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Abstract 

Arctic sea ice plays an important role in climate by influencing surface heat fluxes 

and albedo, so must be accurately represented in climate models. This study finds 

that the fully coupled ice-ocean-atmosphere-land Community Climate System 

Model (CCSM3.0) underestimates day-to-day ice variability compared to 

observations and employs the Community Atmosphere Model (CAM3.0) to 

investigate the atmospheric sensitivity to sea ice variability. Three 100-ensemble 

experiments are forced with climatological, daily-varying, and smoothly-varying 

sea ice conditions from an anomalously low ice period (September 2006-February 

2007). Daily ice variability has a large local impact on the atmosphere when ice 

undergoes rapid changes, leading to local cooling and subsequent circulation 

changes. The most notable example of a large-scale atmospheric response occurs 

over Northern Europe during fall where daily ice variability forces reductions in 

the number and strength of cyclones, leading to positive sea level pressure 

anomalies, surface warming, and reduced cloud cover.  
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1 Introduction 

1.1 Introduction – Arctic Sea Ice Evolution 

Sea ice is an important part of the global climate system. Its dynamic 

processes are highly complex in the way it evolves and interacts with the 

surrounding atmosphere and ocean. The distinctly different characteristics of sea 

ice from the ocean water lead to large impacts of sea ice changes on atmosphere-

ocean interaction. The albedo of ice is several times higher than that of the ocean 

underneath, which consequently influences the shortwave radiation budget. The 

ice also acts as an insulator between the atmosphere and ocean decreasing net 

upward sensible and latent heat fluxes. Sea ice is highly dynamical and is capable 

of changing concentration, thickness and other properties quickly. A better 

understanding of the evolution of sea ice and how sea ice changes impact the 

atmosphere is crucial for understanding our climate system, properly representing 

sea ice in climate models and making climate projections.  

The Arctic sea ice extent has been measured by satellite since the 1970’s 

with use of passive microwave radiometers. The first consecutive dataset with 

good polar coverage and quality started with the National Aeronautics and Space 

Administration’s (NASA) Nimbus 7 satellite in 1978 (Cavalieri et al. 1999). The 

data collection process was only first dependable starting in 1982. Prior to the 

satellite record and starting in 1972, weekly observations were compiled into 

maps for the Arctic at the National Ice Center (NIC). Ships and polar expeditions 

have recorded sea ice conditions since the middle of the 19th century. With the 

study of marine sediments collected from the ocean floor it is possible to 

construct a picture of what the sea ice concentrations must have been like prior to 

the instrumental record. This patchy reconstruction has been constructed back to 

the early Holocene and has found similar sea ice extent as in the 20th century (de 

Vernal et al. 2008). These records indicate previous maximums, but it is difficult 
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to know whether the 2007 low was an all time minimum over the past millennium 

or longer.  

The most significant variability in sea ice extent are annual fluctuations 

due to the warming and cooling of the poles. In the Arctic the overall maximum 

(minimum) sea ice extent and concentration occurs typically in March 

(September). However, interannual variations can be more than 5° in latitude in 

most longitudinal sectors (Walsh and Johnson 1979). 

Since the modern observations began, yearly averaged sea ice 

concentrations have increased for the 20 years between 1955 and 1975 (Walsh 

and Johnson 1979). This trend continued for the Bering Sea and the Labrador Sea 

during the next one-and-a-half decade from 1979 to 1993, but sea ice decreased in 

most other areas of the Arctic. During the following decade from 1993 to 2007 

sea ice concentration has decreased around nearly the entire Arctic (Deser and 

Teng 2008). The sea ice edge in the Bering Sea appears to be controlled by the 

flow associated with the Aleutian Low, hence, governed by the Pacific Decadal 

Oscillation (PDO), which had a positive phase during 1980’s. The positive phase 

might explain the continued increased average sea ice in the Bering Sea in the 

1980s (Francis and Hunter 2007). 

The maximum sea ice extent has been relatively stable during the last 

decades and displayed about a 1.5% decrease per decade. However in 2005 and 

2006 the maximum extent was observed to be 6% lower than average (Comiso 

2006a). The sea ice during winter consists of perennial and first year sea ice. The 

first year sea ice is about a meter thick, but the perennial ice can be several 

meters. So even while winter sea ice extent has remained relatively stable for the 

duration of satellite records, the average thickness has decreased. The lack of 

extensive observational data makes it difficult to precisely determine ice volume, 

but collected submarine data suggest that the average thickness decreased by 

about 1.25 meters between 1980 and 2000 (Rothrock et al. 2008). A continued 
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decrease is indicated in a recent study (Kwok and Rothrock 2009) that showed the 

1980 to 2008 decrease to be 1.75m.  

There is large uncertainty in the rate of sea ice decline in global climate 

models. This uncertainty is due to the lack of detailed observations of ice 

thickness limiting the ability to evaluate 20th century simulated thickness. In the 

Coupled Model Intercomparison Project (CMIP3) models, the average sea ice 

thickness ranges from less than a meter to more than three meters. The predictions 

for the 21st century are in large part a function of the 20th century values. 

Therefore, the uncertainty in 20th century values lead to errors in projections (due 

to a doubling of CO2) and can be off by up to a meter (Bitz 2008). 

The perennial sea ice has decreased by about 10% per decade (Comiso 

2006b) whereas ice extent has decreased by a more modest 3% per decade 

(Bjorgo et al. 1997; Parkinson et al. 1999) since the beginning of satellite records. 

The decrease in perennial ice seems to have made the winter sea ice thinner and 

consequently more vulnerable to wind and thermal effects. Thinner sea ice may 

explain the sudden decrease of annual maximum sea ice extent in 2005 and 2006 

(Comiso 2006a).  

The observed changes in sea ice are in large part caused by forcing from 

the atmosphere above and the ocean water underneath. Temperature change in the 

lower atmosphere and in upper ocean play a dominant role in the retreat of the 

arctic sea ice from 1979 to 2007 (Deser and Teng 2008). Dynamical forcing is at 

least on the same order of importance for changes in sea ice extent as temperature 

forcing (Polyakov et al. 2003). Recent work further support this notion (Polyakov 

et al. 2010). 
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1.2 Introduction – Impact of Sea Ice on Atmosphere 

     The influence of sea ice concentration (SIC) on the atmosphere has 

been investigated in fixed sea ice and sea surface temperature (SST) Global 

Climate Model (GCM) experiments. Screen and Simmonds (2010) found a large 

correspondence in surface air temperature (SAT), SIC, and surface flux trends and 

recent warming trends in the Arctic might be a result of increased ocean-to-

atmosphere surface fluxes (net solar radiation at surface) due to a decreasing ice 

cover in the winter (summer). Bhatt et al. (2008) showed that a realistic reduction 

in sea ice concentration during summer (1995 conditions) in an atmospheric GCM 

causes an increase in surface fluxes of latent and sensible heat due to the 

increased area of open water. This decrease in ice concentration also causes an 

increase in SAT and a slight decrease in SLP. Sea ice changes can also impact 

midlatitudes causing storm tracks shifts, which lead to changes in precipitation 

patterns. Similar atmospheric anomalies were also found with only regional sea 

ice decrease limited to individual sections of the Arctic Ocean (Bhatt et al. 2008). 

Petoukhov and Semenov (2010) showed that decreasing sea ice only in the 

Barents and Kara seas can significantly change the atmospheric circulation and 

can cause extreme cold events when the local heating results in a strong 

anticyclonic anomaly over the Polar Ocean.  

Alexander et al. (2004) used a GCM to examine winter arctic sea ice 

impacts for the 1982-1983 (maximum) and 1995-1996 (minimum) winters. The 

sea ice anomalies during winter are generally not as large as those in the summer 

but can have large atmospheric impacts, since the strong vertical temperature 

gradient between SST and SAT cause large surface flux anomalies. In proximity 

of ice anomalies, the GCM shows a shallow enhanced SAT up to 700 hPa and 

precipitation, and decreased SLP over a reduced sea ice area. The opposite 

atmospheric response is found over enhanced sea ice areas. If the sea ice edge 

anomaly is co-located with a storm track, this can cause an alteration of the storm 
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track course, as was found in the North Atlantic Basin. Change in storm tracks 

can change large-scale circulation patterns and inter-annual oscillations. The 

response to wintertime anomalies is twice as large for sea ice concentration as for 

sea ice extent.   

The warming of the Arctic favors a sea ice decrease (Comiso 2003). But 

how important is the reduced sea ice at forcing SAT changes? Rigor et al. (2002) 

suggested that the positive state of the Arctic Oscillation during the 90’s caused 

advection of ice away from the arctic shoreline and caused thinner ice to be 

produced in East Siberian and Laptev seas. The thinner sea ice has further 

contributed to more ice-free areas and hence a warming of the Arctic due to 

increased long wave surface fluxes.     

Herman and Johnson (1978) pioneered sea ice impacts studies and found 

that sea ice extent anomalies are not only correlated with atmospheric pressure 

anomalies, but are also causing them. Using a GCM forced with SIC and SST, 

they analyzed an idealized sea ice extreme forced simulation based on a 17-year 

period of observed SIC versus a 6-year control based on climatological sea ice. 

They found a pressure response of 8 hPa over Barents Sea. The total poleward 

energy flux was up to 13% larger in the midlatitudes when sea ice was increased. 

They suggest that the ice margin is capable of influencing local synoptic structure 

as well as that on a hemispheric scale. The later statement is based on the Atlantic 

Ocean sea ice that changes the Icelandic low, which displayed a strong correlation 

with the Azores high in the subtropics.  

Singarayer et al. (2006) investigated how much of the current 

temperature increase in the Arctic is caused by SIC changes. Future scenarios are 

examined from the year 2000 to 2099. The study used a moderate sea ice decrease 

(roughly the rate of observed 1980-2000 decrease for the 21st century) and found 

a total increase of 1.6K from 2000 to 2099 of annual average SAT. More rapid ice 

declines resulted in annual average SAT increases of up to 3.9K. This experiment 
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shows a warming of the entire Arctic versus only in Fram Strait in a 1980 to 2000 

simulation. Seasonally the increased temperatures occurred in the winter when 

air-sea temperature gradients are high. Decreasing sea ice during summer shows 

only a small effect on an annually averaged Arctic temperature increase. This 

study therefore indicates that the albedo change has little effect on the Arctic 

SAT, but likely depends more on SST and ocean circulation. This experiment 

finds that the temperature change alters SLP and therefore changes the 

midlatitude North Atlantic and North Pacific storm tracks significantly.  

Deser et al. (2010) investigated the difference between the atmospheric 

response to 1980 – 1999 and projected 2080 – 2099 sea ice concentrations.  They 

found the largest flux and temperature response during winter although arctic sea 

ice decline is largest in summer and fall.  They found that most of the arctic 

warming is due to arctic sea ice decline. Their results indicate that the 

atmospheric response to future sea ice loss is most likely to correlate with the net 

surface energy flux than with sea ice concentration itself.  The temperature 

response seems to cause a decrease in static stability of the boundary layer of up 

to 50%. Snowfall in northern Canada and Siberia increased over a percent of a 

centimeter a day (November – December).  

Balmaseda et al. (2010) demonstrated how the arctic sea ice has 

implications beyond the Arctic region. Change in sea ice can alter temperature 

and SLP, which can have implications for synoptic weather patterns as well as 

multi-year oscillations like the Arctic and the North Atlantic Oscillation. Long-

range atmospheric transport can be significantly altered by changes in sea ice. The 

atmospheric response is highly nonlinear and is largely dependant on the 

background mean atmosphere-ocean state. Balmaseda et al. (2010) further argued 

that accurate sea ice predictions are necessary for a precise seasonal forecast of 

the extratropical summer and hence use daily sea ice variability. Observed 

realistic sea ice was also used by Strey et al. (2010) in Weather Reseach Forecast 
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(WRF) model (Skamarock et al. 2005) experiments with 40-kilometer horizontal 

grid size. The atmospheric response was generally consistent with GCM results 

mentioned above (Alexander et al. 2004; Bhatt et al. 2008; Deser et al. 2004; 

Higgins and Cassano 2009). 

These studies show the importance of sea ice and what role it plays in the 

climate system. Fixed sea ice experiments in uncoupled GCM simulations allow 

investigations of the atmospheric response to sea ice. Through several studies 

different mechanisms of atmosphere-ice interactions have been illuminated. 

Long-term responses in temperatures are documented by Singarayer et al. (2006) 

showing temperature increase as a result of decreased arctic sea ice. The strong 

link between decreased sea ice and temperature increase is surface fluxes from the 

underlying ocean (Alexander et al. 2004). This study also points out the difference 

between representing the ice as concentration or extent. The effects of fluxes are 

dependant on SAT, which determines the vertical temperature gradient between 

the ocean surface with relatively stable SST and the atmosphere (Deser et al. 

2010).  

Several seasonal and regional studies show significant effects of ice from 

different ice scenarios. Remote effects of ice anomalies can occur through 

changes in diabatic heating anomalies, advection of temperature and vorticity, and 

displacement of stationary waves (Honda et al. 1999). Changes in sea ice can alter 

pressure patterns (Magnusdottir et al. 2004) and cyclone activity (Higgins and 

Cassano 2009) during Arctic winter. Although flux responses are lower during 

summer, SIC changes are larger and significant responses are seen in geopotential 

height, storm activity and precipitation (Bhatt et al. 2008). 

Sea ice concentration can appear to change slowly over the seasons, 

which to some extent, it does. However a closer look indicates that rapid changes 

occur over relatively large areas on a daily basis. Understanding the atmospheric 
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response to daily ice variations has not been well explored and is a timely exercise 

as the demand for seasonal forecasts and long-term projections are growing.  

1.3 Model Versus Observed Arctic Sea Ice 

Sea ice observations and AR4 (Fourth Assessment Report of the 

Intergovernmental Panel of Climate Change) fully coupled CCSM3.0 model 

simulations were analyzed to characterize and compare sea ice concentration. The 

purpose of this analysis is to answer the question: How well do state-of-the-art 

models capture day-to-day variations of the arctic sea ice concentration?   

1.3.1 Data Properties 

The observational sea ice concentrations for this study comes from the 

Special Sensor Microwave Imager (SSM/I) data modified using the bootstrap 

algorithm from 1982 to 2008 (Comiso and Nishio 2008). The data set has a 25-km 

resolution on a polar projected grid. A total of 1132 days are missing from a 

consecutive 27-year daily data and linear interpolation is used to fill in data gaps. 

The model data cover a 27-year period (1973 – 1999) from a fully coupled 

CCSM3.0 (Collins et al. 2006b) 20th century control simulation (b30.004) with 

T85 resolution (~1.4°x ~1.4°). Note that 20th century simulations do not 

correspond to exact years in the observed record since they are coupled ocean-

atmosphere simulations, and therefore unconstrained. This fact means that ocean 

SST for a given model month will not match observations for that month. These 

simulations are useful for comparing statistical properties like means and 

variability between model and observations over similar radiatively forced time 

period.  

The higher resolution observational data was interpolated to the model 

T85 grid to allow a comparison at the same resolution.  The mean, the standard 



 
 

 
 
 

 

22 

deviation, and the root-mean-square of the day-to-day change of sea ice 

concentration are investigated to compare differences between the model and 

observations.  

1.3.2 Mean Ice Conditions 

Comparing monthly mean sea ice concentration (SIC) for two 

climatologically extreme months (March and September) indicates that model 

southern ice edge is too extensive compared to observations (Figure 1.1) in 

agreement with (Holland et al. 2006). The model overestimates the central Arctic 

SIC in March and underestimates it in September. 
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Figure 1.1 Difference in Mean SIC in Model and Observations 

Difference of sea ice concentrations expressed as a fraction between 0 and 1 

corresponding to 0% and 100%, respectively. March (left) and September (right) 

26-year mean sea ice concentration (model – observed) (units: sea ice fraction). 

0˚ 0˚

a) March b) September

Mean Sea Ice Concentration Anomaly 
Model - Observed (Sea Ice Fraction) 
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1.3.3 Standard Deviation 

The monthly variability of sea ice is generally underestimated in the 

model. Monthly standard deviations (using the standard formula) of arctic sea ice 

are found by calculating root mean square of 27 monthly anomalies. The 

differences in standard deviation between the model and observations express the 

climatological differences between model and observed SIC variability and are 

shown in Figure 1.2. 

The monthly sea ice variability in the central Arctic is underestimated in 

the model during January but overestimated in July. Figure 1.3 displays the ratio 

of standard deviation sea ice in the model over observations, which is consistent 

with Figure 1.2. Monthly variance around the edges can be larger in the model 

than observations where model sea ice is more extensive than observations. In the 

central Arctic the model has a lower variability in the winter (by up to 4 times 

less) than the observations and a higher variability in the summer. Daily standard 

deviations averaged over a month (not shown) are very similar to the monthly 

standard deviation shown in Figure 1.2 and 1.3. 
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Figure 1.2 Standard Deviation Difference of SIC Between Model and 
Observations 
Difference of January (left) and July (right) monthly standard deviation of sea 
ice concentration of model minus observed (units: sea ice fraction) 

a) January b) July

0˚ 0˚

Standard Deviation of Sea Ice Concentration Anomaly 
Model - Observed (sea ice fraction) 
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Figure 1.3 Ratio of Model/Observed Standard Deviation of SIC  
January (left) and July (right) ratio of model/observed standard deviation of sea 
ice concentration (unitless). 

a) January b) July

0˚ 0˚

Standard Deviation of SIC Anomaly Model / Observed (Unitless) 
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1.3.4 Day-to-day Change of Ice Concentration 

One of the most striking features of observed daily sea ice is its horizontal 

movement from wind forcing and the opening and closing of leads (e.g. see more 

at Cryosphere Today http://arctic.atmos.uiuc.edu/cryosphere/). To quantify this 

day-to-day variability, the difference between sea ice concentration (c) on day i 

and on i-1 is computed to find sea ice concentration tendency. This quantity is 

used to evaluate how daily changes are represented in the model. Equation 1.1  

 
 
 

 

describes the tendency taking the root mean square of 27 years of daily 

differences for one particular date. One-day tendencies are averaged over a time 

period (c is SIC, m and n is number of days and years respectively used in the 

calculation). The results are displayed in Figure 1.4 and show generally higher 

variability in observations for all seasons. Exceptions exist were the ice extent is 

greater in model than observed and around the North Pole where satellite data 

were not available in the early part of the record and have been replaced with 

100% ice concentration. The model consistently underestimates daily variations 

along the ice edge during summer and fall (middle and lower rows Figure 1.4). 

(1.1) 
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Figure 1.4 Day-to-day SIC Change in Model and Observations 
Difference in SIC between two consecutive dates root-mean-squared over 27 years 
of the same day interval. Daily tendency values are averaged from December to 
February (DJF) (top), July to August (JA) (middle), and September to October (SO) 
(bottom). Left column displays model SIC tendency, middle column shows SIC 
tendency from observations, and the right shows the difference of model-
observations SIC tendency (units: sea ice fraction day-1).  
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SIC variability is underestimated in models both on a climatological and 

a day-to-day time scale, which leads to questions regarding the feedback of these 

biases on the atmosphere. The focus of this thesis is to investigate the following 

questions: 

• Does higher temporal and spatial variability of sea ice forcing lead to a 

different atmospheric response then a more smoothed forcing?  

• What consequences do the above results have for future fixed sea ice GCM 

studies as well as coupled model integrations? 

The organization of the thesis is as follows. Section 2 describes the 

methods and model experimental set up employed to investigate these questions. 

Section 3 documents the model results and discussion. Finally, Section 4 provides 

a summary and conclusions. Appendices A-E provide substantial material that 

was drawn upon for the analysis presented in the main part of the thesis. 

Evaluation of ensembles and the relationship between heat fluxes and sea ice 

concentration is documented in Appendices A and B. The majority of variables 

considered studying the atmospheric response during fall and winter are included 

in Appendices C-D in the form of plots and analysis to provide detailed 

documentation of how conclusions were drawn. Appendix E offers a regional 

synthesis of the atmospheric response.  
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2 Model, Data and Methods 

2.1 Model Description 

This study employs the Community Atmosphere Model 3 (CAM3.0) 

(Collins et al. 2006a). This is one of the components of the Community Climate 

System Model 3.0 (CCSM3.0) (Collins et al. 2006b). The CCSM model is a 

widely used global climate model developed at the National Center for 

Atmospheric Research (NCAR) in collaboration with other national laboratories 

and university partners. Version 3.0 was released June 2004 and was used for the 

4th assessment report by the Intergovernmental Panel of Climate Change (IPCC) 

released 2007. The model consists of five individual components modeling the 

atmosphere (CAM3) (Collins et al. 2006a), ocean (POP) (Smith and Gent 2002), 

landsurface (CLM3) (Dickinson et al. 2006), and sea ice (CSIM5) (Briegleb et al. 

2004), which are held together by the flux coupler (CPL6) (Kauffman et al. 2002).  

When running CAM3 only the CAM and the Community Land Model 

(CLM) components are interactive. The Parallel Ocean Program (POP) and the 

Community Ice Model (CSIM) are replaced by data models where SST and SIC 

values are specified as boundary conditions. 

CAM is a global atmospheric general circulation model, with 26 vertical 

levels and is based upon the Eulerian spectral dynamical core with triangular 

truncation at 3l, 42, and 85 wave numbers, horizontal resolutions of 

approximately 3.75", 2.8", and 1.4", respectively (Collins et al. 2006b). The 

Community Land Model (CLM3) horizontal resolutions are similar to that of 

CAM3. 

The data ocean component of the CAM3 was modified to read in daily 

values of sea ice fraction and sea surface temperature. The standard model reads 

in monthly ice and SST then interpolates to obtain daily values. The modified 

code employed here reads new two-dimensional sea ice and temperature fields 
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each day of the model integration at 00 hrs, and these values are then used to 

force the model for the next 24 hours. Apart from the changed frequency of the 

input boundary conditions, the model treats and uses the fields in the same 

manner as the standard distribution of the code. 

Three simulations using the modified version of CAM were integrated to 

investigate the atmospheric response to climatological SIC, smoothed SIC, and 

daily varying SIC from observations.  

2.2 Observations 

Observational SST and sea ice concentrations were used to force the 

climate model. The sea ice concentration data set used in this study is derived 

from passive-microwave satellite sensors (Comiso et al. 2003). These 

measurements are the most consistent source of arctic sea ice data. The full data 

set is reconstructed from radiances collected from multiple satellite programs 

during several decades. The first satellite carrying a passive microwave scanner 

was the NASA Nimbus 5, which was launched in December 1972 carrying a 

single-channel Electrically Scanning Microwave Radiometer (ESMR). From 1978 

the SeaSat and the Nimbus 7 carried Scanning Multichannel Microwave 

Radiometer (SMMR). Starting 1987, the Defense Meteorological Satellite 

Program (DMSP) collected data using the special sensor microwave/imager 

(SSMI) (Comiso et al. 2003; Cavalieri et al. 1999). From 2002 the Advanced 

Microwave Scanning Radiometers AMSR-E and AMSR sensors collect the most 

accurate data to date (Comiso et al. 2003). Based on the radiances from these 

separate observational methods a long-term consistent ice concentration dataset 

was created using three algorithms: The enhanced NASA Team (NT2) algorithm 

(Markus and Cavalieri 2000), the Bootstrap Basic Algorithm (BBA), and the 

AMSR Bootstrap Algorithm (ABA) (Comiso et al. 2003). This study utilizes SIC 

data from 1982 to 2008.  
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All simulations were forced with the climatological annual cycle of sea 

ice for Antarctica provided by the Hadley Centre (HadISSL_1.1_ICE) and 

climatological SSTs. The sea surface temperature data set comes from the 

National Oceanic and Atmospheric Administration (NOAA) Extended 

Reconstructed Sea Surface Temperature V3b (Smith et al. 2008) 

(http://www.esrl.noaa.gov/psd/). This dataset is constructed using the 

International Comprehensive Ocean-Atmosphere Data Set (ICOADS) release 2.4 

SST data and improved statistical methods to construct a continuous data set from 

sparse data.  

 

 

 
 
2.2.1 Data Used as Boundary Conditions in CTRL, DAILY and SMTH 

Experiments 

For the 100-year control simulation (CTRL) CAM was forced with 

averaged SIC and SST (1982 – 2007) and the annual cycle of forcings was 

repeated for 105 years. The analysis used the last 100 years of the simulation 

initialized on July 1.   

The first experiment (DAILY) is forced with observed daily SIC in the 

Arctic for 17 months from July 2006 to November 2007. SST and southern 

Integration Sea Ice Boundary Conditions in the Arctic 

Control (CTRL) 
(105 years)  

Monthly mean ice conditions smoothed to daily 
values using averaged 1982-2007 ice 
concentrations.  

Daily06-07 (DAILY) 
(100 ensembles) 

Daily varying ice conditions over the period July 1, 
2006 to November 30, 2007. 

Monthly06-07 (SMTH) 
(100 ensembles) 

Smoothed daily ice conditions over the period July 
1, 2006 to November 30, 2007. 

Table 2.1 Model Simulations   
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hemisphere SIC are specified as climatological values. This experiment (DAILY) 

is comprised of 100 members, each initialized on July 1st from different years of 

the control simulation. 

A smooth version of the daily data for northern hemisphere is used to 

represent SIC in models (Figure 2.4). The initial forcing conditions use monthly 

averages smoothly interpolated to daily values using a cubic spline (OLD SMTH). 

This is the standard method used in GCMs (McCaa et al. 2004, Section 2.5.2). It 

turns out that for sea ice concentration the monthly means of daily and splined 

values may not match and can have large differences (Figure 2.1a). Modified 

forcing values were constructed based on an algorithm ensuring the monthly 

average in each grid point differed by less than ±0.5% (Figure 2.3). Using the new 

smoothed forcing the difference in atmospheric response between daily and 

smoothed is largely due to differences in sea ice forcing variability and not in 

difference in overall monthly average sea ice concentration. Running the model 

with the old forcing conditions (DAILY – OLD SMTH, Figure 2.2a), where 

monthly mean sea ice differs, results in a larger atmospheric response than in 

DAILY – SMTH (Figure 2.2b). 
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Figure 2.1 SIC Difference Between OLD SMTH and DAILY 
a) DAILY – OLD SMTH sea ice concentration averaged over Sep – Oct 2007.  
b) DAILY – CTRL averaged over Sep – Oct 2007 (Climatology is 1982 – 2008) 
(units: sea ice fraction). 

!

0˚ 0˚

a) DAILY - OLD SMTH b) DAILY - CTRL
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Figure 2.2 SLP Response Difference Between Old and New SMTH 
Ensemble average (50 ensembles) (Sep – Oct 2006) sea level pressure anomaly 
(hPa) for a) DAILY – OLD SMTH, b) DAILY – SMTH. Crosshatching 
represents significance at the 95% or greater level based on Student’s t-test. A 
larger response is seen using OLD SMTH.  
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The first step in creating the monthly smooth forcing was calculating a 

30-day running average of daily sea ice concentration. This means that each value 

is the average starting with 15 days before to 15 days after it. This creates a 

smooth forcing set but still does not ensure monthly averages within 0.5% of daily 

values.  

The second step applies the following algorithm to each grid point on a 

month basis: Find difference between monthly average daily values and monthly 

average of smooth values. This difference is multiplied by the number of days in 

the month and divided by a larger number so we can distribute the amounts added 

or subtracted unevenly to ensure that values added to the middle of the month are 

larger by a factor of 4 in order to minimize jumps between the months. If the new 

daily value for SMTH is higher than 1, then it is set to 1 and if it is below 0, then 

it is set to 0. Since the correction for below-zero and above-one occurred 

frequently the algorithm needed to be repeated several times for certain grid 

points. 

All of the days in a month (even the first and last day) must be altered in 

a few grid points to ensure all points differ less than ±0.5%. This can cause the 

data to be less smooth. Areas where all days in a month must be altered are highly 

non-smooth points and does not seem to affect the SMTH forcing.  

The SMTH experiment is forced with the smoothed version of the daily 

ice concentrations and follows the experimental design for DAILY: SST and 

southern hemisphere SIC were fixed to an annual cycle of climatological values. 

This experiment is an ensemble of 100 members, initiated using July 1 initial 

conditions from the control simulation. 
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Figure 2.4 shows several time series at a sample grid point of OLD 

SMTH, DAILY, running average and SMTH forcings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3 Difference in Mean SIC Between DAILY and SMTH 
DAILY – SMTH monthly mean SIC (Sep – Oct 2006). Figure shows 
regions that differ with between -0.5% and 0.5% in monthly means (units: 
sea ice % concentration).  

Mean SIC Anomaly (%)
Sep - Oct 2006, DAILY - SMTH 

180˚

-0.5  -0.4  -0.3  -0.2  -0.1  0.1  0.2   0.3  0.4  0.5   



 
 

 
 
 

 

38 
                     F

ig
ur

e 
2.

4 
Se

a 
Ic

e 
C

on
ce

nt
ra

tio
n 

C
om

pa
ri

so
n 

fo
r 

V
ar

io
us

 E
xp

er
im

en
ts

 
SI

C 
fo

rc
in

g 
ev

ol
ut

io
n 

of
 a

n 
ex

am
pl

e 
gr

id
 p

oi
nt

 (8
0.

5N
 a

nd
 3

0.
5E

). 
D

A
IL

Y
 (b

lu
e)

, 3
0-

da
y 

ru
nn

in
g 

av
er

ag
e 

(g
re

en
), 

SM
TH

 
(a

 3
0-

da
y 

ru
nn

in
g 

av
er

ag
e 

ad
ju

ste
d 

fo
r 

th
e 

m
on

th
ly

 m
ea

n 
to

 m
at

ch
 th

e 
m

on
th

ly
 m

ea
n 

of
 d

ai
ly

 v
al

ue
s)

 (
re

d)
, a

nd
 O

LD
 

SM
TH

 (c
re

at
ed

 u
sin

g 
cu

bi
c 

sp
lin

ed
 v

al
ue

s)
 (o

ra
ng

e)
 (u

ni
ts:

 se
a 

ic
e 

co
nc

en
tra

tio
n 

(fr
ac

tio
n)

). 
 

D
ai

ly
 E

vo
lu

tio
n 

of
 S

IC
 F

or
ci

ng
 a

t 
80

.5
˚N

 3
0.

5E

Sea ice concentration (fraction)



 
 

 
 
 

 

39 

The two experiments have a similar average SIC forcing in each grid 

point, but there are notable differences of SIC distribution.  

The December 2006 forcings for the two experiments display these 

differences when counting the SIC values occurring between each percent value: 

[0], <0,1],<1,2] ,…,<99,100] for every grid point that during the month contained 

positive SIC at least once. These differences are quantified in the December 2006 

distribution of sea ice concentration category count (Figure 2.5).  

There are more occurrences of the highest (99-100%) and lowest (0%) 

SIC values in the daily sea ice forcing since the other forcing is smoothed (see 

insets Figure 2.5). Note that the total number of counts over all percent intervals is 

not the same for the two experiments. This is caused by the way the smoothed 

forcing is created using values outside the particular month which can cause sea 

ice to occur in the smoothed forcing even when there are no occurrences of ice in 

the daily observed forcing. On any given day, roughly 80 more points contains 

sea ice in SMTH than in DAILY.  
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Figure 2.5 Distribution of Sea Ice Concentration in DAILY and SMTH 
December 2006 ice forcing displayed as number of grid cells containing SIC in 
the 100 percentage intervals four times daily. SIC = 0 is counted separately in 
the grid points that at least one time during the month contains sea ice. Insets 
display blown-up depiction of the low (left) and the high (right) ends of the 
scale. 
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2.3 Methods 

2.3.1 Number of Ensembles 

The significance of atmospheric response in the experiments is evaluated 

using Student’s t-test. The number of ensembles needed to achieve a robust 

significance is dependant on the ensemble average of the field as well as the 

standard deviation of a given variable. Simulations of variables with higher 

intrinsic variability require more ensemble members. Equation 2.1 is used to 

determine the number of ensembles required by the Student’s t-test for a 

significant shift in the mean to achieve a level of 95% significance (Alexander et 

al. 2004; Sardeshmukh et al. 2000). N is the minimum number of ensembles, x! is 

the response, and sigma is the standard deviation. 

 

  

 

The following standard deviations of SLP (Table 2.2) occur in the first 

50 ensembles of the control simulation for two latitude regions (30 – 70N and 70 

– 90N) during August 2007 and November 2007. 

 

Table 2.2 SLP Regional Standard Deviation 
Standard deviation of SLP (hPa) in two regions: 30-70°N and 70-90°N. 

 August 2007 November 2007 

30 – 70°N 2.2 4.2 

70 – 90°N 5.6 7.0 

 

 

 

 

(2.1) 
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The largest response in SLP occurring in DAILY – SMTH is about 2 

hPa. Equation 2.1 indicates that with a standard deviation of 6 hPa, 72 ensembles 

are required to reach 95% significance. Therefore 100 ensembles are used instead 

of the original 50.   

2.3.2 Storm Track Algorithm 

To analyze the atmospheric response to varied SIC forcing this study 

uses a storm track algorithm (Zhang et al. 2004) to analyze change in cyclones. 

The method is based on a previous algorithm (Serreze 1995) and has been 

modified by Zhang et al. (2004).  

The algorithm uses SLP to track storms. A storm is recorded and tracked 

if it follows a few criteria. 1) In a grid cell, the SLP is lower than in all the eight 

surrounding grid points. 2) The pressure gradient from the grid point to the eight 

surrounding points is at least 0.15 hPa per 100 km on average. 3) The gradient 

from the surrounding four closest grid points to all their surrounding grid points 

must point outwards. 4) If two possible cyclones are closer than 1200 km they are 

considered to be the same cyclone. 5) A low center has to persist for 12 hours 

(three time steps) or more to be counted. For the cyclone to be tracked, it cannot 

have moved more than 600 km during one time step (6 hour).  

This storm track code is designed to read in NCEP reanalysis data from 

binary files (Zhang et al. 2004). The code used in this study was altered to read in 

NetCDF files of SLP on a T85 CAM3 output grid.   
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2.3.3 Bandpassed Filtering 

Bandpassed filtering (2 to 10 days) is used as an additional diagnostic to 

investigate cyclone activity in the three simulations using six hourly data. 

Filtering is based on 30-day running averages (leaving out first half of July 06 and 

last half of November 07) and applying bandpassed filtering weights. Poleward 

heat (v’T’ at 850 hPa) and momentum (u’v’ at 200 hPa) transport were calculated 

and analyzed. High values indicates high storm activity in both these variables.  
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3 Results and Discussion 

In this section, the following question is answered: Is there a difference 

between the atmospheric response to daily as compared to smoothly varying sea 

ice concentration? If so, then how do the differences arise? To this end, sea ice 

forcing is first quantified, followed by the atmospheric response for two seasons, 

fall (September-October) and winter (November-February). The seasonal 

divisions were constructed based on similarities of sea ice forcing as well as 

atmospheric response. Finally, there is a discussion of regional storm track 

response and of the ensemble spread. 

3.1 Fall (September – October) Response  

During fall 2006, there were large negative sea ice anomalies in the 

Siberian sector of the Arctic. As the seasonal cooling proceeded, there were rapid 

expansions of sea ice concentration from near 0% to 100% in less than a week, 

which occurred primarily in the Laptev, Kara and East Siberian Seas. These rapid 

SIC changes lead to large differences between the DAILY and SMTH forcing, 

with more days with SIC values close to 100% in DAILY than SMTH. Figure 3.1 

displays the sea ice evolution in two sample grid points in the Arctic that are 

representative for surrounding areas. Rapid change and large differences between 

DAILY and SMTH are found in the Siberian sector but are not evident in the 

Atlantic sector of the Arctic (Figure 3.1). See Appendix B for additional details 

on the differences between sea ice conditions between DAILY and SMTH.  

More days with near 100% SIC in DAILY lead to reduced heat fluxes 

out of the ocean when compared to SMTH. Figure 3.2 displays net surface heat 

(sum of latent, sensible and longwave) flux anomaly out of the Arctic Ocean 

between the two experiments (DAILY – SMTH). DAILY has reduced ocean-to-

atmosphere fluxes over the Kara, Laptev, and East Siberian Sea when compared 
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to SMTH. These reduced fluxes are co-located over the area where there was 

rapid equatorward ice expansion in the Siberian seas.  The large flux anomalies 

(DAILY – SMTH) over ocean grid points are found in the far North Atlantic and 

the midlatitude Northern Hemispheric oceans. These non-arctic heat flux 

anomalies occur mainly due to circulation shifts and changes in cyclone activity 

between experiments, and will be confirmed by subsequent analysis.  

The DAILY-SMTH temperature response during fall displays significant 

cooling of more than 0.5K over the Kara, Laptev, and parts of the East Siberian 

seas in DAILY (Figure 3.3). This cooling is co-located with reduced fluxes out of 

the Arctic Ocean in DAILY compared to SMTH. The anomalously cool 

temperatures extend southward into Siberia and downstream eastward leading to 

reduced temperatures over Alaska. The DAILY-SMTH temperature anomalies do 

not compare favorably with the pattern of differences in monthly mean SIC 

between DAILY and SMTH (Figure 2.3), suggesting these small differences in 

monthly mean (less than 0.5% are not the cause of the different atmospheric 

temperature responses.  

The DAILY – SMTH SLP anomaly displays a significant high-pressure 

anomaly over Northern Europe with a central magnitude of roughly 1.5 hPa 

(Figure 3.4a) and a weaker (~1 hPa) low just west of Spain over the Atlantic 

Ocean. The 500 hPa DAILY – SMTH geopotential height anomaly displays 

significant positive values over Northern Europe with a central magnitude of 

about 12 m (Figure 3.4b) and a weaker (~8 m) low west of Spain. The 500 hPa 

geopotential height atmospheric response is colocated with the SLP anomaly 

indicating an equivalent barotropic structure in the atmospheric response. 

Theoretical work has shown that the anomalous equivalent barotropic structure is 

associated with an anomalous eddy circulation that leads  to changes in storm 

tracks (Peng and Whitaker 1999). The subsequent analysis primarily investigates 
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whether the anomalous SLP high over Northern Europe is associated with 

reduced cyclone activity.  

The DAILY – SMTH precipitation anomaly displays reduced 

precipitation (up to 0.4 mm day-1) over Northern Europe in DAILY and is 

consistent with fewer or weaker storms (Figure 3.5). A notable southward shift in 

precipitation occurs over the Pacific Northwest and is consistent with a 

strengthening of the Pacific jet (Figure 3.6a). Note: this feature does not attain 

95% or greater significance based on a t-test. Positive preciptiation anomalies of 

up to 0.2 mm day-1 are evident just west of Spain in Figure 3.5. The increased 

(reduced) precipitation anomalies are co-located and consistent with the negative 

(positive) SLP and 500 hPa height anomalies. Figure 3.6a displays 200 hPa 

average fall zonal wind (u) for SMTH with contours and anomalies of DAILY – 

SMTH with shading. A southward shift in the polar jet in DAILY is apparent in 

most parts of the jet and is consistent with the negative arctic surface air 

temperature anomalies (Figure 3.3). The anomalously cool Arctic leads to a 

stronger equator-to-pole temperature gradient shifting regions of strongest 

temperature gradient southward and hence the polar jet also equatorward. The 

increased temperature gradient in DAILY is consistent with a higher poleward 

heat transport. DAILY vT shows 2.6 K m s-1 higher heat transport than SMTH 

vertically averaged between 1000 – 500 hPa and zonally averaged at 70˚N. Over 

the North Atlantic, the 200 hPa jet streak is reduced and retracted (Figure 3.6a). 

Storms often form in the downwind poleward region of the jet streak and the 

reduced jet streak in the North Atlantic is unfavorable for storm development over 

Northern Europe.   

Storm activity in DAILY and SMTH is investigated through analyzing 

variability in poleward heat transport at 850 hPa on synoptic timescales of 2 – 10 

days. Figure 3.6b displays DAILY – SMTH bandpassed (2-10 days) 850 hPa  

v’T’  anomalies. The DAILY – SMTH v’T’ at 850 hPa displays significant 
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negative anomalies (up to 0.3 K m s-1) over Northern Europe and is consistent 

with reduced storm activity in DAILY. There are also weakly significant positive 

850 hPa bandpassed heat transport anomalies across northeastern North America 

that are consistent with a stronger 200 hPa jet (Figure 3.6a).  

Individual storms are tracked and counted based on six-hourly SLP 

method of Zhang et al. (2004) to further substantiate the storm track response to 

the different sea ice forcings. Figure 3.7 displays an ensemble average frequency 

distribution of storm count over the Northern European positive SLP anomaly 

(55-75N, 0-60E) for DAILY (blue) and SMTH (red). Storms are categorized 

based on their central pressure. The SMTH simulation has a larger storm count for 

central pressures of less than 995 hPa while DAILY has a larger storm count for 

central pressures of greater than 995 hPa.  The storm counts support the notion 

that there are fewer (4%) and weaker storms in DAILY than SMTH over 

Northern Europe. See Appendix C for additional plots (e.g. cloud amounts and 

individual heat fluxes) characterizing the atmospheric response during fall to 

DAILY versus SMTH sea ice forcing. 
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Figure 3.2 Net Upward Surface Heat Flux Anomaly 
Ensemble average (Sep – Oct) total upward surface heat flux anomaly (W m-2) 
DAILY-SMTH. Crosshatching signifies statistical significance at the 95% or 
greater level based on Student’s t-test. 

Net Upward Surface Heat Flux Anomaly (W m-2)
(Latent, Sensible, & Longwave)

DAILY - SMTH (Sep-Oct)

180˚
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Figure 3.3 Temperature Anomaly 
Ensemble average (Sep – Oct) temperature anomaly (K) DAILY-SMTH. 
Crosshatching signifies statistical significance at the 95% or greater level based 
on Student’s t-test. 
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Figure 3.5 Precipitation Anomaly 
Ensemble average (Sep – Oct 2006) total precipitation anomaly (mm day-1) 
DAILY-SMTH shown by shaded colors. Contours display climatological 
precipitation from the SMTH simulation. For significance see Figure C.10c. 
 

Precipitation Anomaly (mm day-1)
DAILY - SMTH (Sep-Oct)
Contours: Mean SMTH
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Figure 3.7 Storm Count 
Sep – Oct 2006 storm center pressure (hPa) and ensemble average number of 
storm centers in the Northern Europe region (55-75N, 0-60E).  
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3.2 Winter (November – February) Response  

Sea ice in various sectors of the Arctic Ocean evolves differently over 

the course of winter from November to February. The evolution of daily sea ice in 

the Atlantic and Pacific domains of the marginal ice zone are displayed in Figure 

3.8.  In the Pacific sector the sea ice rapidly expands equatorward during winter, 

which leads to large differences between DAILY and SMTH sea ice 

concentrations. This subsequently results in negative total heat flux anomalies in 

DAILY – SMTH (Figure D.6c). In the Atlantic sector the daily sea ice edge is 

quite dynamic and is characterized by a slower equatorward expansion as 

compared to the Pacific Sector (Figure B.3 and 3.8, left panel). See Appendix B 

for more details on sea ice evolution during winter.  

The DAILY – SMTH SLP anomaly displays a significant positive center 

over southern Alaska and western Canada (Figure 3.9a). This strong ridge that is 

characterized by an anomalous anticyclonic circulation leads to increased flow of 

cold arctic air into the western US (Figure 3.9b) and deepens the trough resulting 

in anomalously cool temperatures over the West Coast that extend eastward from 

the general westerly flow contributing to reduced surface air temperatures over 

the continental US in DAILY (Figure 3.10c). Comparing the surface air 

temperature anomalies for DAILY-CNTRL (Figure 3.10a) and SMTH-CTRL 

(Figure 3.10b) reveals generally similar patterns in the Arctic but an opposite 

temperature response over the continental US. It is noteworthy that these two 

different sea ice boundary conditions leads to strikingly different temperature 

anomalies over the continental US (Figure 3.10c). This is relevant in light of 

recent studies that suggest that reduced sea ice in the Arctic may be one possible 

explanation for recent cold and stormy east coast US winters (Overland et al. 

2010; Strey et al. 2010). See Appendix D for further information on the 

atmospheric response during winter. 
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3.3 Stormtrack Response in the Midlatitudes and the Arctic 

The relatively small sea ice forcing differences between DAILY and 

SMTH results in significantly different atmospheric responses in the Arctic as 

well as the midlatitudes. The response can most easily be summarized by 

counting the ensemble average annual cycle of storm counts in the Arctic and 

midlatitudes (domain definition in Figure 3.11) for both experiments (Figure 

3.12). From March –October DAILY displays higher storm counts than SMTH 

in the Arctic (Figure 3.12a) and in all months except June-July in the 

midlatitudes (Figure 3.12b). These storm count differences are relatively small 

average (1-2%) over the midlatitudes and the Arctic but can be up to 40% over 

particular regions. What this analysis shows is that apparently small differences 

in the nature of the sea ice forcing leads to shifts in the atmospheric general 

circulation from the Arctic to the midlatitudes. Note the general shape of the 

seasonal cycle of the model storm counts compares favorably with observations 

(Black NCEP line). NCEP displays a much higher storm count but is likely not 

that high due to the simple scaling used to compare the different model and 

NCEP grids.  
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Figure 3.11 Midlatitude and Arctic Region 
The Arctic (55-90N) and midlatitudes (30-55N) regions are defined for the storm 
count analysis.  
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3.4 Ensemble Analysis  

Most analysis of atmospheric response to DAILY and SMTH in this 

study uses ensemble averages. Due to high model atmospheric variability in the 

Arctic, here follows an evaluation of the ensembles.  
Figure 3.13 displays ensemble averages of fall SLP. Three sets of 30 

ensembles of a total of 90 ensembles from our 100-ensemble experiments are 

averaged. Large differences in atmospheric response occur between ensemble 

sets. Opposite features are evident in DAILY – SMTH anomalies between the 

three panels. 

Figure 3.14 displays SLP for each ensemble member DAILY – SMTH 

over a small spatial average (68-72N, 30-35E) near the center of the high-pressure 

anomaly over Northern Europe during fall. The figure reveals a large ensemble 

spread with ensemble members commonly deviating up to 10 hPa from the 

ensemble mean (~1.5 hPa).  

The large ensemble spread points out the importance of employing large 

ensembles when running climate models with focus on the Arctic regions. 
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Figure 3.14 Ensemble Spread 
Sea level pressure anomaly (hPa) DAILY – SMTH spatial average (68-72N, 30-
35E) for ensemble member 1 – 100 (Sep - Oct).  
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4 Summary and Conclusions 

The purpose of this study was to evaluate how well the day-to-day 

variability in arctic sea ice is captured in global climate models and to examine 

the atmospheric response to different temporal scales of sea ice variability. This 

study employs a global atmospheric circulation model – the NCAR Community 

Atmosphere Model (CAM3) – to investigate the atmospheric impact of forcing 

the model with observed daily (DAILY) sea ice concentration (SIC) and with 

smoothly varying forcing (SMTH - resembling current global atmospheric model 

forcings).  

This work documents that ice modeled by the Community Sea Ice Model 

(CSIM5) does not capture the variability in arctic sea ice in fully coupled 

CCSM3.0 20th century simulations. Annual variability as well as day-to-day 

variability is underestimated in the model by upwards of 50% over the central 

Arctic Ocean.  

This study examines the method of temporal interpolation of monthly 

data to create daily SIC values through cubic splines which is the method used by 

the majority of global climate models. This method leads to a difference in SIC 

between DAILY and SMTH and is not capable of preserving accurate monthly 

mean SIC. Differences in means are found up to over 4% in large areas. This has 

important consequences for how realistic fixed sea ice concentration GCM 

experiments should be conducted. 

The seasonal sea ice evolution has been examined and the largest 

differences between DAILY and SMTH occur in regions and seasons with rapid 

change in total SIC. Large differences between DAILY and SMTH sea ice is the 

case for the equatorward ice edge and especially in Kara, Laptev, East Siberian 

and Chukchi seas. In these regions, DAILY sea ice concentration typically 

expands from near 0% to near 100% in less than two weeks. The forcing in 
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SMTH is based on a 30-day running average and is incapable of representing such 

high variability leading to common occurring SIC differences of over 40% 

between DAILY and SMTH.  

Atmospheric parameters for two seasons, fall 2006 and winter 2006-07 

are extensively documented and seven regions with many statistically significant 

differences are investigated further in Appendix E. Fall was investigated due to 

the rapid change in SIC and the large anomalies during this season. Winter was 

chosen for analysis due to large sea ice extent and strong temperature gradients 

between the ocean and atmosphere resulting in relatively large fluxes from 

openings in the sea ice. Six of these large regional responses occur during fall and 

may originate from the differences in SIC evolution, surface fluxes and 

temperature over the Kara, Laptev and East Siberian seas. The most pronounced 

difference during fall is a remote response to sea ice that occurs over Northern 

Europe. In DAILY, a high-pressure anomaly of over 1.5 hPa occurs associated 

with a decrease and weakening of storm tracks, decrease in poleward heat 

transport, clouds, and precipitation. During winter the most pronounced feature is 

an anomalous high over Alaska in DAILY, leading to decreased westerlies from 

the Pacific Ocean and more arctic air advection from the north onto the West 

Coast of the US leading to a general cooling of the continental US.  

Several regions far from the sea ice, experience large differences 

between DAILY and SMTH due to a change in the general circulation and 

storminess. An increase in SLP is closely linked to reduced cyclone activity. 

DAILY sea ice forcing is capable of rapid change and quickly reaches high SIC 

values as sea ice extends equatorward. Rapidly extending sea ice in DAILY 

allows the insulating effect between ocean and atmosphere to prevail longer than 

in SMTH and reduces heat fluxes out of the ocean leading to a cooler Arctic in 

DAILY. A regional cooling is expected to lead to an increase in regional 

baroclinic stability, which is unfavorable for the development of extratropical 
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cyclones. An increase in regional baroclinic stability and hence a reduction in 

storms might explain the reduced SLP over Northern Europe during fall. 

However, more storms are seen in DAILY for all seasons in both the Arctic and 

the midlatitudes on average. This is likely due to the increase in poleward heat 

transport, a consequence of the general cooling of the Arctic in DAILY. More 

study is needed to completely understand the mechanistic link between the 

differences in SIC variability and the atmospheric anomalies seen in these 

experiments.  

As seen, regions with a rapid change in SIC are important to consider 

when estimating the biases arising from using smooth SIC forcing. It is important 

to point out that the most significant regions in this respect – the Kara, Laptev and 

East Siberian seas – only recently became ice free in the summer. If the sea ice 

continues to decrease during summer in the Arctic Ocean, using observed daily 

ice forcing likely becomes more important for accurate seasonal atmospheric 

predictions.  
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Appendix A  Analysis of SAT Ensemble Spread 

Figure A.1 displays the ensemble spread of average midlatitude and 

arctic SAT anomalies calculated as DAILY-CNTRL. There is a larger ensemble 

spread in the Arctic, which is consistent with the higher climate variability in the 

Arctic in observations as well as the model than in the midlatitudes. The ensemble 

average SAT anomaly for the Arctic is 0.2K while for the midlatitudes is -0.2K. 

The standard deviations between ensemble members anomaly for the Arctic is 

1.1K and for the midlatiudes is 0.6K. Note that for analysis purposes two 

Northern Hemisphere regions are defined as follows: midlatitudes span from 30N 

to 55N and Arctic from 55N to 90N.  

Figure A.2 displays the spatial ensemble average (Sep 06 – Feb 07) of 

SAT anomalies (DAILY-CTRL) (Figure A.2a), for 10 ensembles with lowest 

SAT in the midlatitudes (Figure A.2b), and the 10 ensembles with highest 

temperatures in the Arctic (Figure A.2c). The general spatial patterns do not 

change significantly in the Arctic when the ensembles are subsampled, however, 

they do for the far field responses in the lower latitudes. The cool continental US 

feature is evident in all subsamples.  

Figure A.3 displays the ensemble average SAT in DAILY and SMTH 

and indicate similar spatial patterns between DAILY and SMTH, except most 

notably over the continental US. The large spread between individual simulations 

highlights the need for a sufficient number of ensemble members.  
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Figure A.1 SAT Ensemble Distribution in Midlatitudes and 
Arctic 
SAT anomaly (K) December 2006 for all ensembles using daily SIC 
in model (DAILY - CTRL). Top: Arctic (55 – 90°N) and bottom: 
midlatitudes (30 – 55°N).   
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Figure A.3 SAT Anomalies DAILY and SMTH 
Sep 06 – Feb 07: a) ensemble average SAT anomaly DAILY-CTRL. b) SMTH-
CTRL. 

a) DAILY b) SMTH
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Appendix B  Differences Between Experiment Forcings 

The differences in the sea ice are largest in the low and high percentiles 

(Figure 2.5). Sensible and latent heat fluxes in the two experiments are 

investigated when sea ice is between 0 and 10 percent and also between 94 and 

100 percent (Figure B.1). 

The different flux bins show that SMTH has larger outgoing sensible and 

latent heat fluxes in the high SIC percentiles. SMTH is created based on a running 

average causing the SIC to often not reach 100% and therefore leads to relatively 

large differences in fluxes compared to DAILY. SAT and moisture can differ 

greatly over an almost completely ice covered ocean in SMTH versus a 

completely ice covered ocean in DAILY (Figure B.1).  

 

 

 

 

 

 

 

 

Figure B.1 Fluxes in High and Low SIC Areas in DAILY and SMTH 
December (one ensemble member) percent of grid points north of 70N with ice 
that contain SIC from 94-100 % (dark color) and 0-10% (light color) for DAILY 
(blue) and SMTH (red/yellow) and the latent (left) and sensible (right) heat out 
of the sea/ice surface. 
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Figure B.2 shows that SIC tend to vary more at the edges than the central 

ice. This is calculated using Equation 1.1. There is a large amount of variability in 

both the Pacific and the Atlantic sectors along the ice edge.  

Figure B.3 displays higher than 1% average SIC during September and 

February. The figure indicates that the movement of the equatorward ice edge 

from September to February is greater in the Pacific than the Atlantic sectors 

implying a difference in nature of variability between sectors of the ice. This 

feature of the seasonal cycles is consistent with differences noted between 

DAILY and SMTH responses. 

Since SMTH forcing is based on a thirty day running average it is 

expected that the two forcings will differ the most in regions with most abrupt 

changes where SMTH cannot keep up with the daily change.  
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Figure B.2 Day-to-day Change in SIC DAILY – SMTH 
Root mean square of day-to-day change in sea ice concentration anomaly 
(DAILY – SMTH) for a) July-August 2006 and b) December 2006 – February 
2007. 
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B.1 Forcing Impacts on Fluxes in the Arctic During Fall 

Further analyzis of sea ice evolution in several regions finds the largest 

SIC forcing difference between SMTH and DAILY occurs where SIC in DAILY 

changes rapidly (Figure B.4). Rapid change in SIC occurs mostly around the sea 

ice equatorward ice edge. This is where the largest expected flux differences 

between SMTH and DAILY are (Figure B.7). Differences are also larger in 

seasons with significant change in total ice concentration.  The magnitude of the 

difference between DAILY and SMTH forcing is also dependent on the region. 

Several locations have been investigated and the ice along the Siberian coast 

(Kara, Laptev and East Siberian seas) is found to have more abrupt changes in ice 

concentration during fall 2006 (Figure B.5).  

 

 

 

 

 

 

 

 

 

Figure B.3 1%SIC Edge in Sep 06 and Feb 07 
The 1% average sea ice concentration September 2006 (red) and February 
2007 (blue). Ice extends equatorward faster in the Pacific sector than in the 
northeast Atlantic. 
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The equatorward ice edge in the Atlantic sector evolves slower and also 

seems to retract at times during fall (Figure B.5). The slow movement makes 

SMTH able to follow closer to DAILY leading to a smaller difference between 

the two experimental forcings.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure B.4 Length of Time for Rapid Change in SIC 
Evolution of SIC from less than 10% to greater than 90% during September 
2006 and February 2007. DAILY (left) and SMTH (right).  

Figure: Shows where SIC DAILY (left) and SMTH goes from <10% to >90% in 4, 3, 2  or 1 week 
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The analysis has this far focused on differences in daily ice evolution 

between DAILY and SMTH. Figure B.6 shows that SMTH captures the average 

ice variation in the high Arctic.  

 

Figure B.5 Fall SIC Edge Evolution  
September, October average SIC (%) DAILY (Middle). Time series plots of 
DAILY (blue) and SMTH (red) show SIC changing from September 1st to 
October 31st in specific locations.  Rapidly changing SIC is seen in the Siberian 
sector leading ice forcings to differ substantially. 
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Near the sea ice edge where rapid changes in sea ice concentration occur 

(Figure B.7) the evolution of the SMTH ice forcing impacts the fluxes out of the 

ocean. Differences of over 30% occur between DAILY and SMTH but more 

importantly (since the averages are the same), DAILY will reach higher ice 

concentrations (upper nineties in percent) faster. This leads to a higher total 

insulating effect of the ice and subsequently lower sensible heat fluxes out of the 

ocean in DAILY than in SMTH (Figure B.7).  

Over the central Arctic there are regions of both weak positive and 

negative flux anomalies in DAILY compared to SMTH occur (Figure B.8).  Four 

points has been investigated where the two top graphs show ice evolution in 

regions with negative flux anomalies and the two bottom graphs show ice 

evolution in regions with positive flux anomalies.  

It appears that the fluxes are largely dependant on two factors: The 

amount of time where the ice has 100% ice and how many and large openings 

occurring in the DAILY ice. In the two top plots (Figure B.8) 100% ice is 

partially maintained in DAILY with small openings in the ice. SMTH will usually 

have less than 100% ice and have in these cases higher fluxes out of the ocean. In 

the bottom plots (Figure B.8) larger openings occur with less 100% ice favoring 

larger fluxes out of the ocean in DAILY than SMTH.  
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Figure B.7 Fall SIC Edge Evolution and Sensible Heat Flux Anomaly 
September, October ensemble average sensible heat flux (W m-2) DAILY – 
SMTH (middle). Time series plots of DAILY (blue) and SMTH (red) show SIC 
changing from September 1st to October 31st in specific locations.  
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B.2 Forcing Impacts on Fluxes in the Arctic During Winter 

Analyzing six points in the outer edge of the sea ice during winter does 

not reveal as pronounced differences between the Atlantic and Pacific sectors as 

for fall. The Pacific sector is where the most rapid changes in sea ice 

concentration occur and this shows an impact on the way daily ice is not well 

represented in SMTH (Figure B.9). In winter more than fall, ice evolution is 

slower and consists of both retraction and extension of equatorward ice edge 

during one season (see Beaufort and Barents seas in Figure B.9). This has an 

implication on the accuracy of ice representation in SMTH. Slower ice evolution 

is favorable for a good representation of SMTH.  

During winter, the central arctic sea ice appears to have higher variability 

than during fall. SMTH is representing well the envelope of daily ice variability 

during winter (Figure B.10). The equatorward ice edge displays both higher and 

lower fluxes in DAILY compared to SMTH so does not have as consistent 

response compared to fall (Figure B.11). Also, the ice edge is farther south and is 

more interactive with wind stress passing over these areas. In winter, the regions 

have to be studied more closely to understand the differences. North in the 

Barents Sea frequent extension and retraction of sea ice occurs in DAILY causing 

more sensible heat to escape and leading to large positive anomalies in the region 

(DAILY – SMTH). In Baffin Bay there are weak negative anomalies of sensible 

heat flux. Negative anomalies usually occurs when ice concentrations are close to 

100% since SMTH usually doesn’t reach the 100% level and more heat will 

escape with this ice forcing. In the Chukchi Sea, the same scenario occurs as 

during fall in the Pacific region where SIC in SMTH cannot keep up with SIC in 

DAILY causing more heat loss from SMTH. In the Bering Sea, sea ice forms late 

and disappears quickly. This rapid increase and following decrease of sea ice is 
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not represented well in SMTH and causes more heat loss in SMTH than DAILY 

(Figure B.11).  

 

 

 

 

Figure B.9 Winter SIC Edge Evolution 
November – February average SIC (%) DAILY (Middle). Time series plots of 
DAILY (blue) and SMTH (red) show SIC changing from September 1st to 
October 31st in specific locations. 
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In Figure B.12 the two plots on the bottom show ice evolution in grid 

points with negative sensible heat flux anomaly and the two on top are of positive 

sensible heat flux anomaly (DAILY – SMTH). The main cause of differences 

between fluxes over the central Arctic between DAILY and SMTH is unclear 

during winter.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure B.11 Winter SIC Central Evolution and Sensible Heat Flux 
Anomaly 
November – February ensemble average sensible heat flux anomaly (W m-2) 
DAILY – SMTH (Middle). Time series plots of DAILY (blue) and SMTH 
(red) show SIC changing from September 1st to October 31st in specific 
locations.  
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Appendix C  Difference Between DAILY and SMTH Atmospheric 

Response During Fall 

This section documents the atmospheric response to the two 

experiments. Notable differences are found between DAILY and SMTH. We 

present the analysis for two seasons, fall (Sep - Oct 2006) and winter (Nov – Feb 

2006-07). These seasonal averages were chosen based on the similarity of the SIC 

forcing and atmospheric response.  

While the primary focus of this study is on the difference, DAILY – 

SMTH, the atmospheric response to 2006-07 is included for interest since 2006 

was an anomalously low sea ice year (see Figure C.1 and Figure D.1 displaying 

forcing SIC during fall and winter). The first two plots of the selected atmospheric 

variables (a - DAILY – CTRL and b - SMTH – CTRL) describe atmospheric 

conditions as a result of the 2006-07 ice conditions. The third plot (c - DAILY – 

SMTH) documents conditions as a result of DAILY forcing conditions.  

Features present in both DAILY–CTRL and SMTH–CTRL experiments 

(panel a and b) are described with regard to the two left panels, and differences 

refer to DAILY–SMTH (panel c). The discussion focuses on anomalies that reach 

significance at the 95% or greater level based on Student’s t-test.    

Figure C.1 displays the sea ice forcing conditions used in the 

experiments. The climatological (1982-2008 average) fall SIC (CTRL) (Figure 

C.1b) extends farther southward all around the Arctic compared to DAILY 

(Figure C.1a). The 2006-07 fall anomaly (Figure C.1c) displays negative 

anomalies at the ice edge and positive anomalies poleward of the ice edge. 
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C.1 Surface Heat Fluxes 

Sensible heat flux anomalies (DAILY-CTRL and SMTH-CTRL) are 

positive (from ocean to atmosphere) over a narrow region on the equatorward side 

of the ice edge during 2006 (Figure C.2a and b). The central basin as well as the 

ocean in the high latitude Pacific and Atlantic sectors has lower heat flux out of 

the ocean during 2006 than CTRL. In the East Siberian, Laptev and Kara seas, 

DAILY displays a lower flux out of the ocean than SMTH (Figure C.2c).  Positive 

heat flux anomalies in the northeastern Europe, Gulf of Alaska and in the North 

Atlantic indicate more heat flux from the ocean to the atmosphere in DAILY than 

SMTH in these regions.    

Latent heat flux anomaly patterns (Figure C.3a and b) compare favorably 

with sensible heat flux and also display positive anomalies south of the 

equatorward 2006 ice edge. There is also reduced latent heat loss in the central 

basin. Figure C.3c indicates lower fluxes out of the East Siberian, Laptev and 

Kara seas in DAILY and that the largest differences between DAILY and SMTH 

are in the midlatitude North Atlantic and North Pacific.  

Fall longwave radiation anomalies are consistent with latent and sensible 

heat with increased longwave loss from the Arctic Ocean in areas of negative sea 

ice anomalies (Figure C.4a and b). Figure C.4c (DAILY – SMTH) displays a 

small positive anomaly of longwave radiation along the Northern Eurasian coast, 

in the Bering Sea and in the central North Atlantic Ocean.  
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Positive net downward shortwave radiation anomalies occur for the two 

experiments (DAILY and SMTH) over the Laptev, East Siberian, Chukchi and 

Beaufort seas (Figure C.5a and b). Positive anomalies at the ice edge are due to a 

decrease in reflected shortwave radiation, a consequence of the replacing high 

albedo sea ice by lower albedo ocean. Positive anomalies are also seen in the 

western part of North Pacific. There is more shortwave into the surface over 

Finland, North West Russia, and western and eastern North Pacific in DAILY 

(Figure C.5c) than SMTH.  

Large positive anomalies in total fluxes (sensible heat, latent heat, and 

longwave radiation) are seen out of the Arctic Ocean over the region of below 

average 2006 sea ice and large negative anomalies over the central Arctic (Figure 

C.6a and b). Negative anomalies are present over Chukotka and southwest of 

Hudson Bay. There are small negative heat flux anomalies in DAILY-SMTH in 

the Arctic Ocean over reduced sea ice areas, but the largest differences are seen 

over the midlatitude North Pacific and North Atlantic (Figure C.6c). 

C.2 Atmospheric Response  

When sea ice is reduced, positive temperature anomalies occur over the 

Canadian Archipelago and around most of the central Arctic Basin in the two 

experiments (Figure C.7a and b). There are negative temperature anomalies along 

the North Atlantic sector of the Arctic (Figure C.7a and b). Between the two 

experiments (Figure C.7c), less warming occur over the Kara, Laptev and East 

Siberian seas as well as over parts of Siberia, Alaska and North West Canada in 

DAILY than SMTH. The high latitude Atlantic Sector is slightly warmer in 

DAILY than SMTH. 

Sea level pressure varies greatly between the two experiments (close to 2 

hPa) and only a few features are statistically significant.  A negative pressure 

anomaly over the Mediterranean Sea (Figure C.8a and b) is the only large-scale 
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feature found in both experiments. A large center of positive pressure anomalies 

over Northwest Europe in DAILY-SMTH is the most striking difference between 

the experiments (Figure C.8c).  In addition, there is a center of negative SLP 

anomalies over eastern North Atlantic (Figure C.8c). 

The 500 hPa Geopotential height anomalies vary considerably for the 

response to 2006 ice conditions and is consistent with the SLP response (Figure 

C.9a and b). There is a large positive height anomaly over Northwest Europe in 

DAILY-SMTH (Figure C.9c) that overlies the positive SLP anomaly, suggesting 

the differences in the response is equivalent barotropic.  

The two experiments show positive precipitation anomalies in the East 

Siberian and Beaufort seas, Hudson Bay, and the Mediterranean Sea (Figure 

C.10a and b). Differences between the experiments (DAILY-SMTH) shows lower 

precipitation over Northwest Europe and eastern North Pacific (Figure C.10c). 

Higher precipitation occurs in DAILY-SMTH over eastern North Atlantic, the 

Black Sea Region and British Columbia. The two ice forcings for 2006 display 

notably different preceiptiation anomalies, suggesting that the exact nature of the 

ice forcing has an impact on the large-scale climate.  

The two experiments display reduced low-level cloud amounts over the 

reduced ice areas along Greenland, across the North Atlantic and along the 

Eurasian arctic seas. Positive low-level cloud anomalies are seen in Chukotka and 

over the Canadian Archipelago (Figure C.11a and b). The two experiments differ 

(DAILY-SMTH) mainly in the Eurasian Arctic with a negative anomalies over 

the Laptev and Kara seas and Northern Europe in DAILY – SMTH (Figure 

C.11c). There are positive low-level cloud anomalies in Figure C.11c over 

western Eurasia at around 50N. 
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The mid-level cloud response is negligible over the Arctic Ocean and 

generally weak in the midlatitudes (Figure C.12a and b). Similar to the low-level 

cloud response, mid-level clouds differ most over Northern Europe where 

DAILY-SMTH displays negative anomalies (Figure C.12c). 

The high-level cloud response is generally weak for the entire domain. 

The largest anomalies in DAILY-SMTH show decreased cloud amounts over 

Northern Europe and increased cloud amounts over Spain (Figure C.13c). 

Positive specific humidity anomalies occur over the Canadian 

Archipelago and the Beaufort, East Siberian, and Laptev seas, and the central 

North Atlantic. Negative anomalies occur over the Northern Atlantic (Figure 

C.14a and b). In DAILY-SMTH there is less moisture over the Kara, and Laptev 

seas, Alaska and Northwest Territories and the central North Atlantic and more 

moisture over the Norwegian and Greenland seas (Figure C.14c). The anomaly 

patterns of low-level humidity corresponds to the 2-m temperature anomalies 

(Figure C.7). 
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C.3 Storm Track Response   

Poleward heat transport represented by 2-10 days bandpassed v’T’ at 850 

hPa displays a positive anomaly off the coast of Labrador and negative over 

Alaska (Figure C.15a and b). The bandpassed v’T’ at 850 hPa for DAILY-SMTH 

displays higher heat transport over Eastern Canada and lower over Northern 

Europe (Figure C.15c). Higher variability in poleward heat transport indicates 

higher storm activity (Section 2.3.3).  

Poleward momentum transport, represented by 2-10 days bandpassed 

u’v’ at 200 hPa, does not display many similar anomalies between the 

experiments (Figure C.16a and b). However, DAILY-SMTH displays lower 

bandpassed u’v’ at 200 hPa over the Mediterranean Sea and higher in the Kara 

Sea (Figure C.16c). Higher values of poleward heat transport indicates higher 

storm activity (Section 2.3.3). 

Storm track density is a generally noisy field and DAILY and SMTH 

display similar features as a response to 2006 sea ice anomalies (Figure C.17a and 

b). However, DAILY-SMTH (Figure C.17c) does indicate more storms in the 

Gulf of Alaska, off the coast of Japan and over the Mediterranean Sea. 

Figure C.18 displays the mean 200 hPa zonal wind from SMTH in 

contours and anomalies (DAILY-SMTH) in shading. The figure indicates a 

weakening and retraction of the polar jet streak over the northern North Atlantic. 

A strengthening further south indicates a southward shift of the jet. A southward 

shift in the polar jet is the case for most longitudinal sectors.  
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Figure C.18 Fall Zonal Wind 
Ensemble average (m s-1) Sep - Oct zonal wind speed 200 hPa. Shading 
indicates anomaly DAILY-SMTH and contours denotes SMTH climatological 
zonal wind. 
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Appendix D  Difference Between DAILY and SMTH Atmospheric Response 

During Winter 

Interpretation of 2006-07 winter season follows the same layout as for 

fall in Appendix C. The climatological winter SIC (CTRL) (Figure D.1b) is 

between 96 and 98% in most of the central Arctic Basin. Lower concentrations 

extend out to the southern part of the Barents Sea, Newfoundland, northern 

Bearing Sea and the Sea of Okhotsk. SIC in DAILY (Figure D.1a) resembles 

CTRL but does not extend as far equatorward in the Atlantic and Pacific sector as 

well as SIC being higher (over 99%) in most of the central Arctic basin. The 

2006-07 winter anomaly (Figure D.1c) is therefore positive in the central Arctic 

but negative along the equatorward ice edge. 

D.1 Surface Flux Response 

Figure D.2a and b indicate higher sensible heat fluxes south of the 2006 

equatorward sea ice edge and over the central North Pacific. In contrast, the 

central basin and the high latitude Atlantic Ocean display below average fluxes. 

DAILY-SMTH displays lower heat fluxes out of the ocean around the Aleutian 

Islands and higher fluxes off the west coast of the US (Figure D.2c). 

The latent heat flux response to 2006 sea ice resembles that of sensible 

heat, with positive flux anomalies south of the 2006 ice edge and in the central 

North Pacific. Negative anomalies occur in the central Arctic basin and in the 

Barents Sea (Figure D.3a and b). DAILY-SMTH displays negative flux anomalies 

in the Gulf of Alaska and positive along the West Coast of the US (Figure D.3c). 

Larger longwave fluxes out of the ocean are present in the Barents Sea, 

Baffin and Hudson Bay, Davis Strait, and around and south of the Aleutian 

Islands in response to 2006 ice anomalies. Lower fluxes occur in the central 

Arctic basin and Northern Europe (Figure D.4a and b). DAILY-SMTH reveals 
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small differences, with positive anomalies along the West Coast of the US and 

negative anomalies in the northern Midwest US. There are also positive flux 

anomalies in the Laptev, Chukchi and Beaufort seas (Figure D.4c). 

Shortwave radiation differences between DAILY and SMTH are 

relatively small in the Arctic since this shortwave radiation is not an important 

component of the surface energy budget in the winter months (Figure D.5c). 

Total upward heat flux anomalies are positive south of the equatorward 

2006 ice edge as well as in the central North Pacific and are negative in the 

central Arctic basin as well as off the coast of Norway (Figure D.6a and b). 

DAILY-SMTH displays positive anomalies along the West Coast of the US. 

D.2 Atmospheric Response  

The 2-m temperature response to winter 2006 ice anomalies is 

characterized by below average temperature over the central Arctic Ocean and 

anomalously warm temperatures above large parts of Northern Europe, Barents 

Sea, Chukchi Sea, Shelekhov Gulf, Hudson Bay, Davis Strait, and Labrador Sea 

(Figure D.7a and b). DAILY-SMTH displays large significant positive anomalies 

over Beringia and negative anomalies over the continental US (Figure D.7c). The 

most striking difference in Figure D.7 is the opposite temperature response over 

the continental US. 
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Few generalizations can be made between 2006 sea ice and climatology 

with respect to SLP, but there is lower pressure in the Labrador Sea in both 

experiments (Figure D.8a and b). DAILY-SMTH displays a center of high 

pressure stretching inland from the Gulf of Alaska to parts of the Northwest 

Territories in DAILY (Figure D.8c). The overall patterns in Figure D.8a and b are 

similar but the slight shifts in the pattern centers and strengths leads to a fairly 

large-scale difference seen in Figure D.8c.  

A center of high 500 hPa geopotential height is found over Ukraine and 

Kazakhstan in response to 2006-07 ice anomalies (Figure D.9a and b). DAILY-

SMTH displays a positive height anomaly (Figure D.9c) co-located with the SLP 

high (Figure D.8c) DAILY – SMTH.  There is also an anomalous low center over 

the continental US in geopotential height which does not have a counterpart in in 

the SLP response (Figure D.9c). 

There is reduced precipitation over the Arctic Ocean and increased 

precipitation over the Barents Sea and eastern North Pacific (Figure D.10a and b) 

in the response to winter 2006-07 ice anomalies. The precipitation anomaly 

response in the North Pacific to both ice forcings in winter (Figure D.10a and b) 

can be interpreted as a southward shift in the storm tracks, with the shift 

somewhat stronger in the SMTH ensemble. There is a larger reduction in 

precipitation in SMTH than DAILY over the southern US, resulting in significant 

positive anomalies (Figure D.10c). 
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Almost the entire winter ice covered region and surrounding oceans have 

less low cloud amounts as a response to 2006-07 sea ice. Positive low cloud 

anomalies occur over Northern Europe and the Middle East (Figure D.11a and b). 

DAILY-SMTH cloud response is relatively weak but higher cloud amounts are 

found over the central Arctic basin and the northern US (Figure D.11c). Negative 

low-cloud anomalies are found over Chukchi Sea, Davis Strait, and Hudson Bay 

and off the coast of California in DAILY-SMTH.   

More mid-level clouds are seen in response to 2006-07 ice in the Barents 

and Labrador seas and also in regions of the eastern North Pacific (Figure D.12a 

and b). DAILY-SMTH displays a weak response in mid-level clouds with a slight 

decrease located over South East Alaska (Figure D.12c).  

Positive high-cloud anomalies are found over the Mediterranean Sea and 

negative anomalies south of the Aleutian Islands in response to 2006-07 winter 

ice conditions (Figure D.13a and b).  In DAILY-SMTH there are more high 

clouds located over eastern US (Figure D.13c).  

There are negative 1000 hPa specific humidity anomalies over the 

central Arctic basin and the central North Pacific and positive anomalies over 

Northern Europe in response to winter 2006-07 sea ice conditions (Figure D.14a 

and b). DAILY-SMTH displays a large significant area of negative humidity over 

large parts of continental US and off the West Coast of the US in DAILY (Figure 

D.14 c). 
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D.3 Storm Track Response 

The 2 – 10 days bandpassed 850 hPa v’T’ displays a southward shift, 

though of different magnitudes, in response to 2006-07 winter sea ice in the two 

experiments (Figure D.15a and b). DAILY-SMTH indicates that SMTH has a 

stronger southward storm track shift in the North Pacific while DAILY displays a 

general weakening of the midlatitude storm tracks (Figure D.15c). 

The 2 – 10 days bandpassed 200 hPa u’v’ momentum transport anomaly 

in response to 2006-07 ice is negative over North America and Western Europe 

(Figure D.16a and b).  The decrease across North America is stronger in DAILY 

than SMTH causing negative anomaly over North America in DAILY – SMTH 

(Figure D.16c). 

Individual storm track fields are noisy and can be difficult to interpret. 

DAILY-SMTH displays positive storm density in the eastern North Pacific 

consistent with a southward shifted North Pacific storm track (Figure D.17c). 

Figure D.18 displays DAILY-SMTH 200 hPa zonal wind anomalies with 

shading and mean SMTH with contours. The main feature is a stronger polar jet 

streak over North America in DAILY than SMTH. 
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Figure D.18 Winter Zonal Wind  
Ensemble average (Nov – Feb)  zonal wind speed at 200 hPa (m s-1). Shading 
indicates anomaly DAILY-SMTH and contours denotes SMTH 
climatological zonal wind. 
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Appendix E  Synthesis of Atmospheric Response by Region 

Several fields display statistically significant differences in the Northern 

Hemisphere atmospheric response to a daily varying (DAILY) and smoothed 

(SMTH) sea ice forcing. This section aims to summarize and discuss regional 

model response by synthesizing the results and putting them in the large-scale 

climate context. Figure E.1 highlights regions identified to consistently have a 

significant atmospheric response in multiple fields.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure E.1 Regions of Focus  
Regions with notable differences between DAILY and SMTH during fall 
and/or winter with significance at the 95% org greater level based on 
Student’s t-test. Regions include Northern Europe (NE), East Siberian, 
Laptev and Kara seas (ESLK), Black Sea and Caspian Sea (BCS), 
Continental US (CONUS), northeast Pacific (NEP), northeast Atlantic 
(NEA), and west coast US (WCUS).  
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E.1 Northern Europe Region (Fall) 

A region with large differences between DAILY and SMTH during fall 

(Sep – Oct 2006) is Northern Europe (NE) 0 – 60E and 55 – 75N (Figure E.1).  

Finland and northern Russia have about 1-2 W m-2 higher sensible heat 

fluxes out of the surface and the western part of Barents Sea has between 3-4 W 

m-2 less latent heat flux loss. Finland has between 2-3 W m-2 increased long wave 

radiation out of the surface. The northern Russia part of NE and Finland receives 

between 1-4 W m-2 higher incoming solar radiation at the surface. Combining 

total heat fluxes (latent, sensible, and longwave) out of the surface yield between 

1-4 W m-2 increased fluxes out of the surface over Finland and northern Russia 

and between 4-12 W m-2 decreased fluxes over western Barents Sea.  

     Two-meter air temperature is similar between DAILY and SMTH, 

but there are regions with 0.1 to 0.3K higher temperatures in the Norwegian Sea. 

SLP is generally higher over NE region with a maximum of 1.5 hPa and 500 hPa 

geopotential height is co-located and has central max of roughly 16 m. 

Precipitation is lower in most of the NE Region with differences up to over -0.25 

mm day-1. Cloud cover at low, medium, and high levels are all lower by up to 4% 

over large parts of Scandinavia and the northern Russia. 

Relative humidity is not much different over land between DAILY and 

SMTH, but differences between 0.1 and 0.15 g kg-1 occur in the Norwegian Sea. 

Bandpassed 850 hPa v’T’ displays negative anomalies in most of the Russian part 

of NE with up to over 0.3 K m s-1 and also in the North Sea. 

In sum, this response suggests that a difference in sea ice variability can 

impact the atmospheric response. Sea ice extends into the East Siberian, Laptev 

and Kara seas during fall. The daily sea ice (DAILY) the ice edge progresses 

rapidly equatorward and grid points in this region can experience a shift from zero 

to hundred percent SIC in as little as a week. With smoothed sea ice based on a 
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thirty day running average (SMTH) the same process might take as much as a 

month. During fall ice in East Siberian, Laptev and Kara seas will therefore close 

up with sea ice faster in DAILY leading to lower fluxes out of the warmer ocean 

water (Figure C.6c) thus providing less energy to the atmosphere. This causes 

circulation patterns to change and through large-scale dynamical changes impacts 

the Northern Hemisphere.  

Storm track characteristics have been analyzed using several measures.  

2 – 10 days bandpassed 850 hPa v’T’, a measure of poleward heat transport 

(Figure C.15), is reduced over much of the NE region indicating reduced cyclone 

activity. 2 – 10 days bandpassed 200 hPa v’T’, a measure of poleward momentum 

transport (Figure C.16), shows fewer differences in the NE region but indicates 

reduced momentum transport into the region from the south. Due to the noisiness 

of the storm track algorithm, the anomalies do not attain much significance, 

however this field also indicates fewer (Figure C.17) and also weaker storms in 

NE. Figure E.2 confirms that DAILY has fewer (4%) and weaker storms (more 

storms with higher SLP and fewer with low SLP) compared to SMTH. The 

anomalies form a consistent picture. There is likely reduced storm activity in NE, 

which result in higher pressure (Figure C.8) and higher geopotential height 

(Figure C.9). Fewer storms also result in reduced convection, cloud cover (Figure 

C.11 – C.13) and precipitation (Figure C.10). With decreased cloud cover, solar 

radiation received at the surface increases (Figure C.5), warming the surface and 

net long wave radiation to space increases (Figure C.4) as a result of warmer 

surface. Reduced storminess in the Norwegian Sea leads to less atmosphere – 

ocean interaction limiting sensible and latent heat flux (Figure C.2 – C.3) into the 

atmosphere. 
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Figure E.2 Storm Count NE Region 
Storm center sea level pressure (hPa) and number of storm centers in the NE 
region (Sep – Oct 2006).  

 
E.2 West Coast US (Fall) 

The west coast of the continental US (WCUS) 120 – 135W and 30 – 50N 

(Figure E.1) experiences significant differences in DAILY – SMTH during fall 

(Sep – Oct 2006).  

Sensible heat fluxes are similar between DAILY and SMTH (Figure 

C.2). Latent heat fluxes over ocean are more positive in DAILY in large parts of 

this region with maximum anomalies of over 3 W m-2 occurring off the coast of 

northern California (Figure C.3). Net longwave radiation out of the ocean off the 

coast of Southern California is higher in DAILY than SMTH with a maximum 

value of 3 W m-2 (Figure C.4). Similarly net solar radiation into the lower 

atmosphere is higher in DAILY in this area with a maximum over 5 W m-2 

(Figure C.5).   The total flux anomaly out of the ocean off the coast of California 

is therefore mostly positive and between 1-2 W m-2 (Figure C.6). Only a slight 2-
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m air temperature increase is found in the location of the flux anomalies (Figure 

C.7).  

Sea level pressure remains mostly unchanged on the coast, but further off 

the coast (upwind) there is a high pressure anomaly between 0.2-0.5 hPa DAILY 

– SMTH (Figure C.8).  This pressure feature does not have a counterpart in 500 

hPa geopotential height (Figure C.9).  Precipitation changes are small, though 

there is a slight decrease in low clouds (Figure C.11). Specific Humidity is 

reduced off the coast of northern California with more than 0.15 g kg-1 in DAILY 

(Figure C.14).  

Little change can be seen in change in storm track characteristics on the 

West Coast of the US.  Little or no change occurs in the bandpassed poleward 

heat transport and only small changes are present in bandpassed poleward 

momentum transport off the coast of northern Baja California where DAILY has 

between 0.5 and 1 m2 s-2 lower values than SMTH (Figure C.16). The storm track 

algorithm used reveals a decrease in storms on the Pacific North West (PNW - 

Washington and Oregon) coast, but an increase of storms over southern California 

(Figure C.17). 

Circulation anomalies may provide the best explanation for the 

differences between DAILY and SMTH over the US West Coast. Higher SIC in 

DAILY in East Siberia, Kara and Laptev seas leads to a cooler Arctic (-0.1K in 

average between 70 and 90˚N) DAILY – SMTH (Figure C.7). A cooler Arctic 

leads to an equatorward shift in the maximum temperature gradient and the polar 

jet (Figure C.18). A southward shifted jet is consistent with a southward shift in 

storms. Bandpassed poleward heat transport is not much different between 

DAILY and SMTH, but bandpassed poleward momentum transport is lower in 

DAILY off the coast of Baja California (Figure C.16).  

Storm track analysis indicates a decrease (Figure E.3) and southward 

shift in storms across this section of the North Pacific. More storms occur by the 
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coast of Southern California and fewer storms reach the northern Californian and 

the PNW coast (Figure C.17). 

Fewer storms over the northern and central Californian and PNW coast 

leads to reduced cloud amounts at low and high level (Figure C.11 and C.13) as 

well as reduced humidity (Figure C.14). This increases solar radiation reaching 

the lower atmosphere as well as increases longwave radiation out of the ocean off 

the central California coast (Figure C.5 and C.4). The lower specific humidity is 

consistent with the increased latent heat fluxes that occur over the central 

California coast (Figure C.3). Weak temperature anomalies are consistent with 

small sensible heat flux anomalies (Figure C.2).  

 

 

 

 

 

 

 

 

 

Figure E.3 Storm Count WCUS Region 
Storm center sea level pressure (hPa) and number of storm centers in the 
WCUS region (Sep – Oct 2006) 
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E.3 Gulf of Alaska and Northeast Pacific (Fall) 

Northeast Pacific (NEP) 120 – 170W and 50 – 65N (Figure E.1) shows 

significant differences in the atmospheric response during fall to DAILY and 

SMTH sea ice conditions.  

Sensible heat flux anomalies are positive in DAILY in the central to 

northern part of the Gulf of Alaska with maximum fluxes over 4 W m-2 (Figure 

C.2). Latent heat flux anomalies are large in the northern and southern part of the 

Gulf with maximum flux differences over 5 W m-2 (Figure C.3). Solar radiation 

fluxes at the surface are higher in DAILY over South West and South East Alaska 

with maximums between 1-2 W m-2.  The same is the case for long wave radiation 

out of the surface in Southwest Alaska (Figure C.5 and C.4). 

There are colder temperatures over large parts of Alaska and Yukon in 

DAILY with anomaly maximums around -0.5K (Figure C.7). Higher precipitation 

occurs in DAILY between Yukon and British Columbia (Figure C.10). Cloud 

cover is consistently lower over southern Alaska and higher over eastern British 

Columbia (Figure C.11 - C.13). The northern parts of the Gulf as well as most of 

Alaska and Yukon have about 0.1 g kg-1 less moisture (Figure D.6). Only weak 

changes are evident in storm activity based on storm tracking and 2-10 days 

bandpassed measures (Figure C.15 - C.17). 

Storm activity does not likely play a key role in the Gulf of Alaska 

anomalies. The cooling of East Siberian, Laptev, Kara, and Beaufort seas and 

large parts of Siberia is upwind from Alaska and is likely able to advect eastward 

to Alaska (Figure C.7). Cooling of the Siberian sector therefore favors descending 

air temperature resulting in lower moisture (Figure C.14) and lower cloud amount 

(Figure C.11 - C.13) in NEP. The low cloud amount in DAILY allows more 

longwave radiation to escape as well as more solar radiation to reach the surface 

(Figure C.4 and C.5). The larger sensible heat flux out of the ocean in the 
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northwest part of the Gulf is likely driven by the colder SAT’s in the same area 

(Figure C.2 and C.3).  The large latent heat anomaly south of the Gulf off the 

coast of British Columbia is likely due to increased storm activity (Figure C.3). 

E.4 Northeast Atlantic and Caspian-Black Sea (Fall) 

A region in the northeast Atlantic (NEA) 30 – 45N and 0 – 40W (Figure 

E.1) and a region containing both the Black Sea and the Caspian Sea (BCS) 40 – 

50N and 30 – 60E (Figure E.1) both display notably different responses between 

DAILY and SMTH. The differences in the eastern part of NEA strongly co-vary 

with the differences in BCS and the two regions will therefore be described 

together.  

Sensible heat flux is between 1-2 W m-2 higher west in the NEA region 

in DAILY and up to over 3 W m-2 lower around Gibraltar and the BCS region 

(Figure C.2). Latent Heat is higher in DAILY west in NEA with anomalies of 

over 5 W m-2 (Figure C.3).  Positive anomalies over 4 W m-2 are also located over 

Morocco and BCS. Longwave and shortwave radiation are each over 2 W m-2 

higher in west NEA and over 2 W m-2 lower around Gibraltar and over 4 W m-2 

lower over BCS (Figure C.4 and C.5).   

There are negative SLP anomalies between 0.5-1 hPa over NEA in 

DAILY (Figure C.8) that are co-located with geopotential height anomalies of up 

to -12 m (Figure C.9). DAILY shows increased precipitation in NEA and BCS 

between 2 and 2.5 mm day-1 (Figure C.10). Increased cloud cover in DAILY 

occurs at all levels in BCS and NEA with maximum of 4% (Figure C.11 - Figure 

C.13). Moisture is decreased in the western part of NEA but increased in eastern 

NEA and in BCS with around 2 g kg-1 increase in DAILY (Figure C.14). The 2 – 

10 days bandpassed 200 hPa u’v’ poleward momentum flux is lower over BCS 

and in large areas between BCS and NEA. The strom track algorithm indicates 

increased cyclone activity in both regions (Figure C.17). 



 
 

 
 
 

 

149 

Figure C.18 indicates a shift in the general circulation causing the polar 

jet to shift south towards the NEA region favoring storm development in the 

region. Signs of increased cyclone activity can be seen in storm tracks (Figure 

E.4) and increased latent heat release from both regions. Higher storm activity 

leads to negative SLP anomalies with a displaced negative 500 hPa geopotential 

height response in NEA near Gibraltar.  This feature does not show up as clearly 

in BCS, but the same mechanism is suggested. Lower pressure in both regions is 

associated with ascending air and increased clouds at all levels leading to 

increased precipitation and specific humidity. Increased clouds reduce net solar 

radiation at the surface and is consistent with decreased sensible and longwave 

fluxes out of the surface.  

 

E.5 East Siberian, Laptev and Kara Seas (Fall) 

The region of the three arctic seas East Siberian, Laptev, and Kara 

(ESLK) 65 – 80N and 60 – 180E (Figure E.1) is more directly driven by the ice 

 

Figure E.4 Storm Count NEA and BCS Region  
Strength (hPa) and number of storm centers in the NEA (left) and BCS (right) 
region (Sep – Oct 2006). 
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than more equatorward locations since the area of highest difference between 

DAILY and SMTH forcing is in this region (Appendix B.1).  

Sensible heat fluxes are smaller in DAILY in most of the region with a 

maximum over 3 W m-2 negative anomalies (Figure C.2). Latent heat anomalies 

are also smaller with a maximum of over 1 W m-2 (Figure C.3). Longwave 

radiation out of the ocean is increased in parts of the ocean with a maximum of 

about 2 W m-2 (Figure C.4). Solar radiation reaching through the lower 

atmosphere does not change much (less than 1 W m-2) (Figure C.5) as would be 

expected at high latitudes during fall.  

Temperature is lower in the whole region with maximum negative 

anomalies reaching close to 1K in DAILY (Figure C.7). Precipitation remains 

unchanged, likely due to small moisture amounts, but low cloud amounts are 

reduced over most of the region with anomalies reaching more than 4% (Figure 

C.11). High and medium level clouds do not notably change. Specific humidity is 

reduced by between 0.05-0.1 g kg-1 in DAILY over the Laptev, Kara, and parts of 

East Siberian seas. Bandpassed poleward heat transport at 850 hPa is similar 

between DAILY and SMTH, but bandpassed momentum transport at 200 hPa is 

higher over the Kara Sea in DAILY (Figure C.16).  

DAILY has a larger amount of high SIC in most of this domain 

(Appendix B.1). This leads to reduced sensible and latent heat fluxes out of the 

ocean in DAILY. This contributes to lower air temperatures, reduced ascending 

air and lower amount of clouds. This increases the net longwave radiation out of 

the surface. For high latitudes during fall the difference in solar radiation through 

the lower atmosphere will not be reduced notably in magnitude due to mean 

radiation fluxes being low. Similarly low precipitation changes occur which is to 

be expected with initially low precipitation in the region.  
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E.6 Continental United States (Winter) 

Fall shows more significant response in difference between DAILY and 

SMTH in most regions though this is not the case for the continental US 

(CONUS) 30 – 45N, 75 – 120W (Figure E.1) where the differences are larger in 

winter.   

Sensible heat is not much different over the region, but the west coast 

displays large positive anomalies in DAILY (Figure D.2). The same is true for 

latent heat (Figure D.3). Solar radiation at the surface is reduced in parts of 

Washington and Montana (Figure D.5) and longwave radiation from surface is 

reduced across the northern Midwest (Figure D.4) and increased off the west 

coast.  

The temperatures are colder in most of CONUS with negative anomalies 

reaching a maximum almost 1K (Figure D.7), which result in negative 

geopotential height anomalies over large parts of CONUS (Figure D.9). 

Precipitation is increased in North Dakota and in the eastern midwest with up to 

over 0.2 mm day-1 (Figure D.10). There are more low-(high)level clouds over the 

northern (eastern) CONUS (Figure D.11 and D.13). Specific humidity is 

decreased in large parts of the northern and western states (Figure D.14).  

Bandpassed poleward heat transport is larger in DAILY over Texas, lower in 

Oregon and largely negative north of CONUS (Figure D.15). Bandpassed 

poleward momentum transport is lower in DAILY over the eastern Mid-west and 

the East Coast US (Figure D.16).  

Much of the differences between DAILY and SMTH are likely due to 

the high-pressure anomaly over southern Alaska and the co-located geopotential 

height anomaly. The associated anticyclonic circulation around this high results in 

more air being advected into CONUS from the north versus from the west (Figure 

D.18). This leads to a general cooling of CONUS.  The anomalous high has the 



 
 

 
 
 

 

152 

opposite effect on western Alaska and eastern Russia when warmer Pacific air is 

advected from the south. The cooling of the continent causes the increased latent 

and sensible heat fluxes out of the ocean on the West Coast US. The cold air 

advecting from the north is consistent with negative bandpassed poleward heat 

transport anomalies along the northern states. The southward advection leads to 

increased convective activity south of the bandpassed poleward heat transport 

anomalies, producing low clouds and some increased precipitation.  

A negative geopotential height anomaly forms due to colder 

temperatures over CONUS. This leads to anticyclonic anomalous circulation 

advecting air from the Gulf of Mexico and Texas into the eastern Midwest 

resulting in a more cloud formation and more precipitation.  

 


