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Abstract 

Precipitation over the North Pacific can fluctuate under climate patterns such as the 

Pacific Decadal Oscillation (PDO) and El Niño-Southern Oscillation (ENSO).  In order to 

better understand the role which these climatic patterns play in the North Pacific water 

budgets and pathways, we employed the Community Atmosphere Model 5.0 (CAM) and 

conducted sensitivity experiments to examine how atmospheric moisture convergence and 

moisture transport respond to sea surface temperature (SST) anomalies associated with the 

PDO and ENSO phase transitions.  We have found that changes in transient moisture 

transport, as the PDO phase shifts from cool to warm, are due to increases in specific 

humidity and decreases in wind speeds over Alaska and the North Pacific.  Additionally, 

increases in moisture convergence, specific humidity, and wind speeds and decreases in 

transient moisture transport are seen over the North Pacific during El Niño events 

compared to La Niña events.
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Chapter 1.  Introduction 

1.1   Motivation 
 

Precipitation is an extremely critical component in everyday life, and so 

understanding how precipitation can fluctuate is important for many reasons.  Extreme 

precipitation events can flood areas and cause structural and ecological damage.  

Conversely, too little precipitation can leave wooded areas vulnerable to forest fires, which 

can then cause air quality and health problems.  Farmland can be adversely affected by 

both extremes: drought conditions kill crops and decrease crop yields, whereas flooding 

removes topsoil and leaves root systems unable to support the plants.  Precipitation is also 

a large source of potable water – the only source in some areas, and any changes can be of 

great impact in those areas. 

Precipitation is dependent upon the amount of moisture in the atmosphere, which can 

be influenced by moisture transport into or out of an area.  In the arctic regions, the 

predominant source of atmospheric moisture is transported from lower latitudes.  While 

natural and human-induced variabilities in atmospheric moisture transport, atmospheric 

moisture content, and precipitation have large impacts on society and ecology, there are 

not many studies to investigate the changes in these variables over the North Pacific Ocean 

and Alaska.  Therefore, this study focuses on the natural climate variability of the PDO and 

El Niño and examines how their sea surface temperature anomalies modulate moisture 

transport and precipitation in this area. 
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1.2   Previous Research 

  Some changes in arctic precipitation are due to natural causes.  Yarker et al. (2010) 

showed that high-latitude volcanic eruptions could increase or decrease precipitation in the 

surrounding region depending on the atmospheric conditions and the volcanic emissions 

(aerosols, water vapor, etc.).  Additionally, heat from reoccurring summer forest fires has 

the ability to increase atmospheric moisture content.  This extra moisture can then cause 

flooding in the nearby area when precipitated out but create drier conditions father away 

(Mölders & Kramm, 2006).  Sea surface temperature anomalies in the Pacific Ocean due 

to natural climate variability like El Niño and the Pacific Decadal Oscillation (PDO) also 

impact precipitation throughout the North Pacific region (Mantua & Hare, 2002; Hartmann 

& Wendler, 2005). 

 Anthropogenic changes also affect variability in arctic precipitation.  The modeling 

investigation of Mölders and Olson (2004) showed that recent urbanization and its 

corresponding urban effects in interior Alaska could have an impact on regional 

precipitation.  Rising CO2 concentrations and the corresponding rises in air temperatures 

lead to increases in precipitation around the world in another modeling experiment 

(Wetherald & Manabe, 2002).  Evaporation from reduced sea ice concentrations in the 

Arctic also leads to increased moisture in the atmosphere and increased cloudiness at lower 

levels (Vavrus et al., 2011).  Atmospheric feedbacks due to the greening of the Arctic in 

recent years have also been shown to increase summer precipitation (J. Zhang & Walsh, 

2006). 

 Due to the dry nature of the Arctic, moisture transported from lower latitudes is the 
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main source of precipitation in Alaska.  Thus, variations in moisture transport are of great 

importance in the study of the North Pacific water cycle.  Higgins and Cassano (2009) 

found that precipitation has increased throughout the Arctic due to increased meridional 

moisture transport.  Similarly, increases in poleward moisture transport over Eurasia have 

been documented in the observations (X. Zhang et al., 2012). 

 

1.3   Pacific Decadal Oscillation 

 The Pacific Decadal Oscillation (PDO) is a source of natural climate variability in 

the areas surrounding the North Pacific Ocean.  It is a pattern of sea surface temperature 

(SST) anomalies in the Pacific Ocean poleward of 20 N.  It consists of two phases – a cold 

(negative) phase and a warm (positive) phase – and occurs on an interdecadal time scale of 

approximately 30 to 50 years.  As seen in Figure 1.1, during a warm phase PDO, SST’s in 

the eastern part of the Pacific Ocean (along the west coast of the United States) are warmer 

than average while the SST’s in the western portion of the Pacific Ocean are cooler than 

average.  The pattern reverses during the cool phase.  Impacts of the PDO were first seen 

in salmon production along the western coasts of Alaska and Canada and the northwestern 

United States (Mantua et al., 1997).  During the 1960’s and 1970’s, fisheries in Alaska 

were producing much less salmon than the fisheries in the Pacific Northwest (Washington, 

Oregon, and California).  However, in the late 1970’s, the productions amounts reversed.  

These changes coincided with other changes in the climate of the areas surrounding the 

Pacific Ocean and are now linked to a phase shift of the PDO: from cool to warm. 

  In addition to the marine ecological differences, the PDO greatly affects the 
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climate of the North Pacific.  Greater than average temperatures occur in Alaska, in the 

northwestern United States, and in northwestern Australia while less than average 

temperatures occur in southeastern United States, Japan, and China during warm PDO 

phases (Mantua & Hare, 2002; Hartmann & Wendler, 2005).  Precipitation in sub-arctic 

Alaska, western Australia, and the southwestern United States increases during warm 

phases and decreases in arctic Alaska, Japan, and eastern Australia (Mantua & Hare, 2002; 

Hartmann & Wendler, 2005).  Additionally, Garza et al. (2012) have shown that the trade 

winds over Hawaii have shifted from northeasterly winds to easterly winds during a time 

period of 1973-2009, which includes a PDO phase change from cool to warm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. PDO SST, wind, and SLP anomalies.  Anomalies 
for  sea surface temperature are shown by color contours, 
wind speed by wind vectors, and surface pressure by solid 
contours during warm phase PDO (left) and cool phase PDO 
(right).  Figure credit: jisao.washington.edu/pdo 
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1.4   El Niño Southern Oscillation 

 Natural climate variability in the Northern Pacific Ocean is also impacted by El Niño 

Southern Oscillation (ENSO).  ENSO is a pattern of SST anomalies which occur in the east 

or central tropical Pacific Ocean between 10 S and 10 N latitude on an inter-annual time 

scale.  Figure 1.2 depicts the sea level anomalies between El Niño and La Niña episodes.  

Waters with higher temperature anomalies also have higher sea level anomalies. The SST 

anomalies are accompanied by surface pressure anomalies in the Western Pacific Ocean 

(off the eastern coast of Australia).  The pattern of positive SST anomalies over the Tropical 

Pacific is known as El Niño, and the pattern of negative SST anomalies is known as La 

Niña.  Figure 1.3 shows both PDO and Niño3.4 indices from 1950 through 2012.  Red 

indices indicate positive SST anomalies, while blue indices indicate negative SST 

anomalies.  The decadal oscillation of the PDO phases and the interannual variability of El 

Niño and La Niña are easily seen. 

 Papineau (2001) has shown that El Niño episodes tend to increase wintertime 

temperatures in the eastern two-thirds of Alaska, while La Niña episodes decrease 

wintertime temperatures throughout Alaska.   
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Figure 1.2.  El Niño sea level anomalies. Sea level 
anomalies are shown by color contours for El Niño (top) 
and La Niña (bottom).  Figure credit: ncdc.noaa.gov 
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Figure 1.3.  PDO Index and Niño3.4 Index timeseries.  PDO indices (top) and 
Niño 3.4 Indices (bottom) are shown for the period 1950- 2012.  Red indices 
indicated positive anomalies (warm phase PDO or El Niño), and blue indices 
indicate negative anomalies (cool phase PDO or La Niña).  Figure credit: 
Chau-Ron Wu, Interannual modulation of the Pacific Decadal Oscillation 
(PDO) on the low-latitude western North Pacific, Progress in Oceanography, 
http://dx.doi.org/10.1016/j.ocean.2012.12.001 
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Chapter 2.  Model Information 

2.1 Model Specifications 

 For this study of atmospheric moisture transport over the North Pacific Ocean, the 

atmosphere component of the National Center for Atmospheric Research Community 

Earth System Model version 1.0.2 (CESM1.0.2), the Community Atmosphere Model 

(CAM5.0), was used in stand-alone mode.  This model consists of thirty vertical levels and 

was run at a horizontal resolution of 0.9˚ by 1.25˚ on a finite volume grid.  The finite 

volume dynamical core discretization is modeled after a conservative “flux form semi-

Lagrangian” scheme as described by Lin and Rood (1996) and (1997) in the horizontal.  In 

the vertical, the discretization can be considered as quasi-Lagrangian (Neale et al., 2010). 

 Monthly means of time-varying sea surface temperature and sea ice concentration 

data were used as lower-boundary forcing conditions.  This data set is a blend of the 

HadISST1 from the Met Office Hadley Centre and version 2 of the Optimum Interpolation 

SST analysis, OI.v2, from the National Oceanic and Atmospheric Administration datasets, 

with the former spanning the years 1870-1980 and the latter 1981-2008 (Hurrell et al., 

2008).  Annual averages taken from the years 1981 to 2001 comprise a climatological 

dataset for the model.  

 The main hallmark of CAM5 is its improvements of cloud interaction processes 

which make CAM5 the first version able to model indirect radiative effects due to cloud-

aerosol interactions.  Additional information about CAM5 including model physics and the 

finite volume dynamical core can be found in Neale et al. (2010). 
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2.2   Model Verification 

 In order to verify the CAM5 model output, three year-long ensemble runs were made 

using the climatological SST and sea ice data boundary conditions.  The monthly model 

output was then compared to the National Centers for Environmental Prediction – 

Department of Energy Reanalysis 2 (NCEP – DOE II) data at a 2 by 2 resolution and the 

European Center for Medium-Range Weather Forecasts (ECMWF) Reanalysis Interim 

(ERA – Interim) data at a 0.75 by  resolution with the following variables: specific 

humidity, sea level pressure, geopotential height at 500mb, and wind vectors at 850mb and 

500mb.  The variables were averaged over the three ensemble runs and were compared to 

the time averaged NCEP – DOE II and ERA – Interim data from January 1981 through 

December 2001 (Figures 2.1-2.5).   

 These comparisons show that the model output closely resembles both data sets.  

The model output compares better to the specific humidity, sea level pressure, and 

geopotential height (Figures 2.1a,b-2.3a,b) of the ERA data.  Slight discrepancies exist in 

the wind vectors at 850mb and 500mb over Alaska between the model output and the ERA 

and NCEP data (Figures 2.4 and 2.5). 
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Figure 2.1. Model verification of mean specific humidity.  
Mean values of specific humidity are shown from January 1981 
– December 2001 for (a) model output, (b) ERA, and (c) NCEP.
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Figure 2.2. Model verification for mean sea level pressure.  
Mean values of sea level pressure are shown from January 1981 
– December 2001 for (a) model output, (b) ERA, and (c) NCEP. 
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Figure 2.3. Model verification of mean geopotential height at 
500mb.  Mean values of geopotential height at 500mb are 
shown from January 1981 – December 2001 for (a) model 
output, (b) ERA, and (c) NCEP.

a) Model Output 

b) ERA 

c) NCEP 
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Wind Vectors at 850mb 

b) ERA 
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Figure 2.4. Model verification for mean wind at 850mb.  
Mean values of wind at 850mb are shown from January 1981 – 
December 2001 for (a) model output, (b) ERA, and (c) NCEP. 

a) Model Output 



 

 
 

  
  15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Model verification for mean wind at 500mb.  Mean 
values of wind at 500mb are shown from January 1981 – 
December 2001 for (a) model output, (b) ERA, and (c) NCEP. 
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2.3   PDO Experiment 

 A set of sensitivity experiments was conducted to investigate the impacts of the 

PDO phases on moisture transport into Alaska.  In this experiment, SST and sea ice 

concentration were allowed to vary with time between 10˚ N to 75˚ N and 150˚ E to 140˚ 

W (the area of the North Pacific).  Elsewhere, both variables were set to their climatological 

values.  The difference between average cool phase SST’s and average warm phase SST’s 

is shown in Figure 2.6.  After a one-year spin up, the model runs were made from 1945-

2002, which includes one cool phase PDO of 31 years (1945-1976) and one warm phase 

PDO of  25 years (1977-2002).  Six-hourly instantaneous outputs from the model runs were 

obtained.  Calculations were made on the six-hourly output, and then seasonal or annual 

averages were taken.  For robustness of the results, this experiment was conducted three 

times using three different sets of initial conditions. 

 

2.4   PDO and ENSO Experiment 

 A second set of experiments was conducted in order to examine the impact of 

interannual SST variability due to global variability with a focus on El Niño and La Niña 

events.  In this experiment, SSTs and sea ice concentrations at all latitudes and longitudes 

were allowed to vary with time.  Three sets of model runs were made from 1945-2002 with 

different initial conditions, and six-hourly outputs were obtained.  Again, calculations were 

made on the six-hourly output, and then annual or seasonal averages were taken. 
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2.5   Data 

 PDO index data from the Joint Institute for the Study of the Atmosphere and Ocean 

(JISAO) at the University of Washington was used to determine the years which comprise 

the cool (December 1945-November 1976) and warm (December 1976-November 2002) 

PDO phases.   

 The Niño3.4 index, version ERSST.V3B from the National Weather Service Climate 

Prediction Center (http://www.cpc.ncep.noaa.gov/data/indices/3mth.Niño34.81-

10.ascii.txt), was used to determine the periods of El Niño and La Niña events.  The data 

spans 1950-2002 and has a base climatology period from 1981-2010 used to calculate the 

anomalies.

(K) 

Figure 2.6.  SST forcing for CAM5.  Warm phase SST 
minus cool phase SST is shown by color contours for the 
area of the North Pacific Ocean. 





 

19

Chapter 3.  Results of the PDO Sensitivity Experiment 

3.1   Precipitation 

 The climate of Alaska is very diverse and comprises of several climate regions.  As 

such, to study the effects of PDO phase on precipitation, the state was separated into five 

areas to look at these climate regions individually: Barrow (arctic); Fairbanks, Nome, and 

Anchorage (sub-arctic); and Juneau (continental).  Hawaii also has different climate 

regions due to orographic effects and the trade winds.  Two stations on separate islands – 

Hilo (Hawaii) and Honolulu (Oahu) – were chosen based on their geographic locations and 

different climates.   

 Figures 3.1 – 3.4 show the seasonal accumulated precipitation obtained from the 

National Climate Data Center (NCDC) station data for the period of 1949-2002 in those 

five areas of Alaska and two areas in Hawaii with a six month running average weight.  

Seasonal averages of accumulated precipitation are shown in Tables 3.1 – 3.4. Annual 

accumulated precipitation during warm phase PDO and cool phase PDO is given in Table 

3.5.  As seen in Table 3.5, station data in Alaska show an increase in mean accumulated 

precipitation during warm phase PDO.  Juneau receives the greatest amounts of 

precipitation in Alaska with an average accumulation amount of approximately 1,350mm 

( = 195.8mm) in cool phase and 1,520mm ( = 294.8mm) in warm phase.  Next is 

Anchorage with approximately 370mm ( = 68.4mm) of precipitation in cool phase and 

420mm ( = 91.9mm) in warm phase and Nome with 380mm ( = 112.2mm) of 

precipitation in cool phase and 440mm ( = 95.0mm) in warm phase.  Interior and arctic 

Alaska receive the least amounts of precipitation.  Fairbanks has an annual mean of  
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Figure 3.1.  Winter accumulated precipitation.  Observed winter 
accumulated precipitation from 1949-2002 is shown for Barrow 
(red), Fairbanks (blue), Anchorage (green), Nome (orange), Juneau 
(purple), Honolulu (yellow), and Hilo (pink).  A weighted average 
is applied for each time series (black). 
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Figure 3.2.  Spring accumulated precipitation.  Observed spring 
accumulated precipitation from 1949-2002 is shown for Barrow 
(red), Fairbanks (blue), Anchorage (green), Nome (orange), Juneau 
(purple), Honolulu (yellow), and Hilo (pink).  A weighted average 
is applied for each time series (black). 
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Figure 3.3.  Summer accumulated precipitation.  Observed summer 
accumulated precipitation from 1949-2002 is shown for Barrow 
(red), Fairbanks (blue), Anchorage (green), Nome (orange), Juneau 
(purple), Honolulu (yellow), and Hilo (pink).  A weighted average 
is applied for each time series (black). 
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Figure 3.4.  Fall accumulated precipitation.  Observed fall 
accumulated precipitation from 1949-2002 is shown for Barrow 
(red), Fairbanks (blue), Anchorage (green), Nome (orange), Juneau 
(purple), Honolulu (yellow), and Hilo (pink).  A weighted average 
is applied for each time series (black). 
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Table 3.1.  Mean observed winter accumulated precipitation during warm 
phase PDO and cool phase PDO.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2.  Mean observed spring accumulated precipitation during warm 
phase PDO and cool phase PDO. 

 

 

 

 

 

 

 

 

 

 

 

 

Observed Winter Mean Precipitation (mm) 

Location 
Cool Phase

PDO 
Cool Phase 

PDO 
Warm Phase 

PDO 
Warm Phase

PDO 

Barrow 15.6  = 9.9 94.7  = 5.2 

Fairbanks 46.2  = 26.5 43.5  = 26.9 

Anchorage 69.1  = 32.5 63.9  = 25.9 

Nome 53.7  = 26.7 75.0  = 23.6 

Juneau 308.6  = 93.9 368.9  = 124.1 

Honolulu 258.6  = 143.1 186.4  = 144.0 

Hilo 940.4  = 494.4 745.7  = 491.9 

Observed Spring Mean Precipitation (mm) 

Location 
Cool Phase

PDO 
Cool Phase 

PDO 
Warm Phase 

PDO 
Warm Phase

PDO 

Barrow 14.5  = 15.1 9.0  = 4.7 

Fairbanks 30.8  = 16.7 30.9  = 20.8 

Anchorage 47.6  = 20.7 46.9  = 20.9 

Nome 44.6  = 22.7 58.0  = 29.0 

Juneau 166.2  = 40.7 161.8  = 67.7 

Honolulu 160.1  = 147.4 84.4  = 57.9 

Hilo 924.1  = 320.8 874.2  = 429.6 
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Table 3.3.  Mean observed summer accumulated precipitation during warm phase 
PDO and cool phase PDO. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Table 3.4. Mean observed fall accumulated precipitation during warm phase PDO 
and cool phase PDO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observed Summer Mean Precipitation (mm) 

Location 
Cool Phase

PDO 
Cool Phase 

PDO 
Warm Phase 

PDO 
Warm Phase

PDO 

Barrow 58.4  = 25.8 58.2  = 25.7 

Fairbanks 129.5  = 58.6 130.8  = 38.1 

Anchorage 126.1  = 44.2 157.0  = 60.9 

Nome 167.3  = 71.1 167.4  = 60.2 

Juneau 312.0  = 83.6 339.3  = 82.4 

Honolulu 42.2  = 33.3 35.0  = 25.1 

Hilo 622.3  = 236.0 773.4  = 276.6 

Observed Fall Mean Precipitation (mm) 

Location 
Cool Phase

PDO 
Cool Phase 

PDO 
Warm Phase 

PDO 
Warm Phase

PDO 

Barrow 38.1  = 19.5 31.4  = 12.7 

Fairbanks 61.6  = 30.7 67.6  = 23.1 

Anchorage 127.4  = 45.3 154.7  = 48.4 

Nome 116.1  = 52.9 138.7  = 52.0 

Juneau 481.1  = 120.0 562.6  = 131.8 

Honolulu 145.0  = 106.1 125.6  = 112.3 

Hilo 791.1  = 244.3 919.5  = 453.4 
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Table 3.5. Mean observed annual accumulated precipitation during warm phase 
PDO and cool phase PDO. 

 
 
 

 

 

 

 

 

 

 

 

 

 

  

Observed Annual Mean Precipitation (mm) 

Location 
Cool Phase

PDO 
Cool Phase 

PDO 
Warm Phase

PDO 
Warm Phase 

PDO 

Barrow 123.1  = 51.0 108.0  = 29.2 

Fairbanks 268.1  = 71.4 272.8  = 57.1 

Anchorage 370.2  = 68.4 422.5  = 91.9 

Nome 378.1  = 112.2 439.1  = 95.0 

Juneau 1,349.1  = 195.8 1,522.9  = 294.8 

Honolulu 597.9  = 266.3 431.3  = 214.8 

Hilo 3,189.1  = 805.6 3,312.8  = 884.1 
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approximately 270mm ( = 71.4mm in cool phase and  = 57.1mm in warm phase) in both 

PDO phases.  Accumulated precipitation in Barrow decreases during warm phase PDO 

from an annual mean of 120mm ( = 51.0mm) in the cool phase to 100mm ( = 29.2mm).  

Station data from Hawaii show both a decrease and an increase in accumulated 

precipitation during warm phase PDO.  Hilo, located on the east side of Hawaii, receives 

an average of approximately 3,200mm ( = 805.6mm) in precipitation during the cool 

phase and 3,300mm ( = 884.1mm) during the warm phase.  Honolulu is located on the 

south side of Oahu and receives much less precipitation: 600mm ( = mm) in cool phase 

and 430mm (  = 214.8mm) in the warm phase. 

 These results are compared to changes in seasonal accumulated precipitation from 

CAM5 output shown in Figure 3.5.   In Figure 3.5a, the model shows increases in 

wintertime precipitation at all stations during warm phase PDO.   In spring (Figure 3.5b), 

model output shows increases in seasonal precipitation during warm phase PDO 

throughout most of Alaska except Juneau and decreases in both locations in Hawaii.  

Summertime precipitation (Figure 3.5c) increases in arctic Alaska and Hawaii but 

decreases in the remaining stations in Alaska.  Precipitation in fall also increases at all 

stations during warm phase PDO (Figure 3.5d).   

 The differences between model output and station data can be explained.  Monitoring 

of precipitation over the past 60 years has not been consistent, especially in Alaska, 

resulting in missing climate data.  Furthermore, while measurement methods have become 

more accurate, the data is still skewed as they represent point sources.   
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d) SON 

a) DJF 

b) MAM 

c) JJA 

(mm) 
 

Figure 3.5.  PDO difference of accumulated precipitation.  The difference 
between warm phase and cool phase (warm – cool) PDO seasonal accumulated 
precipitation is shown for a) DJF, b) MAM, c) JJA, and d) SON. 
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3.2 Moisture Convergence 

 For a better understanding of changes in precipitation, we examine the changes in 

the amount of moisture coming into an area, defined as moisture convergence (MC), which 

is determined by: 

                        

                                            Eq. 3.1.  

The moisture convergence throughout the atmosphere up to 300mb is calculated by taking 

the vertical integral of MC with respect to pressure: 

       Eq. 3.2. 

 The greatest areas of moisture divergence over the North Pacific occur near the 

equator, as humid air from the tropics is transported out of the area.  Varying amounts of 

convergence occur throughout the North Pacific with orographic lifting along the Rocky 

Mountains in the North America being responsible for some of the largest amounts of 

moisture convergence in the region. 

 The differences in vertically-integrated moisture convergence between the warm 

phase and cool phase (warm – cool) PDO are shown in Figure 3.6.  In winter (Figure 3.6a) 

and spring (Figure 3.6b), moisture convergence in Alaska, along the northwestern coast of 

North America, and Hawaii decreases.  Moisture convergence increases over the 

northwestern United States, throughout western portions of Canada, and over the eastern 

Aleutian Islands and arctic region of Alaska during summer (Figure 3.6c), but still 
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decreases in Hawaii and throughout interior Alaska.  In fall (Figure 3.6d), a decrease occurs 

in Alaska, Hawaii, and the northwest United States, and an increase occurs over northwest 

Canada. 
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Figure 3.6.  PDO difference of moisture convergence.  The difference between 
warm phase and cool phase (warm – cool) PDO vertically-integrated mean 
seasonal moisture convergence is shown for a) DJF, b) MAM, c) JJA, and d) SON. 

d) SON 

a) DJF 

b) MAM 

c) JJA 

(m) 
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3.3 Moisture Transport 

 The changes in moisture convergence can happen due to changes in moisture 

transport.  The moisture transport is defined as the product of the specific humidity, q, and 

the wind vector, v.  For the entire atmosphere, the vertically-integrated total moisture 

transport (MTtotal) is calculated by:  

                           Eq. 3.3. 

 Annual means of moisture transport during each PDO phase shows that moisture 

flows north and east into Alaska and the western coastline of North America but flows west 

over Hawaii (Figures 3.7a and 3.7b).  Changes in total moisture transport over the North 

Pacific between the warm and cool phases of the PDO are shown in Figure 3.7c.  Total 

moisture transport increases in the warm phase PDO throughout Alaska and the western 

region of North America.  However, transport decreases over Hawaii and the southerly 

portions of the North Pacific. 

 By introducing the Reynold’s Average of q and v, the total moisture transport is 

defined as: 

           Eq. 3.4, 

where an overbar denotes time mean, and a prime denotes deviations from the time mean.  

Expanding this equation gives: 

                                    Eq. 3.5. 

 The first term of Equation 3.5 is just the time-averaged moisture transport.  The 

contributions to the total moisture transport by the second and third terms of Equation 3.5 

MTtotal 
1

g
qv dp

sfc

300mb



qv  q  q '  v  v ' 

qv  qv  qv ' q 'v  q 'v '
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are shown in Figures 3.8 and 3.9 respectively.  As these contributions are much less than 

the mean moisture transport, they can be ignored.  Therefore, changes in moisture transport 

are explained by the fourth term of Equation 3.5, the transient term, q’v’. 
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Figure 3.7.  PDO difference of mean moisture transport.  Annual 
mean moisture transport is shown during (a) cool phase and (b) 
warm phase PDO and (c) the difference between phases. 

a) Cool Phase PDO 

b) Warm Phase PDO 

c) Warm – Cool Difference 
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Figure 3.8.  PDO difference of term 2 of Equation 3.5.  The difference between 
warm phase and cool phase (warm – cool) PDO vertically-integrated seasonal mean 
of second term in Equation 3.5 is shown for a) DJF, b) MAM, c) JJA, and d) SON. 
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Figure 3.9.  PDO difference of term 3 of Equation 3.5.  The difference between 
warm phase and cool phase (warm – cool) PDO vertically-integrated seasonal mean 
of third term in Equation 3.5 is shown for a) DJF, b) MAM, c) JJA, and d) SON. 
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Following Zhu and Newell (1998) the vertically-integrated transient moisture transport 

(MTtransient) is calculated by:  

         Eq. 3.6. 

The differences between warm phase and cool phase transient moisture transport are shown 

in Figure 3.10.  Transient moisture transport into Alaska, along the western coast of the 

United States, and over Hawaii is greater in the warm phase PDO in winter (Figure 3.10a).  

For the spring (Figure 3.10b), transient moisture transport decreases in the warm phase 

over Alaska and throughout much of the North Pacific Ocean but increases over Hawaii.  

Differences in transient moisture transport show a decrease over the western North Pacific 

and an increase over the eastern North Pacific during the warm phase PDO in the summer 

season (Figure 3.10c).  In the fall (Figure 3.10d), transient moisture transport increases 

throughout most of the North Pacific. 

 To quantify these results, Alaska was enclosed in four boundaries: 1) from 59 N to 

70 N along the 165 W longitude, 2) from 165 W to 142 W along the 70 N latitude, 3) 

from 59 N to 70 N along the 142 W longitude, and 4) from 165 W to 142 W along the 

59 N latitude (Figure 3.11), and the net moisture transport across those boundaries was 

studied.  The moisture transport along each boundary was calculated and summed to 

determine how much the moisture transport fluctuates during PDO phase changes.  Positive 

values indicate that more moisture is entering the area or crossing the boundary than 

leaving and vice versa.  The time series of seasonal net moisture transport into Alaska (the 

sum of all four boundaries) is shown in Figure 3.12.   

MTtransient 
1

g
q 'v ' 

sfc
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Figure 3.10.  PDO difference of transient moisture transport.  The mean seasonal 
transient moisture transport differences between warm and cool phase PDO are 
shown for a) DJF, b) MAM, c) JJA, and d) SON. 
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Figure 3.11.  Boundaries for net transport calculation.  The 
approximate boundaries for the calculation of net moisture 
transport into Alaska are shown by the black grid over Alaska.  
Figure credit: www.geospatialdesktop.com 
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Figure 3.12.  Seasonal net transport into Alaska.  The time series 
of seasonal net moisture transport into Alaska is shown for DJF 
(red), MAM (blue), JJA (green), and SON (orange) and seasonal 
trend (black). 
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 Net moisture transport into Alaska increases from an average of 170 kg/(m s) in cool 

phase PDO to 200 kg/(m s) in warm phase PDO in winter.  Decreases are seen in spring 

(from 100 kg/(m s) in cool phase to 20 kg/(m s) in warm phase) and fall (from 150 kg/(m 

s) in cool phase to 90 kg/(m s) in warm phase).  Net moisture transport in summer is similar 

in both PDO phases at about 35 kg/(m s). 

 These changes in net moisture transport can be further investigated by looking at the 

fluctuations along the individual boundaries.  Moisture transport along boundary 1 is on 

average positive for all seasons except spring and increases during warm phase PDO occur 

in all seasons except winter (Figure 3.13).  Moisture transport across boundaries 2 (Figure 

3.14) and 3 (Figure 3.15) is negative during both PDO phases meaning that more moisture 

is leaving Alaska along these north and east boundaries than entering.  During warm phase 

PDO, the amount of moisture crossing these boundaries decreases in most seasons or 

remains nearly constant.  The greatest amounts of moisture entering Alaska occur along 

the southern boundary (Figure 3.16).  As the PDO phase changes, moisture transport along 

this southern boundary increases in winter and summer and decreases in spring and fall, 

similar to the changes in net moisture transport into Alaska. 
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East Boundary 

Figure 3.13.  Seasonal net transport across east boundary.  The 
time series of seasonal moisture transport across the eastern 
boundary of Alaska is shown for DJF (red),  MAM (blue),  JJA 
(green), and SON (orange) and seasonal trend (black). 
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Figure 3.14.  Seasonal net transport across north boundary.  The 
time series of seasonal moisture transport across the northern 
boundary of Alaska is shown for DJF (red),  MAM (blue),  JJA 
(green), and SON (orange) and seasonal trend (black). 
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Figure 3.15.  Seasonal net transport across west boundary.  The 
time series of seasonal moisture transport across the western 
boundary of Alaska is shown for DJF (red),  MAM (blue),  JJA 
(green), and SON (orange) and seasonal trend (black). 
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Figure 3.16.  Seasonal net transport across south boundary.  The 
time series of seasonal moisture transport across the southern 
boundary of Alaska is shown for DJF (red),  MAM (blue),  JJA 
(green), and SON (orange) and seasonal trend (black). 
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3.4 Specific Humidity and Wind 

 As moisture transport is defined by both specific humidity, q, and the wind, v, the 

changes in these variables between warm phase and cool phase PDO are also of great 

interest.  The vertical integrations of q (which yields precipitable water, PW) and of v (also 

known as mass flux, MF) are taken from the surface up to 300mb: 

                                         Eq. 3.6, 

                                          Eq. 3.7. 

  The highest values of specific humidity in the North Pacific region are found near 

the tropics and steadily decrease towards the northern areas.  Specific humidity in the warm 

phase PDO decreases throughout much of the North Pacific region including Hawaii and 

Alaska in winter (Figure 3.17a).  In the remaining seasons, it increases in the warm phase 

over Hawaii and portions of Alaska.  In spring, northern Alaska experiences a decrease in 

specific humidity (Figure 3.17b), and in summer, a decrease occurs in the North Pacific 

Ocean between Alaska and Hawaii (Figure 3.17c). 

The mass flux follows a similar pattern to that of the moisture transport: the wind 

flows east over Alaska and the western coast of North America but west over Hawaii.  In 

the winter season, the wind speeds in the warm phase decrease over Alaska and Hawaii 

and increase along the west coast of the United States (Figure 3.18a).  For spring, wind 

speeds are greater throughout the arctic but decrease over Hawaii and Alaska (Figure 

3.18b).  Wind speeds increase in Alaska and over northern Canada and decrease over 

PW 
1

g
qdp

sfc
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

MF 
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v dp
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Hawaii in summer (Figure 3.18c).  The difference of wind speeds show slower wind speeds 

in the warm phase over Alaska and Hawaii (Figure 3.18d). 
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d) SON 

a) DJF 

b) MAM 

c) JJA 

Figure 3.17.  PDO difference in precipitable water.  Warm phase – cool phase 
precipitable water is shown for a) DJF, b) MAM, c) JJA, and d) SON. 
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d) SON 

a) DJF 

b) MAM 

c) JJA 

Figure 3.18.  PDO difference in mass flux.  The difference between warm phase 
and cool phase mass flux is shown for a) DJF, b) MAM, c) JJA, and d) SON. 
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3.5 Evaporation 

Finally, we look at the evaporation over Alaska and Hawaii during the PDO phases 

as changes in this process also affect the amount of moisture in the atmosphere.  

Differences in evaporation are shown in Figure 3.19.  Evaporation during warm phase PDO 

decreases over Hawaii and interior Alaska and increases over the western North Pacific, 

southwestern Alaska, and the west coast of the United States (Figure 3.19a).  In spring 

(Figure 3.19b), evaporation decreases over arctic Alaska but increases over Hawaii and 

southern portions of Alaska.  Figure 3.19c shows increases in summertime evaporation 

over arctic Alaska, interior Alaska, and Hawaii.  Decreases in evaporation occur over 

southwestern Alaska in summer.  Evaporation in fall (Figure 3.19d) increases over both 

Alaska and Hawaii and decreases over the western North Pacific. 
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a) DJF 

d) SON 

b) MAM 

c) JJA 

Figure 3.19.  PDO difference of evaporation.  The difference between warm phase 
and cool phase mean evaporation is shown for a) DJF, b) MAM, c) JJA, and d) SON. 

(mm/day) 
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Chapter 4.  Results of the PDO and El Niño Experiment 

 The PDO provides decadal variability in the North Pacific, but within the separate 

PDO phases, interannual variability is affected by ENSO SST anomalies.  The calculations 

from Sections 3.1 through 3.4 are repeated for the second experiment in order to determine 

how the atmospheric moisture transport over the North Pacific between Alaska and Hawaii 

changes with decadal variabilities due to the PDO phase super-imposed on interannual 

variabilities like El Niño events and La Niña events. 

 

4.1   Moisture Convergence 

  The difference between warm phase and cool phase PDO moisture convergence 

during El Niño events versus La Niña events can be compared in Figures 4.1 and 4.2. While 

the PDO experiment shows a decrease in moisture convergence in Alaska and Hawaii in 

winter (Figure 3.6a), this experiment shows an increase during both El Niño and La Niña 

(Figures 4.1a and 4.2a).  Additionally, during La Niña events, moisture convergence is seen 

to decrease between Alaska and Hawaii and increase during El Niño events.  In spring, 

moisture convergence decreases over Alaska and between Alaska and Hawaii during La 

Niña (Figure 4.1b) and increases over Alaska and Hawaii during El Niño (Figure 4.2b).  

Similar to the previous results for summer, moisture convergence increases in arctic Alaska 

and decreases throughout the rest of Alaska and Hawaii during La Niña (Figure 4.1c).  

During El Niño (Figure 4.2c), a decrease in moisture convergence is seen over all of 

Alaska.  Decreases in moisture convergence occur in Alaska and Hawaii in fall during both 

El Niño and La Niña events (Figures 4.1d and 4.2d).   
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c) JJA- 
La Niña 

a) DJF- 
La Niña 

b) MAM- 
La Niña 

(m) 
 

d) SON- 
La Niña 

Figure 4.1. PDO difference in moisture convergence during La Niña.  The PDO 
phase difference (warm – cool) in moisture convergence during La Niña events 
is shown for a) DJF, b) MAM, c) JJA, and d) SON. 
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b) MAM- 
El Niño 

a) DJF- 
El Niño 

c) JJA- 
El Niño 
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Figure 4.2. PDO difference in moisture convergence during El Niño.  The PDO 
phase difference (warm – cool) in moisture convergence during El Niño events 
is shown for a) DJF, b) MAM, c) JJA, and d) SON. 

d) SON- 
El Niño 
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4.2   Moisture Transport 

 Winter La Niña events show a decrease in transient moisture transport in over Hawaii 

and Alaska (Figure 4.3a), while winter El Niño events show an increase in Hawaii (Figure 

4.4a).  The previous results in Section 3.3 showed an increase in both Alaska and Hawaii.  

The spring and summer changes are similar in that the PDO phase difference of transient 

moisture transport decreases in Alaska and increases over Hawaii for both El Niño and La 

Niña (Figures 4.3b and 4.4b, Figures 4.3c and 4.4c), similar to the first experiment.  

Transient moisture transport increases in western Alaska and Hawaii during fall La Niña 

events (Figure 4.3d).  It increases in Hawaii, the eastern region of Alaska, and the western 

coast of North America during El Niño events, but decreases in the western portion of 

Alaska (Figure 4.4d) – similar to the previous results. 
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Figure 4.3. PDO difference in transient moisture transport during La Niña.  The PDO 
phase difference (warm – cool) in transient moisture transport during La Niña events 
is shown for a) DJF, b) MAM, c) JJA, and d) SON. 
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Figure 4.4. PDO difference in transient moisture transport during El Niño.  The PDO 
phase difference (warm – cool) in transient moisture transport during El Niño events 
is shown for a) DJF, b) MAM, c) JJA, and d) SON.

a) DJF- 
El Niño 

d) SON- 
El Niño 

c) JJA- 
El Niño 
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4.3 Specific Humidity and Wind 

 Precipitable water slightly decreases in northern Alaska and northern Hawaii and 

increases in southern Alaska and southern Hawaii during La Niña events in winter (Figure 

4.5a).  Figures 4.5b and 4.5c show decreases throughout much of the North Pacific during 

La Niña events in spring and summer.   Slight increases in precipitable water occur in fall 

over Alaska and Hawaii during La Niña events as well (Figure 4.5d).  All four seasons see 

increases from cool phase PDO to warm phase PDO in precipitable water over Alaska, 

Hawaii, and most of the North Pacific region for El Niño events (Figures 4.6a – 4.6d).   

 Mass flux increases over Alaska, Hawaii, and the west coast of North America during 

La Niña in winter (Figure 4.7a).  This pattern shifts east during El Niño events so that 

western Alaska and Hawaii sees increases in mass flux, but it decreases along the west 

coast of North America (Figure 4.8a).  This is not similar to the previous results in Section 

3.4 as they show a decrease over Alaska and Hawaii during PDO phase shifts from cool to 

warm.  In spring La Niña events (Figure 4.7b), mass flux decreases over both Alaska and 

Hawaii and then increases over the same areas during El Niño events (Figure 4.8b). 

Summer La Niña events show an increase over Alaska and a slight increase over Hawaii 

(Figure 4.7c), whereas El Niño events show a slight decrease of mass flux over Alaska and 

a slight increase over Hawaii (Figure 4.8c).  In winter, mass flux decreases over Alaska 

during La Niña events and increases over northwest Canada (Figure 4.7d), but increases 

over Alaska and decreases over Hawaii during El Niño (Figure 4.8d). 
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Figure 4.5. PDO difference in precipitable water during La Niña.  The PDO 
phase difference (warm – cool) in precipitable water during La Niña events 
is shown for a) DJF, b) MAM, c) JJA, and d) SON. 
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Figure 4.6. PDO difference in precipitable water during El Niño.  The PDO 
phase difference (warm – cool) in precipitable water during El Niño events 
is shown for a) DJF, b) MAM, c) JJA, and d) SON. 

a) DJF- 
El Niño 

d) SON- 
El Niño 
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El Niño 
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Figure 4.7. PDO difference in mass flux during La Niña.  The PDO 
phase difference (warm – cool) in mass flux during La Niña events 
is shown for a) DJF, b) MAM, c) JJA, and d) SON.
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Figure 4.8. PDO difference in mass flux during El Niño.  The PDO 
phase difference (warm – cool) in mass flux during El Niño events 
is shown for a) DJF, b) MAM, c) JJA, and d) SON. 
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El Niño 
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4.4 Evaporation 

Figures 4.9 and 4.10 show the warm phase and cool phase PDO difference of seasonal 

mean evaporation during La Niña events and El Niño events, respectively.  Evaporation 

over Hawaii is slightly greater during warm phase PDO, El Niño events in winter (Figures 

4.9a and 4.10a) and in summer (Figures 4.9c and 4.10c).  Evaporation over Alaska does 

not greatly change during La Niña or El Niño.  In spring, evaporation is greater over Alaska 

and Hawaii during La Niña events (Figures 4.9b and 4.10b).  Evaporation over the North 

Pacific is greater during warm phase PDO, El Niño events in fall (Figures 4.9d and 4.10d), 

but evaporation over Alaska and Hawaii does not notably change. 
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a) DJF- 
La Niña 

c) JJA- 
La Niña 

d) SON- 
La Niña 

b) MAM- 
La Niña 

(mm/day) 
 

Figure 4.9. PDO difference in evaporation during La Niña.  The PDO 
phase difference (warm – cool) in evaporation during La Niña events 
is shown for a) DJF, b) MAM, c) JJA, and d) SON. 
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c) JJA- 
El Niño 

(mm/day) 
 

Figure 4.10. PDO difference in evaporation during El Niño.  The 
PDO phase difference (warm – cool) in evaporation during El Niño 
events is shown for a) DJF, b) MAM, c) JJA, and d) SON. 

a) DJF- 
El Niño 

b) MAM- 
El Niño 

d) SON- 
El Niño 
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Chapter 5.  Summary and Conclusions 

 Over the region of the North Pacific Ocean, areas of increased (decreased) moisture 

convergence correspond to areas of large increases (decreases) in specific humidity as well 

as increases (decreases) in wind speeds.  In areas where the changes in specific humidity 

are small, the differences in wind speeds affect the change in moisture convergence.  

Differences in convergence are very small over portions of Alaska and Hawaii – which 

could account for the fact that changes in moisture convergence do not agree with the 

observed changes in precipitation.  This is most likely due to the coarse resolution of the 

model.  The model topography of Alaska (Figure 5.1) does not capture the real topography 

(Figure 5.2).  For example, the Brooks Range in Northern Alaska has a maximum height 

of 2,700m, but the model shows maximum heights of 800-1,000m.  The model topography 

also does not capture the changes in elevation due to volcanic mountains in Hawaii (not 

shown).  This difference in model topography exacerbate the disagreement between point 

source measures. 

 Net moisture transport into Alaska, calculated from the sum of the moisture transport 

across four boundary lines, decreases during warm phase PDO in spring and fall, increases 

in winter, and does not change in summer.  These changes are primarily due to the 

fluctuations of moisture transport along the southern boundary of Alaska as the greatest 

amounts of moisture entering Alaska occur over that boundary.  Conversely, the greatest 

amounts of moisture leaving Alaska occur over the northern boundary.  Moisture leaving 

along this boundary also increases during warm phase PDO in all seasons except winter. 

 



 

68 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Model topography over the North Pacific Ocean.   

(m) 

Figure 5.2.  Topography of Alaska.  Figure credit: 
http://www.lksd.org/alaska_in_maps/html/c124.htm 
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 By decomposing the moisture transport into its two components, precipitation is 

found to be affected by the combination of an increase (or decrease in northern Alaska) in 

specific humidity during warm PDO phases as well as a decrease in the wind speed over 

Alaska and Hawaii for most seasons. Therefore, while the amount of moisture in the 

atmosphere has increased, the winds are not transporting it throughout the North Pacific as 

quickly, and so the moisture in the atmosphere is able to precipitate out before leaving the 

local area.  Moreover, differences in specific humidity during warm phase PDO can be 

explained by corresponding changes in evaporation amounts, indicating that evaporation 

increases have an effect on warm phase PDO precipitation. 

 The increases in specific humidity over Alaska agree with the previous modeling 

results of Higgins and Cassano (2009) which showed that increases in precipitation in the 

Arctic were due primarily to increased atmospheric moisture content.  Increases in warm 

phase PDO evaporation can also be explained by the increases in atmospheric temperatures 

during warm phase PDO found by Mantua and Hare (2002) and Hartmann and Wendler 

(2005). 

 When taking into account interannual variability from global forcing, the differences 

in moisture convergence over Alaska and between Alaska and Hawaii are greater between 

warm phase PDO El Niño and La Niña events than between just cool phase and warm 

phase PDO.  The transient moisture transport over Alaska decreases during El Niño 

compared to La Niña during most seasons (winter, spring, and summer) and increases over 

Hawaii in all seasons.  Specific humidity throughout the North Pacific increases during 

warm phase PDO and El Niño events but decreases during warm phase PDO and La Niña 
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events.  The wind speeds also change between warm phase La Niña and El Niño with 

decreases (increases) over Alaska in winter and summer (spring and fall) and over Hawaii 

in fall (spring and summer).  Evaporation does not greatly change over the North Pacific 

Ocean during El Niño and La Niña, but slight increases are seen over Hawaii during winter, 

warm phase PDO, El Niño events and over Alaska and Hawaii during spring, warm phase 

PDO, La Niña events. 

 Precipitation is an important component to support life around the world, and as 

such the need to understand its natural variability is also of great importance.  Changes in 

precipitation can have serious effects on human society and natural ecosystems.  

Significant increases in precipitation can cause widespread flooding along low-lying 

coastal communities or in mountain valleys, particularly in Alaska in the warming spring 

months when extra precipitation combines with snow and ice melt leading to flooding.  

Significant decreases in precipitation in already dry areas like Alaska and the southwestern 

United States can leave the land too dry and vulnerable to widespread forest fires.  The 

impacts especially have consequences in the remote areas of Alaska as residents may not 

have immediate access to roads or supplies during emergencies.  

 While understanding the natural variability of precipitation will not prevent these 

disasters from occurring, the damage which they cause can be lessened with proper 

education and preparation.  Further research is needed to investigate how these changes in 

atmospheric moisture transport and moisture convergence due to the PDO phases affect 

the strength and duration of precipitation events as well as the impacts of increased global 

air temperatures and carbon dioxide concentrations on the natural variability of 
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precipitation in the North Pacific. 

Ongoing research is vital to complete our understanding of the effects of natural 

variability on precipitation so that preventative methods can be established and 

preparations can be made to lessen the impact of such disasters. 
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