumed that

the turbulent fluxes are constant within the surface layer (or above the blending height),

but it is assumed that C2
T obeys the height dependency reflected in Eq. (1.7) at all points

above the underlying topography (or above the blending height). The beam thus samples85

regions with different intensities of C2
T along its path. In addition, scintillometers are op-

tically more sensitive to fluctuations in the index of refraction near the center of the line

between the transmitter and receiver [e.g., Ochs and Wang, 1974; Hartogensis et al., 2003].

To take this into account, Hartogensis et al. [2003] rewrote Eq. (1.7) as

C2
T = T2

?g(zeff/L)zeff
−2/3 (3.1)

where C2
T is a single value of C2

T which is measured by the scintillometer, and zeff is the90

effective beam height which is a single value of height representative of the entire mea-

surement area. In order to resolve the effective beam height in order to use C2
T in Monin-

Obukhov equations based on flat terrain, the C2
T field along the beam path is considered

as

C2
T(u) = T2

?g(z(u)/L)z(u)−2/3 (3.2)

where u is the normalized distance along the beam between the transmitter and receiver95

and C2
T(u) is the actual C2

T field along the beam path [e.g., Hartogensis et al., 2003]. The

assumption behind Eq. (3.2) is effectively that the height profile of C2
T assumed through

the Monin-Obukhov similarity hypothesis obeys Eq. (1.7) at any point above the actual

variable topography, and that L is representative of the constant flux surface layer. The

effective height zeff is a function of the terrain profile represented by z(u), the optical path100

weighting function, and L in a way which can be determined by equating C2
T in Eq. (3.1)

to the single value of C2
T which is measured by the scintillometer in Eqs. (1.9) and (1.10)

[e.g., Hartogensis et al., 2003; Kleissl et al., 2008]. If the effect of humidity fluctuations on

the index of refraction fluctuations is negligible, then Eq. (1.10) relates C2
n to C2

T linearly;

it can then be derived that105
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C2
T =

1∫
0

C2
T(u)G(u)du (3.3)

where G is an area-normalized optical path weighting function derived from Eq. (1.9) (or

from a corresponding equation for a different type of scintillometer) [e.g., Ochs and Wang,

1974; Hartogensis et al., 2003]. Eqs. (3.1) and (3.2) can be substituted into Eq. (3.3) to solve

for the effective beam height zeff in equations such as (3.1) by

g
(

zeff

L

)
zeff
−2/3 =

1∫
0

g
(

z(u)
L

)
z(u)−2/3G(u)du (3.4)

as seen in Hartogensis et al. [2003] and Kleissl et al. [2008]. This allows the use of the value110

of C2
T = C2

T in similarity equations for flat terrain as long as z = zeff is input for the single

value of air sample height. Note that it has been assumed that other variables such as a

temporally averaged temperature are constant along the beam path, i.e., T(u) = T. It has

also been assumed that there is a constant flux layer [e.g., Hartogensis et al., 2003], thus the

beam should ideally be above the blending height if the surface demonstrates heteroge-115

neous properties, although for moderately heterogeneous surfaces Meijninger et al. [2002]

have determined that a beam below the blending height still measures reliable fluxes.

The approach described above was derived in Hartogensis et al. [2003] and Kleissl et al.

[2008]; it involves line integral equations to take into account variable terrain under sta-120

tionary turbulence, with a beam above the blending height. It is important to note that,

if the terrain is variable enough to have a high blending height, more complicated the-

ory may be required. In order to further take into account the variable topography and

heterogeneous surface conditions in general over a two dimensional field with arbitrary

wind strength and direction as well as significant topographical gradients, it is natural to125

consider surface integrals instead of line integrals. This type of analysis is often described

as resolving the “footprint” of the scintillometer; it is described in, for example, Meijninger

et al. [2002].
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Future work should establish whether computational error can be eliminated in the130

case of variable terrain, and the sensitivity of turbulent fluxes to z(u) should be estab-

lished for both large aperture and displaced-beam scintillometer strategies. One would

imagine that, since the flat terrain sensitivity functions for z are functions of ζ only, then

the variable terrain sensitivity functions for z(u) will be functions of both u and ζ.
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4 Glossary of Terms

a,b,c,d,e empirical constants

β Bowen ratio

cp specific heat capacity

C2
n index of refraction structure function

C2
T temperature structure function

C2
Q humidity structure function

D thermal diffusivity

ε turbulent energy dissipation rate

f derived variable

g acceleration of gravity

Γ Γ function

HS sensible heat flux

HL latent heat flux

k optical wavenumber

K turbulence spacial wavenumber

κ Von Kármán constant

L Obukhov length

λ electromagnetic wavelength

lo inertial subscale length

Lp beam propagation distance

Lv latent heat of vaporization

ν viscosity
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p pressure

φ similarity function

Ψm similarity function

Ψn turbulence spectrum function

ρ density

q humidity

q? humidity scale

R specific gas constant

T temperature

T? temperature scale

τ momentum flux

u? friction velocity

u East-West wind velocity

v North-South wind velocity

w up-down wind velocity

x source measurement

z height above ground

zo roughness length

zeff effective beam height


