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Abstract 

  

Global Circulation Models (GCMs) currently suffer from inadequate cloud and 

aerosol parameterizations due to a shortage of information regarding how clouds and 

aerosols are globally distributed in space and time.  Although surface and airborne 

instruments can offer reliable cloud and aerosol measurements, such methods are 

expensive, and their scope is rather limited.   

Satellite instruments, such as the MODerate resolution Imaging 

Spectroradiometer (MODIS), may provide an alternative.  MODIS measures spectral 

radiance in thirty-six discreet spectral bands.  A variety of cloud and aerosol properties 

are derived at the pixel scale from these measurements using algorithms developed from 

radiative transfer theory.  A comprehensive validation campaign is underway to assess 

the quality of these data in hopes that it can be assimilated into the GCMs.   

This thesis provides one such study comparing the MODIS cloud mask, cloud top 

properties, cloud thermodynamic phase and aerosol type with overlapping surface data 

from a polarization cloud lidar at Fairbanks, AK.  Most of the sample is comprised of 

cirrus clouds, which are difficult to detect with satellites.  Results are mixed, but are 

generally consistent with past studies.  The MODIS products are fairly dependable, but 

the algorithms could be improved, especially over the polar regions.                  
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  Chapter 1 Introduction 

 

1.1 Cloud Radiative Parameters 

 Clouds play a key role   in the Earth’s radiation budget.  They cool the planet by 

reflecting back to space incoming shortwave radiation. They also warm the planet by 

absorbing and re-emitting outgoing longwave radiation back towards the surface.  At any 

given moment, their net effect on the radiation balance (cooling or warming) will depend 

on the magnitudes of these two competing processes.   

The degree to which clouds interact with radiation is a function of their optical 

depth, geometric thickness, water content, altitude, and phase, as well as the number 

density, shape and size distribution of the particles within the cloud (Cox, 1971; Stephens 

et al., 1990; Fu and Liou, 1993; Chylek et al., 2006).  Additionally, the composition, 

concentration and size distribution of cloud condensation nuclei (CCN) can alter the 

aforementioned microphysical properties (Twomey, 1977; Rosenfeld, 2000; Bréon et al., 

2002).  Ice clouds generally absorb and thus emit more infrared (IR) radiation than water 

clouds of a similar water content due to ice having a significantly larger imaginary index 

of refraction than water over certain IR spectral regions (Menzel et al., 2002).  Also, the 

albedo (reflectivity) of a cloud is inversely proportional to the size of the particles of 

which it is composed, owing to the concept that a large number of small particles provide 

a much larger scattering surface than a small number of large particles (Twomey, 1977; 

Bréon et al., 2002).            
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Ramanathan et al. (1989) describes the mechanism of cloud radiative forcing on 

the atmosphere using the following set of equations. At any given moment, the radiative 

heating of a column of atmosphere can be expressed by 

 

                                                       H = S(1 – α) – F,                                                     (1.1)   

 

where H denotes the net heating, the term S(1 – α) represents the warming from absorbed 

solar radiation given a solar irradiance, S, and albedo, α, and F represents the cooling 

from longwave emission.   The cloud radiative forcing (CRF) is defined as the difference 

in the instantaneous heating rates between a cloudy and a clear atmosphere, 

  

        CRF = Hcld – Hclr,                                                    (1.2) 

 

where the subscripts ‘cld’ and ‘clr’ represent cloud and clear respectively.  The total CRF 

is simply the sum of the shortwave component, CRFsw, plus the longwave component, 

CRFlw.  Furthermore, the CRFsw and the CRFlw can be defined as follows 

 

                                                 CRFsw = S(αclr – αcld),                                               (1.3)      

    

                                                    CRFlw = Fclr - Fcld.                                                    (1.4) 
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Since the clouds tend to be brighter than the earth’s surface ( cld > clr), CRFsw in 

Equation 1.3 tends to be negative, which denotes a cooling effect.  Conversely, cloud top 

temperatures tend to be colder than the Earth’s surface.  Hence when clouds are present, 

the magnitude of the outgoing longwave radiation, CRFlw in Equation 1.4 is reduced, 

which leads to a smaller F value in Equation 1.1.  To compensate, the temperature of the 

earth-atmosphere system must rise in order to increase the magnitude of F, a process 

more commonly known as the greenhouse effect. 

Overall, the cooling from the cloud albedo effect surpasses the greenhouse 

warming.  Globally averaged annual satellite measurements collected during the 1980’s 

for the Earth Radiation Budget Experiment (ERBE) indicate that clouds generate a net 

surface cooling of around -20 W m-2 (Ramanathan et al., 1989), which combines a           

-50 W m-2 cooling from shortwave reflection with a +30 W m-2 warming from longwave 

emission.  However, large regional and seasonal differences in CRF are observed.  For 

example, during April of 1985, deficits as high as -100 W m-2 over the northern high 

latitude oceans as a consequence of persistent stratus cloud cover were measured, while 

some areas of Africa experienced a net +25 W m-2 warming from cirrus cloud. Over the 

tropics, the net cloud forcing was found to balance out between the +100 W m-2 induced 

warming by cirrus with the -100 W m-2 induced cooling by optically thick convective 

clouds.   

Bear in mind that these forcings are one to two orders of magnitude larger than 

the projected + 4 W m-2 warming caused by a doubling of the current CO2 concentrations.  

Clearly, any slight deviation in the amount, type and distribution of clouds in response to 
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rising greenhouse gas concentrations could potentially offset, or even amplify, the 

predicted warming from carbon dioxide. 

 

1.2 Cloud-Climate Feedbacks 

A cloud-climate feedback is defined as a change in the type or distribution of 

clouds in response to an atmospheric temperature change.  Feedbacks can be both 

positive, amplifying the initial temperature perturbation, or negative, offsetting it.  For 

example, an increase in surface air temperatures would lead to an increase in evaporation.  

A more humid atmosphere could generate more global cloud cover as well as clouds 

containing significantly higher water contents, which could increase the planetary albedo 

and reduce temperature.  Such a mechanism illustrates a negative feedback.   

Conversely, an increase in temperature may alter the convection and synoptic 

weather patterns such that the global coverage of cirrus clouds, which tend to have a 

warming affect, would increase, further augmenting the initial rise in temperature.  

Moreover, a rise in temperature could potentially reduce the global cloud amount since 

the amount of water vapor needed to achieve saturation in the atmosphere, as expressed 

by the Clausius-Clapyron relationship, increases exponentially with temperature 

(Pruppacher and Klett, 1997).  Reducing cloud cover while concurrently increasing the 

amount of water vapor, an extremely active greenhouse gas, could have major 

consequences for the Earth’s climate.  These processes illustrate a positive feedback.  
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1.3 Clouds and Climate Models      

 To predict how climate will ultimately respond to rising greenhouse gas 

concentrations, scientists must rely on Global Circulation Models (GCMs). A GCM is a 

computer model that utilizes the fundamental equations of energy and motion to simulate 

the general patterns of temperature, pressure, moisture and motion of the atmosphere.  

The latest Intergovernmental Panel on Climate Change (IPCC) (2007) assessment, based 

on model projections, predicts a 1.8oC to 4.0oC increase in the average global temperature 

over the next century.  Uncertainties in the warming predictions can largely be attributed 

to the difficulties associated with modeling clouds and cloud feedbacks (Kerr, 1989; 

Groisman et al., 2000).  Significant improvements in computer processing efficiency over 

the last twenty years unfortunately have not led to corresponding improvements in 

climate forecasts (Zhang et al., 2005a).  Different models tend to be sensitive to different 

cloud feedbacks, and large variations in the predictions can exist even within an 

individual model depending upon how clouds and other variables are chosen to be 

parameterized (Cess et al., 1989; Senior and Mitchell, 1993).  Zhang et al. (2005b) 

recently compared the seasonal and latitudinal variations in low, mid and high level 

clouds from ten separate GCM simulations using global cloud climatologies derived from 

satellites.  They notice large discrepancies in global cloud distributions from one model 

to the next and between the models and the satellite measured climatologies.  It was 

found that the models tend to underestimate (overestimate) optically thin (thick) clouds, 

while seasonal variations in cloud cover, especially low clouds, do not match well with 

observations.   
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To improve the confidence in the GCM predictions, scientists clearly need to 

improve the parameterization of clouds in climate models.  Satellites can provide 

frequent measurements of cloud and cloud properties at the global scale, yet inferring 

three-dimensional cloud structures from two dimensional passive radiation measurements 

is inherently difficult.  Algorithms, generated from satellite data, used to calculate cloud 

radiative parameters such optical thickness, phase, altitude, water content, and particle 

size distribution must continually be refined through validation studies using a 

combination of field observations, remote sensing data and radiative transfer theory.  

Without a reasonable inventory of global cloud distributions, cloud parameters can only 

be crudely represented in the models. 

                   

1.4 Cirrus Clouds 

 The majority (> 70%) of cloud cases for this research involve high optically thin 

cirrus clouds. Therefore their unique impacts on the climate need to be addressed.  Cirrus 

clouds are composed of ice crystals that form in the dry upper troposphere in 

temperatures well below -30oC, where the air is subsaturated with respect to water but 

supersaturated with respect to ice.  Typical saturation vapor pressures at -40oC with 

respect to water and ice are around 0.202 hPa and 0.129 hPa respectively, a roughly 64% 

split between these two values.   In contrast, saturation vapor pressures for water at 15oC 

fall around 20 hPa.          

Approximately 20-30% of the earth is covered by cirrus at any given moment (Fu 

and Liou, 1993).   Cirrus are typically associated with mid-latitude synoptic scale 

 



 7

cyclones.  Rising parcels of moist air cool below the ice saturation point as they reach the 

cold upper troposphere.  Water vapor either directly condenses into ice crystals, or forms 

haze particles, which spontaneously freeze.  New ice crystals typically form in the top of 

the cloud and then slowly descend.  As they fall, they grow by the diffusion of water 

molecules in saturated air and can clump together with other crystals.  Cirrus can also 

form by thunderstorm convection, airplane contrails and as a result of orographic lifting 

of moist air over a mountain barrier (Sassen, 2002a).    

In recent years, cirrus have become the focus of much attention because they have 

been shown to enhance the greenhouse effect (Stephens et al., 1990).  Even subvisual 

cirrus, defined by Sassen et al. (1989) as having a visible optical depth less than 0.03, can 

strongly absorb and emit infrared radiation.  Figure 1.1 depicts the spectral signature of 

an exceptionally thin cirrus cloud labeled ‘Small P.S. ICE-CLD’ in the 10-13µm range.  

This spectral data was collected during a 1996 field campaign over the Great Plains using 

several airborne high resolution radiometers and a cloud lidar (Smith et al., 1998).  Note 

that the cloud exhibits relatively high transmission (warm brightness temperatures) at 

10.5µm (980 cm-1), but high absorption (cold brightness temperatures) at 12.5µm (800 

cm-1).  In contrast, optically thick clouds like those depicted in Fig. 1.1 (‘Low cloud’, 

‘Semi-Tranp.CLOUD’ and ‘Opaque CLOUD’) exhibit a relatively constant emissivity 

(brightness temperature) over the same 10-13µm (750 – 1000 cm-1) region. 

Ray tracing and Mie scattering calculations reveal that the optical thickness and 

albedo of ice clouds are extremely sensitive to particle shape (Mishchenko et al., 1996).  

Unlike liquid clouds, which are comprised of spherical droplets, ice clouds can consist of  
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Figure 1.1:  IR measurements of a thin ice cloud.  High resolution Interferometer 
Sounder (HIS) measurements of several cloud cover conditions during the Subsonic 
aircraft Contrail and Cloud Effects Special Study (SUCCESS).  The x-axis depicts the 
wavenumber (cm-1) and the y-axis shows brightness temperature (K).  The plot also 
includes, for convenience, the location of the 10.5, 11 and 12 micron ( m) MODIS 
Airborne Simulator (MAS) channels above the ‘CLEAR’ curve.  The curve labeled 
‘Small P.S. ICE-CLD’ denotes the nearly invisible cirrus cloud (Smith et al, 1998) 
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a wide variety of regular and irregularly shaped particles including plates, needles, 

hollow columns, dendrites, bullet rosettes and complex aggregates.  Determining the 

most appropriate shape and size distribution of ice clouds in climate models is a focus of 

ongoing research (Chou et al., 2002).  Several algorithms developed from polarization 

lidar data can provide rough estimates of crystal shape (Noel et al., 2002, 2004), but the 

extraction of particle shape using passive techniques is extremely difficult.    

Parameterization of particle shape into models can be incorporated using the 

asymmetry factor, g, which provides information on the bulk directionality of the 

scattered radiation as expressed by the phase function, P(cosΘ), integrated over all 

directions.  The phase function allows one to predict the probability by which an incident 

photon will get scattered into a particular direction.  For rigorous mathematical 

definitions of g and P(cos ), refer to An Introduction to Atmospheric Radiation by K. N. 

Liou (2002).    

Each particle possesses a distinct phase function, which depends on the size, 

shape and refractive index of the particle as well as the wavelength of the incident light.  

Since liquid clouds are composed primarily of spherical droplets, the scattering behaviors 

of such clouds are relatively easy to predict.  But different ice particle habits (shapes) can 

scatter radiation in different ways.  Figure 1.2 depicts several common idealized ice 

crystal shapes and their associated phase functions for 0.63µm light.  As with liquid 

droplets, forward scattering (Θ ≈ 0o) dominates, but side and back scattering varies from 

one habit to the next.  Subtle differences in the side scattering profiles can significantly 

affect cloud albedo by as much as a factor of three (Mishchenko et al., 1996). 
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Figure 1.2: Phase functions of various ice crystal habits.  Eleven ice crystal shapes and 
their associated 0.63µm phase functions.  Solid lines are solutions from geometric ray 
tracing and dashed lines are from finite difference calculations.  Scattering angles of 0o 
and 180o denote forward and backward scattered radiation respectively.  The phase 
functions for spherical and spheroid droplets are included for comparison (Liou, 2002).       
 
 
 

The detection and retrieval of radiative properties of cirrus clouds from satellites 

continues to be a challenge.  There exists an assortment of algorithms, utilizing a broad 

part of the electro-magnetic spectrum from the visible to the thermal infrared 

wavelengths, designed to identify cirrus clouds and estimate their microphysical 

properties.   However, these algorithms over the Polar regions are stymied by an 

assortment of factors such as limited sunlight availability, visible and thermal camouflage 

by cold ice covered backgrounds and a dry lower atmosphere, which inhibits the use of 

high cloud detection tests (e.g. the 1.38 m reflectance test) that rely on adequate water 
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vapor absorption in the lower troposphere (Gao et al., 1998; King et al., 2004; Liu et al., 

2004; Berendes et al., 2004).       

     

1.5 Aerosols 

 The reduction of visibility and the degradation of air quality due to forest fire 

smoke, Asian dust and Arctic haze are a familiar occurrence in Alaska (Tiruchirapalli, 

2006).  Smoke, dust and haze reside under the category of aerosols defined as small 

particles suspended in the atmosphere.  They can be either solid or liquid and can 

originate from various sources, both natural and anthroprogenic.  Major sources of 

aerosols include forest fires, volcanic eruptions, industrial pollution, airplane contrails, 

windblown dust, and plant pollens.  In the oceans, phytoplankton blooms can generate 

large amounts of dimethyl sulfide (DMS), which subsequently oxidizes into sulfate 

aerosols (Charlson et al., 1987).  Also, the mechanical action of waves at the ocean-

atmosphere interface can cause bursting bubbles to expel miniature salt water droplets 

into the air that eventually evaporate, leaving behind large salt particles.  Aerosols can 

also form by gas-to-particle conversions in the atmosphere (Wallace and Hobbs, 1977).    

Aerosols yield considerable influence on the Earth’s radiation budget in two 

ways.  First, like clouds, they can scatter and absorb solar radiation, described as the 

“direct effect.”  Second, they can alter both the physical and hence radiative properties of 

clouds, also known as the “indirect effect.”  The latest IPCC report (2007) estimates the 

global radiative forcing from the direct aerosol effect to be around -0.5 ± 0.4 W m-2 “with 

a medium-low level of scientific understanding,” while the indirect forcing ranges 
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between -0.3 to -1.8 W m-2 “with a low level of scientific understanding”.  Although the 

radiative forcing from aerosols is ordinarily negative, smoke particles have been shown 

to induce both a direct and an indirect positive forcing (Hsu et al., 2003; Koren et al., 

2004).        

  Aerosols are vital to cloud formation.  In a perfectly clean atmosphere, water 

vapor saturation values required to homogenously nucleate a water droplet directly from 

the vapor phase are extremely high due to the curvature effect on equilibrium vapor 

pressure (Rogers and Yau, 1989).  In nature, saturation values rarely exceed 1 - 2%, thus 

requiring the presence of cloud condensation nuclei (CCN) or ice nuclei (IN) to aid in 

cloud formation, a process known as heterogeneous nucleation.  CCN provide a surface 

upon which water molecules can condense while significantly lowering the equilibrium 

vapor pressure required to sustain water droplets in the ambient air.  The ultimate 

survival of cloud droplets requires that the equilibrium vapor pressure adjacent to the 

droplet’s surface be greater than or equal to the environmental vapor pressure.  This 

principle can be expressed by the simplified Köhler equation (Rogers and Yau, 1989),  
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where es(r) represents the equilibrium vapor pressure near the surface of the droplet, es(∞) 

is the environmental saturation vapor pressure, r is the droplet radius and both a and b are 

constants.  The a/r term in Equation 1.5 represents the curvature effect, while the b/r3 

 



 13

term represents the solution effect.   For the case of pure water (b/r3 = 0), as the droplet 

size decreases (r → 0), the level of supersaturation [(es(r)/es(∞) – 1)*100] required to 

sustain the droplet approaches infinity.  When a solute is present (b > 0), the solution 

term on the right significantly reduces the droplet’s equilibrium vapor pressure, thereby 

increasing the likelihood that a small droplet will survive and grow.  As the droplet 

grows, the influence of the solution term diminishes, while the curvature term becomes 

dominant.  Differentiating Equation 1.5 with respect to ‘r’ and setting it equal to zero 

allows one to calculate the critical radius, defined as the minimum radius that a droplet 

must achieve before it can be “activated.”  The term “activated” refers to the ability of a 

droplet to grow continuously by condensation without having to increase the ambient 

vapor pressure.                

Aerosols can affect cloud microphysical properties in many ways.  Several studies 

(Twomey, 1977; Coakley et al., 1987; Kuang and Yung, 2000) show that tropospheric 

sulfate pollution can increase the number of small cloud particles, while reducing the 

particle size deviation.  These modifications can make clouds more reflective, suppress 

precipitation and prolong cloud duration (Albrecht, 1989; Rosenfeld, 2000). Conversely, 

satellite observations of smoke plumes over southeast Asia indicate that black 

carbonaceous aerosols can increase the absorption of solar radiation by cloud droplets 

(Hsu et al., 2003).  Koren et al. (2004) observed that atmospheric heating as a result of 

solar absorption by smoke over the Amazon can significantly inhibit cloud formation 

altogether.  Also smoke contaminated thunderstorms are known to discharge a much 

 



 14

higher frequency of positive lightning strikes, which are hotter and are more likely to 

ignite additional forest fires, than negative strikes (Lyons et al., 1998).         

For temperatures between 0oC and -40oC, cloud droplets require some sort of 

freezing nucleus, either in the form of an ice embryo or an aerosol with an ice-like shape, 

in order to freeze (Wallace and Hobbs, 1977).  In the upper troposphere, any kind of 

wettable aerosol can behave like an ice nucleus due to homogenous freezing in 

temperatures below -40oC.  In temperatures above -40oC, ice nuclei (IN) provide a 

surface upon which liquid water can freeze, or water vapor can be deposited directly into 

an ice crystal. In addition, super-cooled liquid droplets can freeze when they come in 

contact with ice particles or IN which have a shape similar to that of an ice crystal.  This 

is known as contact nucleation.   

Volcanoes and dust storms supply significant quantities of IN to the atmosphere.  

Sulfates injected into the atmosphere by volcanoes can linger for many years in the 

stratosphere, reflecting shortwave radiation while seeding cirrus clouds (Jensen and 

Toon, 1992; Lohmann et al., 2003).  Researchers using polarization lidars have observed 

unusually warm ice clouds with tops as warm as -8oC associated with Saharan dust layers 

(Sassen et al., 2003; DeMott et al., 2003).   Sassen (2002b) reported the transformation of 

a mixed phase alto-cumulus into an all ice cirrus fibratus after coming in contact with an 

Asian dust layer over Utah. 
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1.6 Objective 

The primary objective of this research is to compare cloud and aerosol data 

collected by satellite with a reliable set of measurements collected concurrently with a 

surface instrument, in order to test the reliability of the satellite derived products.  This 

validation study presents just one of many ongoing projects currently underway to test 

the accuracy of cloud microphysical and radiative properties calculated from satellite 

measurements. 

Cloud and aerosol data obtained with a Polarization Cloud Lidar (PCL) is 

acquired at the Arctic Facility for Atmospheric Remote Sensing (AFARS) on the roof of 

the Geophysical Institute (64.86 N, -147.84 W) located on the west ridge of the 

University of Alaska, Fairbanks. The data is collected over the course of three and a half 

years between February 2004 and August 2007.   Most of the PCL acquisitions are timed 

to coincide with the MODIS (MODerate resolution Imaging Spectroradiometer) satellite 

instrument.  MODIS is a thirty-six channel scanning passive radiometer onboard both the 

Aqua and Terra Earth Observing System (EOS) platforms. Detailed descriptions of both 

the MODIS and PCL instruments and their data products are given in chapter two.   

A total of 549 lidar-MODIS overlaps take place, wherein AFARS gets captured in 

the MODIS field of view during the lidar acquisition.  The PCL dataset is considered to 

be the ground truth with which to compare the MODIS derived cloud products.  However 

the methodologies used to estimate cloud top height and particle phase from the PCL data 

are rather subjective, and are thus error prone as will be discussed in chapter three.  The 
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sample is collected under a variety of sky conditions, sensor viewing angles, solar 

illumination and land cover conditions throughout the year.  

MODIS generates a plethora of microphysical and radiative cloud parameters, 

however only the cloud mask, cloud top properties (altitude, pressure, temperature), 

cloud phase and aerosol type are considered for this study.  These datasets are extracted 

from the MOD04, MOD06 and MOD35 level-2 data files.  The most fundamental of 

these datasets, the MODIS cloud mask, serves as a fundamental input to both the cloud 

phase and cloud top algorithms.  A survey of the MODIS atmosphere products are 

covered in chapter two.  

In addition, numerous cases of aerosol pollution, primarily from forest fire smoke 

and Asian dust, are captured, including smoke cases from the record breaking 2004 and 

2005 forest fire seasons.  Even volcanic aerosol is captured during the February 2006 

eruption of Mt. Augustine.  These lidar aerosol observations are used both to compare 

with the MODIS derived aerosol types from the MOD04 product, and to evaluate cases 

where MODIS could be mistakenly identifying aerosols as clouds or vice versa.     

The variety of clouds within this sample is limited mostly to thin ice cloud layers.  

Because the PCL emits a shortwave ruby red (0.694 µm) laser, the beam is not designed 

to penetrate cloud and aerosol layers that have an integrated optical depth larger than 

about three (τ > 3).  Although several cases are included, most low and mid-level water 

and mixed phase clouds block the laser from penetrating much beyond a hundred or so 

meters into the cloud.  This bias towards thin clouds will likely increase the amount of 

error associated with the MODIS derived cloud estimates, whose algorithms tend to be 
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most accurate for optically thick clouds.  However, given the importance of cirrus clouds 

in the climate system, this sample should prove useful in testing the upper limits of 

MODIS’s cloud detection capabilities.       

 

1.7 Cloud Detection Over Fairbanks: Special Considerations 

The MODIS cloud detection algorithm relies on a set of ancillary inputs so that it 

can select the appropriate cloud detection tests for a given surface type and illumination 

conditions.  Previous and ongoing validation studies try to minimize the contaminating 

influences of mixed surface types by evaluating the performance of the products over 

simple homogenous areas, such as over the ocean, snow, or vegetation (Gao et al., 1998; 

Mace et al., 2005).  However for this study, surface mixing unfortunately is unavoidable.  

The PCL site is located on the roof of a building, which is adjacent to other buildings, 

roads and urban features, several open fields, a lake and boreal forest.  The 1 km, 5 km 

and 10 km resolution MODIS data will contain some or all of these cover types at 

different proportions for any given overpass.      

                 Cloud detection over Fairbanks becomes even more complicated in winter, due 

not only to low sun angles and snow-cover contamination, but also to strong surface 

inversions.  Inversions are defined as an increase in temperature with altitude (dT/dZ > 

0).  Cold surface inversions may effectively camouflage clouds in the thermal infrared by 

reducing the contrast between the cold cloud tops and the ground.  The town of 

Fairbanks, elevation 136 m above mean sea level (MSL), is located in the bottom of the 

flat Tanana river valley.  The northern and western periphery of town is flanked by large 
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hills some of which exceed 600 m in elevation. In the valley, surface inversions occur 

over 90% of the time in winter (Wendler and Nicpon, 1975) and temperature differentials 

can exceed 20oC over an altitude difference of just 60 m (Jayaweera et al., 1975).  

However, the PCL site is located slightly above the valley at approximately 200 m above 

MSL, but the mostly 1 and 5 km spatial resolution of the MODIS pixels will most 

certainly overlap with the colder adjacent valley.   Recently, cloud detection tests 

specifically designed to counteract the influence from surface inversions (Liu et al., 2004) 

have been incorporated into the new versions of the MODIS cloud detection algorithm, 

and have been found to significantly improve cloud detection over several Arctic and 

Antarctic stations.     

By conducting a comprehensive long term study of the MODIS level-2 

atmospheric products against a variety of less than ideal conditions, one hopes to 

accomplish the following:  

 

   1. Learn about the various biases and deficiencies associated with the MODIS   

       atmosphere products so that the algorithms can be improved. 

  2. Provide modelers with a general overview about the reliability of several MODIS 

       level-2 atmosphere products, primarily focusing on cases of thin cirrus cloud over a 

       sub-arctic mixed urban environment. 
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Chapter 2 Theory and Instrumentation 

 

2.1 Fundamentals of Passive Satellite Remote Sensing 

 Satellites have become a valuable tool in a wide variety of environmental research 

fields.  Satellite sensors measure the amount of radiation reflected or emitted by the earth 

over finite spectral bands.  By correlating the satellite measurements with the physical 

characteristics of the interacting media, a plethora of geophysical parameters can be 

estimated, indirectly, using algorithms derived from radiative transfer theory.  For 

example, researchers are able to approximate plant biomass and leaf area index (LAI), 

defined as the total leaf surface area per unit ground surface area, from satellite 

measurements and using physical models that describe how shortwave radiation interacts 

with vegetation canopies (Myneni et al., 2002).           

Remote sensing instruments are generally divided into two types: active and 

passive sensors.  Active sensors, which include radars and lidars, create their own 

transmission signal using an electronic device, such as a laser or magnetron, to generate 

and transmit electro-magnetic waves.  Passive sensors, such as cameras or radiometers, 

measure the existing light within the environment.  The light arriving at the sensor 

typically comes in the form of reflected light from the sun, or in the form of emitted 

infrared radiation from the objects within the sensor’s field of view (FOV).  The light 

gets focused onto a detector array and the images are processed into discrete boxes or 

picture elements (pixels). Each pixel is assigned a grayscale brightness level proportional 

to the intensity of light or the number of photons falling onto the detector array.     
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Passive satellite radiometers typically convert the photon counts into a spectral 

radiance.  The units of spectral radiance are watts per square meter per steradian per 

micron (W m-2 sr-1 µm-1).  This quantity is defined as the rate at which photons or light 

energy (Joule sec-1 = watt, W) of a given wavelength (per micron, µm-1) originating from 

a particular direction (per steradian, sr-1) crosses a unit area (per square meter, m-2).  A 

steradian is an element of solid angle equal to the ratio of unit area on the surface of a 

sphere over the radius squared (dA/r2).  A 3-dimensional steradian of a sphere can be 

considered analogous to the 2-dimensional radian of a circle.  Converting from spectral 

radiance to radiance can be accomplished by integrating the former over the minimum 

and maximum wavelengths of the given spectral band.   

In the field of thermal infrared remote sensing, defined for λ > 8 µm, spectral 

radiances are traditionally converted to brightness temperatures (BT’s) by substituting the 

radiance measurement into Planck’s function and solving for the temperature in degrees 

Kelvin (K).  In the wavelength domain, this relationship can be expressed as (Dozier, 

1990)   

 

 BT hc
k ln(1 y)

                                                             (2.1) 

 

where c is the speed of light, h is Planck’s constant, k is Boltzmann’s constant and y is a 

dimensionless constant that is inversely proportional to the sensor measured radiance.  

Note that BT depends on the wavelength; if the radiating body behaves like a blackbody 

over a given wavelength interval, then BT equals kinetic temperature.  Similarly, the 
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radiant temperature (Trad) of an object equals the BT integrated over all wavelengths.  

Hence radiant temperature is wavelength independent. It is related to an object’s kinetic 

temperature by the simple relation (Lillesand and Kieffer, 1994) 

 

                                           Trad = ε1/4Tkin                                                                          (2.2) 

 

where ε is the object’s emissivity.  However, most materials in nature do not radiate as 

blackbodies, hence both the BT and the radiant temperature of the source tend to be 

slightly cooler than the actual kinetic temperature.  By definition, a blackbody is a perfect 

absorber and emitter of radiation.                                                   

The fundamental equation of passive remote sensing that describes the various 

sources of radiation arriving at the sensor is known as the sensor radiance equation.  In 

order to design a reliable algorithm that can compute a specific scientific parameter, for 

example cloud thermodynamic phase, the relevant radiation source, in this case the cloud, 

must be identified and properly separated from the other contaminating terms in the 

equation, such as the surface and atmospheric terms.     

The following figure and derivations for the solar and terrestrial sensor radiance 

equations are reproduced from Michael J. Collins’s fundamentals of remote sensing 

chapter five lecture notes on the sensor radiance equation available in PDF at 

http://www.geomatics.ucalgary.ca/~collins/Courses/engo655/engo655_index.html 

(Collins, 2007).  A similar derivation can be found in chapter four of Schott’s Remote 

Sensing, The Image Chain Approach (Schott, 1997).      
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The photons reaching the sensor can follow multiple paths.  The important solar 

and terrestrial pathways are illustrated below in Figure 2.1. 

Traditionally, the shortwave and longwave components are analyzed separately 

due to the limited overlap between the two domains.  The shortwave includes the visible 

(VIS) and near-infrared (NIR) wavelengths and the terrestrial includes the mid-infrared 

(MIR) and thermal infrared (TIR) wavelengths.  The terrestrial contribution to the 

shortwave radiation (VIS + NIR) is typically twenty to thirty orders of magnitude smaller 

than the solar contribution (Schott, 1997).  Likewise, the solar contribution of longwave 

(TIR) (λ > 8 µm), though proportionately larger, is still two to three orders of magnitude 

 
 

 
 
Figure 2.1 Photon pathways en route to the sensor.  The shortwave (solar) sources 
include A, B, C and G; the longwave (terrestrial) sources are D E, F and H (courtesy of 
Michael J. Collins, 2007). 
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smaller than the terrestrial component and thus can be ignored (Schott, 1997).  However, 

there exists some overlap between the solar and terrestrial terms when operating in the 

mid-infrared range (3-5 µm), which should be carefully considered when working in 

these wavelengths (Schott, 1997).    

The reflected shortwave radiance arriving at the sensor is the sum of the A, B, C 

and G terms in Figure 2.1 expressed as (Collins, 2007)  

              

        Lsw ([E T
(A*)

( )cos( ) F E
(B*)

d (1 F)
(C*)

Lb ] r )T ( ) Lu

(G*)
                     (2.3)          

 

where Lsw is the total shortwave at sensor spectral radiance (W m-2 sr-1 µm-1), and the A, 

B, C and G terms from Figure 2.1 are appropriately labeled above the corresponding term 

and marked with an asterisk.  The direct and diffuse solar radiation terms (A* and B*) 

usually contribute the most, while the path radiance term (C*) and the background term 

(D*) are less substantial.  Eλ and Edλ represent the top-of-the-atmosphere (TOA) direct 

and diffuse (skylight) solar spectral irradiances (W m-2 µm-1) respectively.   Tλ(θ) and 

T( ) are the atmospheric spectral transmissivity as a function of solar zenith (θ) and 

sensor zenith angles ( ).  Lbλ represents the element of reflected radiation originating 

from the adjacent topography or background, and Luλ corresponds to the radiation 

scattered into the sensor’s field of view by the atmosphere (solar path radiance). F 

represents the fraction of unobstructed sky “above the pixel,” while (1 – F) represents the 

fraction of the sky blocked by the background (trees, mountains, et cetera).  Finally, 
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assuming that the surface behaves like a Lambertian reflector (equally scattering in all 

directions), the fraction of the total incoming radiation reflected by the pixel is derived by 

multiplying the A*, B* and C* components with the factor r/π, where r is the surface 

reflectivity.                    

 Moreover, the spectral transmissivity of the atmosphere, Tλ, is expressed as 

(Collins, 2007) 

 

                                                   T ( , ) e sec( , )                                                (2.4) 

 

where the optical depth, τ, in a homogenous atmosphere equals (Liou, 2002)  

 

          k s.                                                               (2.5) 

 

The term κλ represents the mass extinction (absorption + scattering) cross-section (m2 g-1), 

ρ is the mass density of the medium (g m-3) and s is the path length (m) through the 

medium.  The optical depth (thickness) of the atmosphere is a unitless quantity that 

indicates the probability that a particular photon will be either scattered or absorbed 

during its transit through the medium.  The total optical depth of the atmosphere 

combines the attenuation contributions from molecules, aerosols and clouds 

 

           τatm = τmol + τaer + τcld.                                              (2.6)     
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 In the terrestrial domain, the primary radiation pathways arriving at the sensor are 

from the D, E, F and H components with the direct terrestrial and atmospheric emissions, 

D and F, being the dominant parts.  In comparison, the indirect atmospheric and 

background emissions, E and H, are minor.  The longwave terrestrial sensor radiance 

equation is given by (Collins, 2007) 

 

     Llw ([F E
(E*)

d (1 F)
( H*)

Lb ] r L
(D*)

bb (T))T ( ) L
(F*)

u                     (2.7) 

 

with the relevant components from Figure 2.1 (E, H, D, and F) identified with an asterisk.  

The additional terms are as follows; Edελ represents the longwave radiation falling on a 

pixel emitted by the atmosphere; Lbελ corresponds to the emittance onto the pixel from 

the background terrain; ελLbb signifies the radiation emitted from the surface as a function 

of temperature, T; Luελ is the longwave radiation emitted by the atmosphere directly into 

the sensor’s field of view (thermal path radiance).  Although the terrestrial domain 

involves longwave emitted radiation, the surface reflectivity remains important since the 

background surface and atmospheric emissions falling on the pixel are partially reflected.     

 As was mentioned previously, the relevant component of radiance emanating 

from the source of interest must be isolated and accurately measured in order to serve as a 

reasonable input for deriving the desired scientific variable.  Many of the unknown terms 

in Equations 2.3 and 2.7 can either be obtained from radiative transfer models or from 

direct field measurements.  For instance, satellite navigational systems automatically 

record, in real time, the solar and sensor zenith angles (θ, ).  The TOA solar spectral 
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irradiance, Eλ, can be easily calculated either from Planck’s function or extrapolated 

using surface sun-photometer measurements and a Langley plot (Liou, 2002).  

Atmospheric correction models, such as MODTRAN (MODerate spectral resolution 

TRANsmittance), offer highly accurate emission, scattering and transmittance 

calculations for a wide variety of atmospheric temperature, moisture and trace gas 

profiles, aerosol distributions and cloud cover conditions.  The input profiles may 

originate from atmospheric radiosonde measurements or selected from a list of pre-

determined conditions selected by the user (refer to http://www.kirtland.af.mil/library/ 

factsheets/factsheet.asp?id=7915; MODTRAN 4, 2008).  Finally, ground-truthing 

methods, such as surface radiometer measurements, can provide accurately calibrated 

values for surface radiances for homogeneous surfaces (Schott, 1997).                   

 The amount of radiance arriving at each pixel represents an average from a fixed 

geometric area over the earth.  The physical size of the geometric area determines the 

spatial resolution of the sensor.   As the pixel size decreases, the amount of geometric 

detail that can be resolved in the scene increases.  For example, one might be able to 

distinguish the roads and buildings of an urban scene in a 10 m resolution image whereas 

one could not at 1 km resolution.   

A special problem associated with poor spatial resolution (large pixel sizes) is the 

issue of pixel mixing (Campbell, 2002).  A mixed pixel possesses more than one 

radiating feature.  If the physical dimensions of the pixel are larger than the dimensions 

of the feature, the feature cannot be spatially resolved in the image.  Mixed pixels are a 

common occurrence near geographical boundaries, such as coastlines, or over urban 

 

http://www.kirtland.af.mil/library/%20factsheets/
http://www.kirtland.af.mil/library/%20factsheets/
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areas.  The proportion of mixed pixels in an image will be dictated by the pixel size and 

complexity of the surface.  Images of a poor spatial resolution will experience a greater 

degree of pixel mixing, which can be especially problematic when trying to extract the 

individual contributions in the sensor radiance equations (Equations 2.3 and 2.7).             

 Other design considerations which affect instrument performance are the spectral 

and radiometric resolutions of the sensor.  The spectral resolution refers to both the 

spectral coverage and the width of the individual channels.  For example, the spectral 

“fingerprint” of some atmospheric trace gas will reveal narrow and unique absorption 

features, the strength of which will depend upon the type and concentration of the gas.  In 

order to identify the gas and estimate its concentration, the sensor must possess adequate 

spectral coverage of both the absorption feature(s) and the adjacent atmospheric 

window(s), which are regions of high transmissivity.  The channels must also be narrow 

enough so that the strength of the absorption can be resolved from the surrounding signal.       

 The radiometric resolution refers to the sensitivity of an instrument at perceiving 

differences in temperature or brightness.  The resolution is usually denoted by the number 

of bits associated with a given channel.  For example, an 8-bit channel can provide 28 or 

256 different shades of gray spanning the brightness range from black to white.       

 In order to extract the maximum amount of detail from the scene, engineers wish 

to design sensors that ideally contain a high degree of spatial, spectral and radiometric 

resolution.  However, improving the resolution usually increases the amount of noise 

contamination from extraneous background emissions relative to the scene radiance, 

leading to a poor (low) signal-to-noise ratio (S/N) (Lillesand and Kiefer, 1994).  To 
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achieve an acceptably high S/N ratio, either the spectral or the spatial resolution of the 

instrument will need to be sacrificed at the expense of the other.  

 

2.2 MODIS and Its Gridded Atmospheric Products  

2.2.1 Sensor Specifications: MODIS 

 The MODerate resolution Imaging Spectroradiometer (MODIS) gathers high 

spectral resolution images over the entire globe every other day.  At the poles, the 

coverage occurs more frequently (multiple times per day).  MODIS measures radiances 

in thirty-six discreet bands (channels) spanning the 0.405-14.385 µm region of the 

spectrum, a range that encompasses both the reflected solar bands and the thermally 

emitted terrestrial bands.  Two channels (bands 1-2) are acquired at 250 m resolution, 

five (bands 3 – 7) at 500 m, and the remaining twenty-eight (8 – 36) at 1 km, at nadir.  

The channels provide a 12-bit radiometric resolution (212 = 4096 grayscale levels), which 

translates to a sensitivity of less than 1oC in the thermal channels.  A full list of all thirty-

six spectral channels and their primary functions are provided in Table 2.1. 

There are two MODIS instruments currently in operation, one on board the Terra 

platform and the other on board Aqua.  Terra was launched in December 18, 1999 and 

Aqua on May 4, 2002. The satellites’ polar orbits are synchronized so that Terra’s 

equatorial crossing time occurs at 10:30 AM in descending mode and Aqua’s at 1:30 PM 

in ascending mode, which allows the instruments to maximize the best possible range in 

sun angles over the Earth.  Both orbits are approximately sun-synchronous with 

inclination angles of 98o.  Both fly at an altitude of 705 km and have an orbital period of 
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Table 2.1 The 36 MODIS spectral channels.  This table and additional sensor 
specifications can be found at http://modis.gsfc.nasa.gov/about/specifications.php  
(MODIS, 2008a). 

 
Primary Use Band Bandwidth1 Spectral Required 

   Radiance2 SNR3

Land/Cloud/Aerosols 1 620 - 670 21.8 128 

Boundaries 2 841 - 876 24.7 201 

Land/Cloud/Aerosols 3 459 - 479 35.3 243 

Properties 4 545 - 565 29 228 

 5 1230 - 1250 5.4 74 

 6 1628 - 1652 7.3 275 

 7 2105 - 2155 1 110 

Ocean Color/ 8 405 - 420 44.9 880 

Phytoplankton/ 9 438 - 448 41.9 838 

Biogeochemistry 10 483 - 493 32.1 802 

 11 526 - 536 27.9 754 

 12 546 - 556 21 750 

 13 662 - 672 9.5 910 

 14 673 - 683 8.7 1087 

 15 743 - 753 10.2 586 

 16 862 - 877 6.2 516 

Atmosperic 17 890 - 920 10 167 

Water Vapor 18 931 - 941 3.6 57 

 19 915 - 965 15 250 
     

Primary Use Band Bandwidth1 Spectral Required 

   Radiance2 NE[delta]T(K)4

Surface/Cloud 20 3.660 - 3.840 0.45(300K) 0.05 

Temperature 21 3.929 - 3.989 2.38(335K) 2 

 22 3.929 - 3.989 0.67(300K) 0.07 

 23 4.020 - 4.080 0.79(300K) 0.07 

Atmospheric 24 4.433 - 4.498 0.17(250K) 0.25 

Temperature 25 4.482 - 4.549 0.59(275K) 0.25 

Cirrus Clouds 26 1.360 - 1.390 6 150(SNR) 

Water Vapor 27 6.535 - 6.895 1.16(240K) 0.25 

 28 7.175 - 7.475 2.18(250K) 0.25 

Cloud Properties 29 8.400 - 8.700 9.58(300K) 0.05 

Ozone 30 9.580 - 9.880 3.69(250K) 0.25 

Surface/Cloud 31 10.780 - 11.280 9.55(300K) 0.05 

Temperature 32 11.770 - 12.270 8.94(300K) 0.05 

Cloud Top 33 13.185 - 13.485 4.52(260K) 0.25 

Altitude 34 13.485 - 13.785 3.76(250K) 0.25 

 35 13.785 - 14.085 3.11(240K) 0.25 
 36 14.085 - 14.385 2.08(220K) 0.35 
     

1 Bands 1 to 19 are in nm; Bands 20 to 36 are 
in µm    
2 Spectral Radiance values are (W/m2-µm-sr)    
3 SNR = Signal-to-noise ratio     
4 NE(delta)T = Noise-equivalent temperature difference   

Note: Performance goal is 30-40% better than required      

 

http://modis.gsfc.nasa.gov/about/specifications.php
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approximately 98 minutes.   

The MODIS instrument utilizes a scanning mirror to collect and focus the light 

from the Earth.  The mirror rotates at 20.3 rpm, and generates a field of view of ± 55 

degrees.  This translates to a swath width of about 2330 km.  This type of design is 

known as a “whiskbroom,” in which the scanning mirror generates image strips that are 

perpendicular to the direction of flight.  MODIS possesses a 10 km along track field-of-

view which translates into ten 1 km, twenty 500 m, or forty 250 m resolution lines for 

each scan.   In addition, MODIS possesses a sophisticated onboard calibration system 

which monitors the spatial, spectral and radiometric performance of all thirty-six 

channels during each mirror rotation.           

A more detailed description of the MODIS sensor can be found at 

http://modis.gsfc.nasa.gov/about/ (MODIS, 2008b).  Barnes et al. (1998) also provide a 

thorough description of the operational hardware design of MODIS.    

 

2.2.2 The MODIS Atmosphere Products 

MODIS currently generates over forty different operational data products, six of 

which are specific to the atmosphere, including the aerosol product (MOD04), the cloud 

product (MOD06) and the cloud mask (MOD35), which are being evaluated for this 

research.  The products are stored and delivered in Hierarchical Data Format (HDF) files.  

By convention, files acquired by the Aqua platform are labeled with a ‘MYD’ prefix, and 

those acquired by Terra receive a ‘MOD’ prefix.  The various products are identified by 

numbers such as ‘04’ for the aerosol product, ‘06’ for the cloud product and ‘35’ for the 

 

http://modis.gsfc.nasa.gov/about/
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cloud mask.  The HDF filename also includes the acquisition date and start time, 

collection version, which will be discussed briefly, as well as the date and time that the 

data was processed.  A detailed description of the HDF file naming system can be found 

at http://modis-atmos.gsfc.nasa.gov/MOD06_L2/filename.html (HDF, 2008). 

Within each HDF file exists multiple layers of variables called scientific data sets 

(SDS’s) which typically constitute, along with the science parameters or channel 

radiances, geographical information (latitude and longitude), precise overpass times, solar 

and sensor viewing geometries and quality assurance (QA) data for every pixel.  Each 

SDS consists of a 2-dimensional array of floating point numbers or integers, each array 

element representing a pixel value.  Also each SDS is associated with an attribute list that 

provides supplemental information such as the name, variable type (float, long, etc.), 

units, range, and fill values.  A full list of all cloud product SDS’s and their associated 

attributes can be found at http://modis-atmos.gsfc.nasa.gov/_specs/ (MODIS, 2008c). 

Some SDS’s require a scale factor or an offset to convert the raw pixel value, or 

digital number (DN), to the correct units.  For example, the MODIS cloud product 

(MOD06) consists of forty-six SDS’s, the sixteenth of which stores the cloud top 

temperature in degrees Kelvin.  According to the MOD06 product specification, the range 

of digital numbers for cloud top temperature spans from 0 to 20,000.  To convert these 

DN values to the appropriate Kelvin temperature, an add_offset constant of 15,000 must 

be added to the DN and then multiplied by a scale_factor of 0.01.  Hence the 0 – 20,000 

range corresponds to a temperature range of 150 K – 350 K.    

 

http://modis-atmos.gsfc.nasa.gov/_specs/
http://modis-atmos.gsfc.nasa.gov/MOD06_L2/filename.html
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The spatial dimensions of each MODIS image granule, which represent a five 

minute data acquisition, encompass an area 2330 km wide by 2030 km long.  This 

translates to 1354 columns by 2030 rows or 270 x 406 for the 1 km or 5 km resolution 

products respectively.  MODIS also generates 250 m, 500 m and 10 km resolution 

products.  Note that the spatial resolution only refers to the pixel size at nadir, the 

position directly below the sensor along the flight path.  Towards the edges, the pixels 

become increasingly stretched out due to the Earth’s curvature and the steeper viewing 

angles.  At ± 55o sensor viewing angles, the pixel dimensions of the 1 km x 1 km product 

are stretched to approximately 2 km x 4.8 km.  This increase in pixel size is associated 

with a special type of edge distortion known as the bowtie effect.  It is mainly the result of 

pixel overlap which causes the same region of the earth to be sampled more than once.  

The bowtie effect can be corrected for using a reprojection algorithm.  For a discussion of 

the bowtie effect, refer to: http://www.sat.dundee.ac.uk/modis-faq.html (Bowtie effect, 

2008).        

Data products generated from the Earth Observing System (EOS) satellites come 

in five standard levels, levels 0 – 4, based on the amount of processing that a product has 

undergone (refer to http://ecsinfo.gsfc.nasa.gov/sec3/ProductLevels.html; MODIS, 

2008d).  Level-0 is the rawest form of data, which has experienced only minimal 

processing.  Level-0 data is not available for public use as it does not really provide any 

practical research applications.   

Level-1 (A and B) files typically provide the channel radiances as well as the 

navigational and viewing geometry information during the acquisition.  These data have 

 

http://ecsinfo.gsfc.nasa.gov/sec3/ProductLevels.html
http://www.sat.dundee.ac.uk/modis-faq.html
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been radiometrically and geometrically calibrated, but still contain the edge distortions 

from the bowtie effect.   

Level-2 products are geophysical variables produced at the pixel scale for every 

5-minute granule of data.  They are derived from the level-1 channel radiances and from 

additional level-2 SDSs (e.g. the cloud mask). Level-2 data include the products labeled 

MOD04 to MOD44 listed here: http://modis.gsfc.nasa.gov/data/dataprod/index.php (last 

referenced, (MODIS, 2008e).  Depending on the SDS, level-2 data can be produced at the 

1 km, 5 km or 10 km resolutions.      

Level-3 data are essentially level-2 resampled to a courser 1o latitude by longitude 

grid and averaged over the daily, 8-day and monthly timescales.  In the field of climate 

modeling, level-3 products are generally considered the most useful as they provide 

statistical information (mean and standard deviation) within each 1o x 1o box globally.   

Finally level-4 data, which represent the highest level of processing, are derived 

from model outputs using lower level inputs.  Examples of level-4 data include land 

Evapotranspiration (MOD 16) and Ocean Primary Productivity (MOD 27).  Currently, 

there are no level-4 atmospheric products.  The cloud and aerosol products being 

evaluated for this research are level-2 type data.                                 

MODIS level-1 and higher level atmospheric products can be ordered free of 

charge through the level-1 and Atmosphere Archive Distributions System (LAADS) at 

the following website: http://ladsweb.nascom.nasa.gov/index.html (LAADS, 2008a).  

The search interface allows the user to select the product type and to specify the date and 

overpass time as well as the geographic coordinates of the region of interest.                

 

http://ladsweb.nascom.nasa.gov/index.html
http://modis.gsfc.nasa.gov/data/dataprod/index.php
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  The algorithms used to derive the various MODIS products are constantly 

changing as efforts to improve the existing algorithms and to incorporate new ones are 

continually evolving.  Every few years, the MODIS science team reprocesses all of the 

archived MODIS data using a revised version of the algorithms.  The algorithm version is 

denoted by the collection number in the product name.  The most recent version of the 

collection type is version 005.  All of the cloud product data for this research falls under 

the collection 005 category, while the aerosol data is collection 004.  Algorithm 

modifications can found at http://modis-atmos.gsfc.nasa.gov/products_C005update.html 

(MODIS, 2008f).  

 

2.3 The MODIS Algorithms 

2.3.1 Cloud Mask 

2.3.1.1 Cloud Mask: Description  

The most fundamental of all MODIS level-2 products is the cloud mask, a 1-km 

product denoted as MOD35 or MYD35 for the Terra and Aqua products respectively.  

Many remote sensing applications rely on the cloud mask to screen out cloud obstructed 

pixels.  The MODIS cloud mask combines earlier cloud detection techniques developed 

from previous satellite campaigns like the Advanced Very High Resolution Radiometer 

(AVHRR) Processing scheme Over cLoudy Land and Ocean (APOLLO), the 

International Satellite Cloud Climatology Project (ISCCP) and the Cloud Advanced Very 

high resolution Radiometer (CLAVR), with newer tests that exploit MODIS’s additional 

spectral band (Ackerman et al., 2002).                 
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The cloud mask computes a ‘Q’ score which assigns one of four levels of clear-

sky confidence to each pixel as follows: (Q ≥ 0.99) confident clear, (0.95 ≤ Q < 0.99) 

probably clear, (0.66 ≤ Q < 0.95) probably clouds and (Q < 0.66) confident clouds.  The 

algorithm is an amalgamation of numerous cloud detection tests, each using a set of 

radiance (visible) or brightness temperature (infrared) thresholds to determine the 

likelihood that a give pixel is cloud covered.  The thresholds for an individual test may 

vary depending on the surface conditions (e.g. snow cover) and land cover types (e.g. 

vegetation, ocean).  Clouds generally tend to be brighter in the visible and dimmer in the 

infrared than the surrounding surface, so many of the detection tests exploit these 

common attributes.  If the results of the spectral tests are inconclusive, which is common 

in cases of broken clouds or in the vicinity of cloud edges, spatial and temporal 

variability tests can be applied as a last resort.  According to the latest version (2002) of 

the cloud mask theoretical basis document (ATBD), only the spatial variability tests are 

applied, and only over large bodies of water, where the surface tends to have a uniform 

thermal radiance and where sunglint effects can be accounted for. However, the most 

current listing of cloud mask bits (R. Frey private communication, 2006) specifies that a 

temporal variability test is now included along with several new land based spatial 

variability clear-sky restoral tests.       

Results of the cloud mask algorithm are stored in binary format as individual bytes.  

There mask provides six bytes of information, numbered 0 to 5; each byte contains eight 

bits, numbered 0 to 7.  The first byte, denoted as ‘Byte #0’ illustrated in Table 2.2, 

corresponds to the main cloud mask byte. The remaining five bytes store the results of the  

 



 36

 
Table 2.2 Translation of the main cloud mask byte (Byte #0).  This and other byte 
fields can be found at http://modis-atmos.gsfc.nasa.gov/MOD35_L2/format.html 
(MODIS, 2008g).   

 
Cloud_Mask Bit-Field Interpretation  

Byte #0  
(1km Cloud Mask & Processing Path Flags)  

Bits  Field Description  Bit Interpretation Key  

0 = Not Determined 0 Cloud Mask Flag  

1 = Determined  

0 = Confident Cloudy 

1 = Probably Cloudy 

2 = Probably Clear 

1-2 Unobstructed FOV 
Quality Flag  

3 = Confident Clear  

0 = Night 3 Day/Night Flag  

1 = Day  

0 = Yes 4 Sunglint Flag  

1 = No  

0 = Yes 5 Snow/Ice 
Background Flag  1 = No  

0=Water 

1=Coastal 

2=Desert 

6-7 Land/Water 
Background Flag  

3=Land  

 
 
 
individual cloud tests.  Nine additional quality assurance (QA) bytes contain 

supplemental information regarding the confidence of the cloud mask overall, whether or 

not an individual test was applied, and the ancillary input data sources. 

In order to extract the bit information, the pixel value, an integer ranging from 0 to 
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255, must first be converted to its binary equivalent, which is a string of eight 

consecutive ones and zeros.  By convention, the ordering of the bits begins with the last 

bit (bit 7) first (bit 0).   For example, assume that a pixel value for the first byte of the 

cloud mask happens to be ‘249’. Represented as a binary, this integer translates to 

‘11111001’.  After reordering the string, the conventional translation becomes 

‘10011111’.  Refering to Table 2.2, a value of 249 decodes to the following:  

 

bit 0 = ‘1’, the cloud mask was Determined;  

bits 1-2 = ‘00’ = 0, the cloud mask denotes Confident Cloudy;  

bit 3 = ‘1’, the overpass time occurred during the Day defined for solar zenith  

                   angles ≤ 85o  

bit 4 = ‘1’, denotes No Sunglint (sunglint is only flagged over water at  

                   certain sensor viewing geometries);  

bit 5 = ‘1’, denotes No Snow/Ice Background; 

bits 6-7 = ‘11’ = 3, denotes Land as the surface type.              

 

 To compute the main cloud mask, stored in bits 1-2, the algorithm must assign a 

domain to a given pixel based on the surface type and the solar illumination conditions.  

The domain is specified by the input flags in bits 3 – 7 of Byte #0, and determines which 

spectral tests to include during the processing path.  It would not make any sense, for 

example, to apply the visible reflectance tests on a night flagged pixel.  Also, some 

threshold values for a given test might need to be adjusted depending on the surface type 
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or if snow cover exists.  Domain inputs, like snow cover and ecosystem type, may 

originate from outside data sources.  The sources used are specified in the QA bytes.  For 

example, information regarding snow cover may come from the National Snow and Ice 

Data Center (NSIDC) snow cover map, the National Oceanic and Atmospheric 

Administration (NOAA) snow cover product, or from MODIS, itself, which can apply a 

normalized snow difference index (NSDI) calculation using the visible and near-infrared 

channels.  Additionally the algorithm uses an ecosystem map to provide a more detailed 

surface cover type that helps identify the pixel background (bits 6 and 7).  The ecosystem 

types are also identified in the QA bytes.         

Some tests specialize on detecting particular types of clouds located in a particular 

region of the atmosphere.  For example, the 1.38 µm near-infrared reflection test, stored 

as bit 16 in Byte #2, is used primarily to detect high thin cirrus.  Since this wavelength is 

located near a water vapor absorption band, the 1.38 µm wavelength usually gets 

absorbed by moisture in the lower atmosphere, and thus the signature from low level 

clouds is minimal.  Water vapor absorption is quite small in the dry upper troposphere 

where cirrus clouds exist, so cirrus, if present, will reflect a significant portion of this 

wavelength back to the sensor.  This test has proven useful at detecting extremely thin 

translucent cirrus clouds (Gao et al., 1998).      

The cloud detection tests are assembled into five groups, based upon the type of 

cloud cover conditions for which they are suited to detect.  The groups aim to be 

independent of one another, but some tests may overlap with more than one group.  For a 
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complete list and brief descriptions of each of the various cloud detection tests, refer to 

the MOD35 algorithm theoretical basis document (ATBD) (Ackerman et al., 2002).   

 A set of threshold values for each test determines the likelihood that a pixel is 

obscured by cloud.  For example, Figure 2.2 provides the brightness temperature 

thresholds for the 11 µm brightness temperature (BT11) cloud detection test over the 

ocean, stored as bit 30 in the most current bit field description.  The confidence level is 

plotted as a function of the brightness temperature.  Note that instead of just one 

temperature threshold, there are three.  If the 11 µm brightness temperature of the pixel is 

colder than the 267K minimum or above the 273K maximum, the test will yield either a 

0% confidence of clear or a 100% confidence of clear.  However, if the temperature falls 

in between these values, the confidence level is interpolated using a simple linear 

relationship, illustrated below. 

 

         

Figure 2.2: Temperature thresholds for the BT11 test over the ocean.  The x-axis 
gives temperature (K) and the y-axis gives confidence level (Ackerman et al., 2002) 
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   Once all of the appropriate tests have been performed, the minimum confidence 

scores from each group are collected, 

 

           Gi=1,5 = min[Fi]                                                      (2.8) 

 

where Gi represents the minimum confidence score from group i.  The final cloud mask 

can then be computed by taking the Nth root of the product of the minimum scores; 

                                                     Q
i

N

1

5

Gi .                                                        (2.9) 

Note that the algorithm is “clear sky conservative” so that if one of the test results 

happens to score a zero, Q is automatically zero regardless of the other test results.  Also, 

it is important to realize that a final cloud mask indicating confident clear or probably 

clear does not necessarily mean that the result of any individual test passed the clear 

threshold.  The individual test results are provided in the bytes of the MOD35 file, but the 

actual confidence value, which can range from zero to one, is not included. Only a 

Boolean ‘yes’ or ‘no’ as to whether or not the pixel passed the clear sky threshold is 

provided.     

 Given the importance of the cloud mask in many fields, the main byte (Byte #0) is 

included with other level-2 products including the cloud product.  However the original 

2030 x 1354 1-km pixel array has been resized to a courser 406 x 270 5-km dataset.  The 

resampling method assigns the center pixel of each 5 x 5 1-km box as the representative 

5-km pixel (R. Frey private communication, 2006).  However, this method could 
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potentially have some drawbacks in that the cloud cover conditions represented in the 1-

km2 region may not necessarily be representative of the cloud cover conditions over the 

entire 25-km2 area.  Therefore this study intends to examine the cloud mask using three 

different techniques.  First, the accuracy of the 5-km pixel nearest to the ground site will 

be examined, using the cloud mask included with the MOD06 product.  Second, the 

accuracy of the 1-km pixel, from the actual MOD35 cloud mask, located above the 

ground site will be examined.  Third, the mode value of a 5x5 1-km pixel array, also 

derived from the actual cloud mask, above the ground site will be evaluated.    

 

2.3.1.2 Cloud Mask: Possible Sources of Error 

 Cloud detection is most problematic when the contrast in reflectance or 

temperature between the cloud and the underlying surface is poor (Ackerman et al., 

2002).  In the visible, surfaces with a high albedo such as snow and ice covered areas, 

deserts and salt flats can sometimes be misinterpreted as clouds.  In such cases, the 

ancillary inputs will denote areas of desert or snow covered regions so that the threshold 

values of the cloud detection tests can be modified accordingly.  Sunglint, caused by the 

specular reflections of sunlight off of water, can also contaminate the field-of-view.  

MODIS includes a “sunglint” flag to warn the user when the magnitude of the reflected 

sun angle over the ocean is less than 36o.  

 Poor thermal contrast usually results when the surface is covered in snow or ice, 

or if a surface temperature inversion is present.  Both conditions are common over 

Antarctica, Greenland, and the northern Polar latitudes during winter.  Problems with 
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cloud detection are exacerbated by long nights and low sun angles during winter in the 

northern regions.  A scene that gets classified as night automatically reduces the number 

of threshold tests that can be applied.    

 The detection of optically thin nearly transparent cirrus has always been difficult 

for passive instruments.  Fortunately, there are several NIR reflectance and brightness 

temperature tests which are designed specifically to sense thin cirrus.  The 1.38 µm near-

infrared reflectance test mentioned earlier is one such test that uses a reflectance 

threshold to look for high clouds.  This test is only effective when there is enough 

humidity in the air to absorb the radiation upwelling from the surface.  Over polar and 

high altitude regions, where the integrated precipitable water is less than 1 cm, a much 

larger component of the surface reflectance is allowed to reach the sensor, thereby 

confusing the cloud signal (Ackerman et al., 2002).  

 The cloud mask also includes a non-cloud obstruction flag, which is reserved for 

cases suspected of being obstructed by an aerosol, such as smoke, dust or a volcanic 

plume.  It uses several brightness temperature and reflectance tests which help to 

discriminate aerosol from cloud, however, many cases will arise where it may be 

impossible to separate the two.   

 Finally, cases of broken clouds or cloud edges resulting in pixel that is less than 

100% cloud-covered, can yield erroneous results.  Cloud shadows, which lower the 

surface albedo, are also flagged for all confident clear sky daytime scenes.  However, the 

cloud shadow flag is considered experimental (Ackerman et al., 2002). 
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2.3.1.3 Cloud Mask: Validation Studies        

 Validation studies are currently underway to examine the performance of the 

MODIS cloud mask.  Some field studies employ active and passive ground instruments to 

collect cloud cover data concurrently at the time of a MODIS overpass.  In other field 

tests, researchers have flown concurrently with onboard instruments.   The instruments 

collect both remotely sensed and in situ cloud data, which can then be compared with the 

MODIS derived products.   

Yet another validation technique will evaluate the MODIS products against the 

products derived from other satellite sensors.  In addition to MODIS, the Aqua and Terra 

platforms contain a host of instruments suitable for validation studies.  The recently 

launched Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 

and CloudSat satellites, part of the A-Train constellation that includes the Aqua platform, 

contain an active lidar and a millimeter wavelength radar that can provide unambiguous 

cloud detection data to compare with the MODIS Aqua cloud products. 

 An exploratory study over southern Africa during the summer of 2000 observed 

that the MODIS Airborne Simulator (MAS) derived cloud mask was able to differentiate 

clouds from aerosols over both the land and the ocean (King et al., 2003).  Another study 

(Berendes et al., 2004) examined the accuracy of the MODIS cloud mask against a 

variety of cloud cover measuring ground instruments at the Atmospheric Radiation 

Measurement (ARM) site in Barrow, AK from February to September of 2001.  The 

study compared 3650 cloud cover cases between MODIS and a set of ground-based 

instruments which included a Vaisala Ceilometer (VCEIL), a Micropulse Lidar (MPL), a 
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Whole-Sky Imager (WSI), and a Normal Incidence Pyrheliometer (NIP).  The site 

encompassed a 700 km2 area.  Researchers found that the MODIS cloud cover agreed to 

within ± 20% approximately 77% of the time with the VCEIL estimate, 83% of the time 

with the MPL, 81% of the time with the ARSCL product and 74% of the time with the 

WSI.  They also concluded that MODIS was better than the surface instruments at 

detecting high thin cirrus, but had problems detecting low level cumulous and fog. 

 To confront the challenges of cloud detection over snow and surface temperature 

inversions, Liu et al. (2004) examined the performance of the MODIS cloud mask over 

three stations in the Arctic and one in the Antarctic during 2001 and 2002.   Two new 

brightness temperature tests were included to supplement the regular cloud detection 

tests.  With the additional tests, the MODIS false positive cases were reduced from 

44.2% to 16.3% over the Arctic and from 19.8% to 2.7% over the Antarctic.  Most of the 

false positives occurred during the nighttime overpasses, when inversions were most 

likely to be present.                 

 One of the first satellite to satellite validation studies to examine the cloud mask 

was conducted in 2003 using the Geoscience Laser Altimeter System (GLAS) 1064 nm 

laser on board the Ice Cloud and land Elevation Satellite (ICESat) platform (Mahesh et 

al., 2004).  Although the laser failed a little more than a month after it began collecting 

data in February of 2003, researchers were able to gather ninety-nine cases of GLAS-

Aqua overlap and twenty-four cases of GLAS-Terra overlap.  Overall, the MODIS 

generated cloud mask agreed 77% of the time with the GLAS instrument, however, the 

agreement with the MODIS-Terra dataset was significantly poorer because most of the 
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Terra-GLAS overlaps occurred at night.  In addition, agreement over high latitude areas 

suffered because of snow cover.   

 Another study devised a maximum likelihood (ML) cloud and surface cover 

classification that used the MODIS cloud mask to define the initial training sites in the 

scene (Li et al., 2003).  A ML classification is a statistical method that attempts to assign 

a random pixel belonging to an unknown type into a known group (class) by matching its 

pixel statistics with those to the set of pre-existing groups (Lillesand and Kieffer, 1994).  

The ML was applied to a variety of daytime scenes over the Midwestern United States.  

Based on qualitative image interpretation, the maximum likelihood classification using 

the MODIS cloud mask seemed to improve the initial cloud mask classification, 

especially over snow and desert covered areas where the cloud mask occasionally 

misidentified the bright surface as cloud.     

 

2.3.2 Cloud Top Properties 

2.3.2.1 Cloud Top Properties: Description 

 The cloud top temperature and pressure datasets are computed globally every one 

to two days at 5 km resolution and are included with the MODIS cloud product.  

Calculation of the cloud top properties entails the use of the MODIS cloud mask, 

radiance measurements in five of MODIS’s infrared channels located near the 15 µm 

CO2 absorption band, and surface and atmospheric temperature and moisture profiles 

derived from National Centers for Environmental Prediction (NCEP) or from NASA’s 

Data Assimilation Office (DAO).  The cloud top pressure calculation employs two 
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algorithms; the carbon dioxide density slicing algorithm, henceforth labeled CO2, is 

applied to optically thin and thick mid to high level clouds, and the 11 micron brightness 

temperature method, henceforth known as BT11, is used with optically thick low clouds.             

 The CO2 algorithm has proven to be a robust means of estimating cloud top 

pressure for both optically thick and thin clouds above 700 hPa in altitude (Frey et al., 

1999; Zhang et al., 2002).  The underlying theory behind this method is based on the 

varying degrees of absorption of certain spectral bands located near the edge of the broad 

15 m CO2 absorption line. The algorithm uses MODIS channels 31 and 33 – 36 

corresponding to the band centered wavelengths of 11.0, 13.3, 13.6, 13.9 and 14.2 µm 

respectively.  Band absorption increases as the 15 µm CO2 absorption line is approached.  

As absorption increases, the altitude where the source of radiation originates also 

increases. 

 The cloud top pressure is calculated by taking the ratio of the cloudy minus the 

clear sky radiances for two adjacent spectral bands, expressed as (Menzel et al., 2002) 
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where R is the cloudy radiance measured by the sensor for the bands centered at 

frequencies ν1 and ν2, Rclr is the corresponding clear sky radiance for a given surface 

reflectance, atmospheric temperature and moisture profile, N is the cloud cover fraction 
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in the field-of-view, Ei is the emissivity for band i, τ is the atmospheric transmissivity for 

frequency ν at pressure level p, and B is the frequency dependent Planck radiance as a 

function of temperature and pressure.  The term on the right is integrated from the 

pressure at the surface, Ps, to the pressure at the cloud top, Pc.  One can assume that, for 

bands that are spectrally close together (ν1 ≈ ν2), the spectral emissivities are nearly 

identical (E1 ≈  E2).  The Rclr values are obtained from the Pressure layer Fast Algorithm 

for Atmospheric Transmittances (PFAAST) radiative transfer model. The other variables 

utilize atmospheric temperature and moisture profiles from NCEP reanalysis data.  Pc can 

be computed through forward calculations of the integral.  Once Pc is determined, the 

cloud top temperature can be interpolated from the NCEP profile.  

 In order to calculate a Pc for a given 5 x 5 1-km pixel field-of-view, a minimum of 

four of the twenty-five 1-km cloud mask pixels must be flagged as either probably cloudy 

or confident cloudy.  If this basic requirement is met, then five separate spectral ratios 

using Equation 2.10 are calculated using the following five band ratios: (B36/B35), 

(B35/B34), (B35/B33), (B34/B33), and (B33/B31), the latter being reserved for ice 

clouds.  The value of the cloud top pressure, Pc, which provides the best solution for all 

five ratios is assigned as the optimal solution.   

 The CO2 slicing algorithm only works if the cloudy minus clear sky radiance 

difference falls outside of the instrument noise levels (Menzel et al., 2002).  This also 

applies to low cloud cases possessing tops below 700 hPa, where signal from the cloud is 

too weak to generate a large enough difference.  For these cases, the cloud top is 
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computed by matching the 11 µm brightness temperature with the temperature in the 

atmospheric profile, assuming an optically thick cloud that behaves like a blackbody.  

                  

2.3.2.2 Cloud Top Properties: Possible Sources of Error  

 The CO2 slicing algorithm generally tends to overestimate the cloud top pressure 

(underestimate the geometric height), because it measures the “radiative center-of-mass” 

of the cloud (Menzel et al., 2002, 2006).  For thin translucent cirrus, this usually falls 

near the geometric center of the cloud, but approaches the actual cloud top as the optical 

depth increases.  The algorithm also assumes a single cloud layer within the field-of-

view.  Cases of multiple cloud layers, which occur over 50% of the time (Baum and 

Wielicki, 1994), will contaminate the results, especially for cases of thin cirrus clouds 

overlying optically thick water clouds.  This influence will also tend to underestimate the 

cloud top altitude.  Additional sources of error include incorrect surface temperature 

estimates, erroneous temperature profiles, instrument noise and any influences that could 

confuse the estimates of clear sky radiance (Menzel et al., 2002).  However, these sources 

are thought to be relatively minor compared to the first two. 

 Menzel et al. (2002) report that most Pc errors tend to fall within the 50 – 100 hPa 

range of the actual cloud top for mid to high level clouds.  The largest estimated error 

generated from a radiative transfer model was computed to be 220 mb (hPa), which 

occurred for a thin ice cloud with an effective emissivity, defined as the product N*E 

(Equation 2.10), of 0.10 overlying an optically thick water cloud located at an altitude of 

700 mb.   
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2.3.2.3 Cloud Top Properties: Validation Studies   

 The CO2 algorithm has been around for at least three decades.  Smith and Platt 

(1978) used it to infer cloud top heights using data collected by an infrared radiometer on 

board the Nimbus 5 satellite.  Data from the meteorological Geostationary Operational 

Environment Satellite (GOES), High resolution Infrared Radiometer Sounder (HIRS), 

High resolution Interferometer Sounder (HIS), Visible-infrared spin scan radiometer 

Atmospheric Sounder (VAS), and most recently from the MODIS Airborne Simulator 

(MAS), an airborne prototype of MODIS, have all used the CO2 technique to estimate 

cloud top pressures.  Validation methods have varied since cloud top heights can be 

measured directly using ground, airborne and satellite based lidars and radar, or indirectly 

using stereo parallax views of clouds and cloud shadows from visible satellite imagery 

(Naud et al., 2005).   

 Frey et al. (1999) compared over 4700 simultaneous observations of cloud top 

heights, 66% of which were multi-layer cases, using the MAS instrument and a dual 

polarization CLS (Cloud Lidar System) on board the NASA ER-2 aircraft during the 

Subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS) field experiment 

over the Southern Great Plains (SGP) of the U.S.  The MAS CO2 derived cloud top 

heights fell to within 500 m and 1500 m for 32% and 64% of the cases respectively.  For 

optically thin clouds those accuracies fell around 30% and 63% respectively.  The 

researchers concluded that inaccurate clear-sky radiance estimates pose a greater risk to 

Pc estimates than multi-layer clouds.   
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 Using a ground based Millimeter Cloud Radar (MMCR) and an Atmospheric 

Emitted Radiance Interferometer (AERI) over the SGP Atmospheric Radiation 

Measurement (ARM) site, Mace et al. (2005) compared cirrus cloud properties derived 

from the ground based instruments with those derived from MODIS.  They concluded 

that the MODIS cirrus height retrievals tend place the cloud lower in the atmosphere by 

about 100 – 200 hPa.   

 Another study compared the MODIS and MISR (Multi-angle Imaging Spectro-

Radiometer) derived cloud top heights with those from a ground based MMCR at two 

sites, one located over the ARM SGP site, which tends to have a large frequency of high 

clouds, and the other at the Chilbolton Facility for Atmospheric and Radio Research 

(CFARR) in the U.K., a site with a high frequency of low level marine clouds (Naud et 

al., 2005).  Differences between the MODIS derived CO2 retrievals and the MMCR 

retrievals for mid to high level clouds fell around -1.2 ± 1.0 km and 0.6 ± 1.3 km for the 

SGP and CFARR sites respectively.  When the BT11 method was used, the correlation 

between the MODIS and the MMCR were found to be -1.4 ± 2.8 km and -0.5 ± 2.3 km 

for the SGP and CFARR sites respectively.  They also found cloud top height agreements 

to within 1 km between the MODIS and MISR.   

 

2.3.3 Cloud Thermodynamic Phase 

2.3.3.1 Cloud Thermodynamic Phase: Description 

One of the more important 5 km resolution datasets included with the MOD06 

product is the cloud thermodynamic phase.  Particle phase significantly influences how 
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radiation interacts with clouds, which is important for modeling the atmospheric radiation 

budget.   Additionally, particle phase is a required input to both the cloud particle size 

(reff) and the optical thickness (τ) algorithms (King et al., 1997; Platnick et al., 2003; Lee 

et al., 2006).  Calculation of the cloud particle phase primarily employs two algorithms 

which exploit the differences in the refractive indices of water and ice over discreet 

spectral regions.  The tri-spectral brightness temperature difference (BTD) method uses 

MODIS bands 29, 31 and 32 centered at 8.55, 11.03 and 12.02 µm respectively, allowing 

the algorithm to operate during both day and night overpasses.  The visible near-infrared 

bands ratio (BR) method computes the reflectance ratio between one of two near-infrared 

channels (1.61 or 2.13 µm) and a visible channel (0.66 µm).  This method augments the 

BTD algorithm during the daytime overpasses.  In addition, the cloud phase algorithm 

incorporates the results of several cloud detection tests from the cloud mask algorithm, 

tests that are designed specifically to identify a particular cloud type (e.g. cirrus) 

(Platnick et al., 2003).  Finally, a “sanity check” gets applied where all uncertain pixels 

with cloud top temperatures below -40oC or above 0oC get grouped under ice or water 

respectively (King et al., 2004; Chylek et al., 2006).       

As with the cloud top algorithm, the cloud phase implements the MODIS cloud 

mask to identify the cloud covered pixels in its field-of-view (FOV).  The 1-km pixels are 

then assembled into 5 x 5 boxes.  If four of the twenty-five pixels in each box are 

determined to be either probably or confident cloudy, then the box receives a ‘cloudy’ 

label.  The algorithm then computes the mean brightness temperature or reflectance 

values within that box and uses those to determine the final cloud phase category 
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(Platnick et al., 2003).  Detailed flow charts for both the collection 004 and 005 cloud 

phase algorithms can be downloaded from http://modis-atmos.gsfc.nasa.gov/MOD06_L2/ 

atbd.html (MODIS, 2008h).  The basic scientific principles underlying the operation of 

the BTD and BR methods are discussed below.                  

The cloud phase yields five cloud groups: ice, water, mixed, uncertain or clear.   

The differences between mixed and uncertain appear to be arbitrary.  According to Dr. 

Baum of the MODIS atmosphere science team, mixed and uncertain can be used 

interchangeably (B. Baum private communication, 2006).  Therefore to simplify matters, 

the uncertain group has been combined with the mixed group.         

 The scattering and absorption of light by a medium is governed by the complex 

index of refraction, which is given by the equation (e.g. Menzel et al., 2002) 

 

                                         m = nr – ini                                                           (2.11) 

 

where m represents the complex index of refraction, nr is the real part typically defined as 

the ratio of the speed of light through the medium over the speed of light in a vacuum, 

and ni, the imaginary part, denotes absorption.  Furthermore, the wavelength dependent 

absorption coefficient, κ, can be calculated directly from ni as follows,  

 

                                          
4 ni

                                                             (2.12) 

    

 

http://modis-atmos.gsfc.nasa.gov/MOD06_L2/%20atbd.html
http://modis-atmos.gsfc.nasa.gov/MOD06_L2/%20atbd.html
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where λ is the wavelength of light (e.g. Baum et al., 2000).  Knowing κ, the optical depth, 

, can be inferred.   

 The bulk measurements of ni over the 7 – 13 µm range are given in Figure 2.3.  

Between 8 – 10 µm, absorption by liquid and ice is nearly identical.   Beyond 10 µm, the 

absorption curves diverge and reach a maximum separation at around 11.5 µm.  At this  

wavelength, absorption by ice is nearly five times greater than that of liquid water.  This 

large discrepancy in ni provides the theoretical foundation underlying the BTD method.  

First, the measured radiances in the 8.55, 11.03 and 12.02 µm bands for a cloud covered 

FOV are converted to brightness temperature.  When the [8.55 – 11.03 µm] brightness 

temperature difference (BTD8.5-11) is plotted as a function of (BTD11-12), the ice, water 

 

 
 

Figure 2.3:  Imaginary refractive index of water and ice from 8-13 µm.  Imaginary 
index of refraction curves over a planar surface of water (solid) and ice (dotted) in the 
thermal infrared.  The x-axis gives the wavelength ( m) and the y-axis provides the 
imaginary refractive index (ni from Equation 2.11) on a logarithmic scale (Baum et al., 
2000).  
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and clear pixels tend to cluster into distinct groups, with the ice clustering above a line of 

slope one and the liquid below.  This behavior is illustrated in Figure 2.4, which shows 

the scatter-plot of the BTD8.5-11 versus BTD11-12 for a thin ice and a thick water cloud.  

Track A shows the distribution of BTD for a pure ice cloud over the central plains and 

Track D, the distribution for a pure water cloud over the Gulf of Mexico.  This data was 

collected by the MAS sensor.  Clear pixels tend to exhibit a negative BTD8.5-11 because 

the emissivity of the surface at 11µm is usually larger than at 8.5µm (Baum et al., 2000).  

Phase discrimination of mixed phase clouds can be extremely difficult.  Figure 2.6 

depicts the clustering behaviors of various cloud cover groups, which are represented  

 
 

 
 

Figure 2.4: BTD8-11 versus BTD11-12 for an ice and water cloud.  Scatter-plot of the 
BTD8-11 versus BTD11-12 pixels for an ice cloud (black dots) and a liquid water cloud 
(gray dots) collected during two MODIS Airborne Simulator (MAS) flights over the 
Great Plains (Strabala et al., 1994). 
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by the boxed regions in Figure 2.5 (Strabala et al., 1994).  Under complex sky conditions, 

such as broken cloud or ice cloud overlying water cloud, groups can overlap with one 

another making it difficult to unequivocally determine the particle phase. 

The BR method uses a similar approach to distinguish between ice and water 

clouds, however, it exploits the differences in ni in the shortwave NIR, using MODIS 

bands six and seven centered at 1.64 and 2.13 µm as shown in Figure 2.7 (Baum et al., 

2000). 

Similar to the BTD principle, ice absorbs more radiation over these two spectral 

regions than liquid.  A band ratio is calculated using either the 1.24 µm or the 1.64 µm 

channel with a visible channel.  Taking the ratio reduces the dependence of the measured 

 
 

 
 

Figure 2.5: Six cloud types captured by the MAS instrument.  A (left) visible channel 
50 m resolution mixed cloud image derived from the MAS and its corresponding (right) 
IR image (11 µm) at 500 m resolution (Strabala et al., 1994). 
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Figure 2.6:  BTD8-11 versus BTD11-12 scatter-plot of six cloud types.  The BTD scatter-
plot corresponding to the six boxed regions represented in Figure 2.5.  The main clusters 
are circled and the numbers reprinted for clarity (Strabala et al., 1994).   

 
 

 
 

Figure 2.7:  Imaginary refractive index for water and ice from 0.5 - 2.5µm.  
Imaginary refractive index (ni) over a planar surface of water (solid) and ice (dotted) in 
the NIR.    The plot gives the logarithm of ni as a function of wavelength from 0.50 – 2.5 

m (Baum et al., 2000). 
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radiances on particle shape, size, and number density, and MODIS channel 1 (0.645 µm) 

is often used because it offers the lowest signal to noise ratio (Chylek et al., 2006).   

 

2.3.3.2 Cloud Thermodynamic Phase: Possible Sources of Error 

The bulk scattering properties of clouds depend not only on phase, but also on the 

particles size distribution and, in the case of ice clouds, particle shape (Baum et al., 

2000).  Figure 2.8 depicts the BTD8.5-11 and the BTD11-12 for both water and ice clouds as 

a function of 11 µm brightness temperature derived from radiative transfer calculations 

(Baum et al., 2000).  The water and ice clouds are assigned top temperatures of 284 K 

and 235 K.  Four effective radius (reff) size distributions for the water and ice cloud 

models are plotted.  Also, the 0.65 µm optical thicknesses are indicated by the numbers 

ranging from 0.20 to 20 respectively.   

First, Figure 2.8 illustrates that there exist multiple solutions of BTD, which will 

depend on both the optical depth and on the particle size distributions.  Note that the 

BTD8.5-11 curves for the low-level water cloud (Figure 2.8a) all tend to be negative 

whereas these values all tend to be positive for the ice cloud (Figure 2.8c).  This behavior 

helps to delineate the phase type.  On the other hand, BTD11-12 curves for both the water 

and ice clouds (Figure 2.8b, Figure 2.8d) are similar and are both positive.  For mixed 

phase clouds or for mid-level clouds whose top temperatures fall within the super-cooled 

range (-40oC < T < 0oC), unambiguous phase discrimination becomes nearly impossible 

(Baum et al., 2000). 
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Figure 2.8:  Theoretical BTD curves of various water and ice cloud scenarios.  
Curves of (a) BTD8.5-11 versus BT11 for a water cloud, (b) BTD11-12 versus BT11 for a 
water cloud (c) BTD8.5-11 versus BT11 for an ice cloud, and (d) BTD11-12 versus BT11 for 
an ice cloud.  Each curve represents one of four particle effective radiuses (reff) or ice 
cloud types.  The numbers next to the symbols signify values of 0.65 m optical depth 
from 0.20 to 20 (Baum et al., 2000).    
 

 
 

Similar problems arise when using the NIR bands (Figure 2.9).  In general, for a 

given optical depth, liquid clouds are more reflective in the 1.64 µm and 2.13 µm regions 

than ice clouds with reflectance being inversely proportional to particle size (Baum et al., 

2000).  However, there exists a great deal of overlap between the ice and liquid water 

solutions, especially in the 1.63 µm plot, which makes it difficult to conclusively 

differentiate liquid and ice clouds without knowledge their respective particle size 

distributions and the optical depth.  To help minimize the effect of particle size and  
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Figure 2.9: Theoretical curves of reflectance for various water and ice cloud 
scenarios.  Model calculations of (a) 1.63 m versus 0.65 m reflectance of a water 
cloud, (b) 2.15 m versus 0.65 m reflectance for a water cloud, (c) 1.63 m versus 0.65 

m reflectance for an ice cloud, and (d) 2.15 m versus 0.65 m reflectance for an ice 
cloud.  As in Figure 2.8, each curve represents one of four droplet effective radiuses or 
ice cloud types; the numbers signify 0.65 m optical depths from 1 to 50 for water and 1 
to 20 for ice (Baum et al., 2000). 
 
 
 
shape, both the BTD and the BR methods take a ratio instead of relying solely on 

absolute radiance measurements (Baum et al., 2000). 

 Furthermore, phase detection of optically thin cirrus clouds is difficult, not only 

due to the problems associated with thin cirrus detection, but also due to the fact that a 

large component of the measured radiance is originating from either the surface or from 

underlying cloud layers.  The problem of multi-layer cloud contamination on CO2 
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derived cloud top estimates have not been completely resolved, but such issues are 

addressed by Baum and Wielicki (1994), Baum et al. (2000), Menzel et al. (2002) and 

Baum et al. (2003). 

In addition, trace gas absorption by water vapor, ozone, methane, nitrous oxide 

and carbon dioxide can affect the radiance measurements and contaminate the NIR 

reflectance or the IR brightness temperature estimates.  These effects can be mitigated 

using an atmospheric correction model that employs temperature and moisture profiles 

derived from reanalysis data or by assuming certain concentration profiles of trace gases 

in the atmospheric column. 

 Finally, as with any other cloud property extraction, if the pixel field-of-view is 

not entirely cloud covered, additional sources of radiation will contaminate the radiance 

measurements leading to the problem of pixel mixing.             

  

2.3.3.3 Cloud Thermodynamic Phase: Validation Studies  

 To date, few validation studies have been performed to examine the MODIS 

cloud phase product.  This is due, in part, to the difficulties associated with phase 

retrievals derived from remotely sensed data.  The most accurate way to measure the 

water or ice content of a cloud is with an in situ device on an aircraft that can directly 

sample the cloud particles.  However, these operations are expensive and thus cannot be 

conducted very frequently.  Depolarization lidar techniques have proven effective at 

discriminating cloud phase (Sassen, 2005).  Depolarization lidars emit light that is plane 

polarized and then measure both the horizontal and the vertical components of the light 
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backscattered by molecules, aerosols and cloud particles in the atmosphere.  Light that 

gets scattered by solid ice particles is significantly more depolarized than light scattered 

by liquid droplets or aerosols.  However, the shortwave light emitted by lidars gets 

completely attenuated when the optical depth is larger than three (τ > 3).  This restriction 

prevents lidars from probing very far into optically thick low and mid level water and 

mixed phase clouds.  Other validation methods may include comparing the phase 

retrievals to known cloud types identified visually in the corresponding satellite image.  

Thin cirrus and low-level marine stratus have a distinct appearance, and can be easily 

identified in satellite imagery (Platnick et al., 2003).  

 The BTD technique was first evaluated in 1991 using the MODIS Airborne 

Simulator (MAS) data collected on board a NASA ER-2 aircraft during the First ISCPP 

Regional Experiment (FIRE) over the Oklahoma (Strabala et al., 1994).  Examination of 

the BTD8.5-11 versus the BTD11-12 first revealed the clustering behaviors of ice cloud, 

water cloud and clear pixels in the scatter-plot (see Figures 2.4 – 2.6), which led to the 

development of the current MODIS BTD algorithm. 

 The inclusion of the BR method as a means to augment the BTD was first carried 

out in 1996, again using the MAS instrument during the Subsonic Aircraft Contrail and 

Cloud Effects Special Study (SUCCESS) (Baum et al., 2000).  A case study 

demonstrated that the BR method helped reduce the number of uncertain and mixed 

pixels classified by the BTD algorithm, and improved the detection of thin cirrus clouds 

with an optical depth less than two (τ < 2).   
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 Platnick et al. (2003) present several cloud product datasets for a scene over the 

west coast of South America from the MODIS Terra instrument on July 18, 2001.  The 

scene contained a mixture of cloud types that were evident in the visible satellite image, 

including low level marine stratocumulus, high level cirrus and deep convective clouds.  

In general the MODIS cloud phase algorithm could delineate the low level marine clouds 

as water and the high level cirrus and areas of deep convection as ice.  However, many 

pixels got classified under mixed or uncertain, and were subsequently determined to be 

regions of thin cirrus overlying low-level water clouds.   

 Chylek et al. (2006) compared the performance of the BTD method with the BR 

method for five separate cloud scenes.  Their findings indicate that the BR algorithm 

consistently overestimates the amount of ice pixels, even some “warm” pixels possessing 

11 µm brightness temperatures above 275 K.  They conclude, however, that both 

algorithms, when used in conjunction with a temperature “sanity check” provide the best 

results. The “sanity check” ensures that all pixels with cloud top temperatures above 273 

K get classified as water and all pixels below 233 K get classified as ice. 

 More recent phase determination methods employ additional water vapor 

absorption channels into the algorithm that help determine the temperature and moisture 

profiles of the atmosphere above the cloud layers (Spangenberg et al., 2006).  The 

technique, called the Multi-spectral Mixed phase Detection Technique (MMDT) appears 

to delineate mixed phase clouds with a high degree of accuracy.  Observations of cloud 

phase obtained from ground, radiosonde and airborne instruments at the North Slope of 

Alaska (NSA) site near Barrow, AK, and also collected during the Mixed-Phase Arctic 
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Cloud Experiment (MPACE) were used to evaluate the MMDT method.  This new 

method assumes that different cloud types, be it ice, mixed or liquid, exhibit specific and 

unique temperature and moisture signatures in the atmospheric column directly above the 

cloud.  Overall, the MMDT cloud phase classification matched the ground-based results 

90, 86 and 84% of the time for the liquid, mixed and ice cloud phases respectively.  

Furthermore, 62 of the 69 liquid cases were of super-cooled liquid droplets. Due to its 

success, the MMDT method will likely be incorporated into future MODIS cloud phase 

algorithms.        

 Finally, the aforementioned lidar depolarization technique, is also being 

implemented with other field campaigns to validate cloud phase.  The University of 

Wisconsin High Spectral Resolution Lidar (HSRL) with polarization capabilities has 

been deployed to several study sites to validate various cloud properties, including 

particle phase for optically thin clouds (Holz et al., 2001; Eloranta and Uttal, 2006).           

 

2.3.4. Aerosol Type 

 The following discussion briefly outlines the operation of the MODIS aerosol 

detection algorithm.  The information presented here is obtained from either the 

Algorithm For Remote Sensing of Tropospheric Aerosol From MODIS (Kaufman and 

Tanré, 1998) or from the 2006 revision of this ATBD document, which elaborates on the 

algorithm modifications applied to the collection 005 (C005) aerosol dataset (Remer et 

al., 2006).  For this research, the C004 MOD04 files are used, because it appeared the 

C005 aerosol type dataset was yielding erroneous results.  Also, validation studies 
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performed specifically to fingerprint different aerosol types in the troposphere are 

practically nonexistent since researchers are more interested in the bulk scattering 

characteristics.  Hence the Validation Studies and Sources of Error sections included with 

the earlier algorithm descriptions are omitted from this discussion.   

 The MODIS atmosphere team generates an operational level-1 10-km aerosol 

product (MOD04), which provides several key climate related radiation parameters such 

as aerosol optical depth, mass concentration and particle size distribution.  The aerosol 

algorithm implements two entirely separate procedures, one devoted strictly to detecting 

aerosols over the ocean, and the other over land.  The land algorithm is limited to daytime 

overpasses over dark, snow and ice-free backgrounds a method known as the “dark target 

approach”.   

Initially, a set of look-up tables (LUTs) is generated from radiative transfer 

calculations utilizing various pre-existing aerosol models.  These models are given in 

Table 2.3.  Each model assumes a particular aerosol type and a set array of physical and 

optical parameters such as particle size distribution, refractive index, asymmetry factor, 

single scattering albedo, and particle sphericity.   The tenth SDS in the MOD04 file 

yields five aerosol types: mixed, dust, sulfate, smoke, heavy_smoke.  These are chosen 

based on a geographical zone and season using an aerosol climatology derived mostly 

from a network of automated surface observations using sun-photometers, for example 

the AErosol RObotic NEtwork (AERONET) .  The distribution of aerosol types is 

provided in Figure 2.10.  However, it is not apparent exactly how the five MODIS 

aerosol types provided with the MOD04 file match the specific aerosol types in Table 2.3 
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Table 2.3:  MODIS aerosol models.  Outline of the fundamental aerosol models 
employed by the MODIS aerosol algorithm.  These models are derived from extended 
surface observations.  The models are separated into four main types and are subdivided 
by subtype. The parameters are as follows rg, mean radius; rv, volume mean radius; , 
standard deviation of the lognormal size distribution; Vo, volume of particles per cross-
sectional area; o, single scattering albedo (Kaufman and Tanré, 1998).    
 

 
 
 
 
Initially, several 0.47, 0.66, 2.1 and 3.8 µm reflectance threshold tests and a preliminary 

aerosol optical thickness determination are made using the 0.47 and 0.66 µm channels.  

Based on these results, the algorithm assesses which aerosol model, and thus LUT, is 

appropriate for the given sensor measured radiances.  According to the 1998 ATBD, the 

algorithm “fingerprints” the aerosol type by examining the ratio of the aerosol single 

scattering path radiance in the red channel, Lp-red, with the single scattering path radiance  
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Figure 2.10:  MODIS aerosol types distributed by region and season.  Map 
representing the geographical distributions of aerosol types employed by the MODIS 
aerosol detection algorithm for land.  This map is developed from in situ aerosol 
observations (Kaufman and Tanré, 1998).     
 
 
 
matched with the radiances in the LUT and the physical and radiative aerosol parameters 

in the blue, Lp-blue.  The definition of path radiance is given in section 2.1.  After the 

correct model and LUT are chosen, the initial optical thickness calculations from the 

satellite measurements are modified to fit the model.  Then the measured radiances are 

(e.g. particle size distribution) used in the LUT calculations are assigned to the pixel 

(Kaufman and Tanré, 1998).   

 The aerosol retrieval algorithm tries to account for cloud cover, cirrus 

contamination, water vapor content, and stratospheric aerosol concentrations.  Exactly 

how the algorithm screens for clouds and handles cloud contamination is somewhat 
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unclear, and was only briefly mentioned.  Apparently, the MODIS cloud mask is not 

used; an independent spatial variability cloud test gets applied.  The radiative effects from 

cirrus clouds are corrected for using the 1.38 µm channel.  However, as discussed in 

section 2.3.1.1, this method only works when there is a sufficient amount of water vapor 

absorption in the lower atmosphere.  Issues of mistaken identity between aerosol and 

clouds can be expected, such as the problem of misidentifying cirrus cloud as dust 

(Roskovensky and Liou, 2005).  Water vapor concentrations are estimated using a 2.1 µm 

absorption band and a solar band.  Also, attenuation by stratospheric aerosols is ignored 

unless a major volcanic eruption has recently occurred.            

 The primary function of this research with respect to aerosol product is to find out 

how the MODIS aerosol type dataset (SDS #10) provided with the 10-km aerosol product 

(MOD04) match the aerosol types documented from the ground and lidar observations.  

Although this comparison is admittedly rudimentary, aerosol type is nonetheless 

somewhat important in verifying, first, if the appropriate aerosol model even exists and 

second, if the correct model is being chosen.  If, for example, the MODIS derived aerosol 

type consistently classifies dust (e.g. Asian dust) as smoke, then it could be important to 

recognize this error since dust and smoke have different shapes, size distributions and 

chemical compositions and thus, attenuate radiation differently.  At this stage, one can 

only speculate how the misidentification of aerosol type would trickle down into the 

cloud and aerosol algorithms.    

As of the summer of 2007, the latest version of the aerosol product available for 

download was the collection 005 (C005) data.  According to the latest version of the 
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aerosol theoretical basis document, the algorithm applied to land is a “complete 

overhaul” from the previous algorithms, incorporating new channels and threshold tests 

(Remer et al., 2006).  Also, dust remote sensing over land is performed in the C005 data 

whereas before, dust detection was limited to the ocean surfaces.  However, after 

ordering and extracting the C005 aerosol type determinations over AFARS, it was 

evident that something was amiss with the newest version; while the C004 data correctly 

identifies smoke or heavy_smoke for numerous smoke observations during the summer 

months, the C005 data yielded significantly fewer aerosol type identifications, and the 

only aerosol type returned was sulfate which presumably is associated with the “urban” 

aerosol model.  Therefore, the MODIS-lidar aerosol type comparison is limited to the 341 

cases of C004 data collected from February of 2004 to June of 2006.  C004 data is 

unavailable beyond June of 2006.  

 

2.4.  Fundamentals of Active Remote Sensing: Lidars 

LIght Detection And Ranging (Lidar) instruments have proven to be a valuable 

research tool for studying the atmosphere.  Lidars emit pulses of shortwave nearly 

monochromatic laser light and measure the component of the light scattered into the 

sensor’s field-of-view (FOV) by the atmospheric constituents along the path of the beam.  

Simple elastic-backscatter lidars can discern the location and microphysical 

characteristics of clouds, precipitation, and aerosol layers.  More sophisticated 

instruments can provide atmospheric profiles of temperature, density and trace gas 

concentrations.  Since the visible and near-infrared wavelengths of lidar laser light cannot 
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penetrate much beyond an integrated optical depth, τ, larger than three, probing the 

internal structure of thick clouds simply is not feasible.  However, lidars can thoroughly 

penetrate aerosol and optically thin cloud layers.      

 The invention of lasers (light amplification by stimulated emission of radiation) 

in 1960 greatly accelerated the field of lidar research (Wandinger, 2005).  Lidars employ 

laser technology to generate the concentrated nearly monochromatic beam of intense 

light required for research applications.  As the name implies, lasers work by exploiting 

the principle in quantum mechanics of stimulated emission.  A simple instrument design 

contains a cylindrical cavity which holds a laser rod composed of glass which has been 

“doped” with some kind of metallic element.  Surrounding the rod is a flash lamp which 

is able to generate extremely powerful and bright pulses of white light.  The cavity walls 

are lined with a reflective material in order to maximize the intensity of emitted light 

from the flash lamp.  Two mirrors are positioned on the rear and front sides of the 

cylinder, the front mirror being partially transparent. 

 The principle of “stimulated emission,” first discovered by Albert Einstein, can be 

summarized as follows: The flash lamp “pumps” white light into the cavity.  The outer 

electrons of the metallic atoms suspended within the crystal lattice of the laser rod absorb 

some of the photons, creating a population inversion of excited electrons which have 

jumped to higher more unstable energy levels.  When some of these electrons fall back 

into their ground state, they “spontaneously” emit photons of quantized light which travel 

back and forth between the two mirrors.  As these photons pass through the doped laser 

rod, they prompt other excited electrons to fall back into their lowest energy state, 
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thereby releasing even more photons in the same direction and having the same 

polarization as the inciting photons.  This cascading effect of “stimulated emission” 

generates a powerful pulse of nearly monochromatic linearly polarized light characteristic 

of lasers.   

 A diagram of a simple lidar set-up is illustrated in Figure 2.11.  Lidars usually 

possess a bi-static design, meaning that the transmitter and the receiver are separated by 

some finite distance (Wandinger, 2005).  Once the polarized beam of light exits the laser 

cylinder, it typically passes through several optical devices, such as a beam expander and 

collimator, which help to focus the beam and minimize the amount of divergence.  The 

receiver consists of a reflecting Newtonian telescope which collects scattered light and 

projects it into a pinhole diaphragm through photo-multiplier tubes to the detector.  The 

detector measures the intensity of the light and stores the information on a computer.  

Polarization lidars are equipped with an additional detector (Figure 2.12) and a beam 

splitter crystal.  The crystal allows only the horizontally polarized light to pass, and  

 

 
 

Figure 2.11:  A simple schematic of a lidar set-up.  A basic lidar system illustrating the 
transmitting laser box, the Newtonian telescope receiver, and the data acquisition system 
(Wandinger, 2005). 
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Figure 2.12: Schematic of a dual-channel polarization lidar.  The receiver contains a 
glan-air polarizer that splits the incident beam into its parallel and perpendicular 
components, and diverts these signals to separate photo-detectors (Sassen, 2005).   
 
 

reflects the vertically polarized light to a second detector. 

The “vertical” resolution of the lidar is determined by the pulse length, h, which is 

computed by multiplying the pulse time, τ (not to be confused with optical depth), with 

the speed of light, c.  The vertical depth of the instantaneous scattering volume is actually 

h/2, which is typically on the order of tens of meters.  The maximum range of a lidar, 

Rmax, is controlled by the pulse repetition frequency (PRF), defined as the number of 

pulses per second, and can be computed by the simple formula:  

 

Rmax = c/2PRF.                                                     2.13 

 

The most basic form of the lidar equation can be expressed as (Wandinger, 2005)  

 

                                          P(R) = K*G(R)*β(R)*T(R).                                    2.14      
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The term, P(R), represents the power received by the instrument originating from range, 

R.  In the case of polarization lidar systems, P(R) can be broken down into the two 

constituent parallel, P||, and perpendicular, P┴, polarization planes.  The last two terms, β 

and T, represent the wavelength and polarization dependent backscattering and 

transmission terms, the two atmospheric unknowns.  The backscatter coefficient, β, 

governs how much energy gets scattered back towards the receiver and depends upon the 

type, number density, and backscattering cross section of the particles.  The transmission 

term, T, governs the exponential loss of light via extinction by molecules and aerosols 

along the path between the receiver and the target.  T can be expressed as follows, 

 

     ,                                               2.15      exp( ( ) )2
0

R dR
R

 

which is similar to Equation 2.4 for atmospheric transmissivity.  The σ term is the 

extinction coefficient, η represents the multiple scattering adjustment factor, and the 

expression must be multiplied by two to account for the total distance traveled by the 

beam between the target and the receiver.   

 The first two terms in Equation 2.14 are controlled operationally.  More 

specifically, the performance factor, K, can be expressed as a product of the transmitted 

power, Po, the instantaneous scattering volume, cτ/2 described in the previous section, the 

physical area of the receiving antenna or telescope, At, and the system efficiency, η not to 

be confused with the multiple scattering adjustment in Equation 2.15.  All lidars, to a 

certain degree, cope with a “blind-spot” directly above the receiver caused either by a 
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misalignment between the laser beam and the telescope’s FOV, or by the instrument’s 

optical limitations at being able to focus at close range.  This effect, contained within the 

G(R) term, is explicitly expressed by the geometric overlap function O(R) divided by R2.  

The overlap function will vary from instrument to instrument, and will depend on the 

beamwidth and divergence of the laser, the field of view of the telescope, and the 

distance between the transmitter and receiver.            

Basic scattering rules dictate that the manner in which particles interact with 

radiation is governed by the size parameter, α, defined as  

 

α = 2πr/λ                                                                    2.16 

 

where r is the particle radius and λ is the wavelength of incident light.  For cases where α 

≤ 0.30, Mie scattering theory can be simplified down to the Rayleigh approximation, 

where β is proportional to D6 and λ-4, and where extinction, σ, is proportional to D3 and  

λ-1 (Lhermitte, 2002).  When the particle sizes are much larger than incident wavelengths 

(α ≥ 10), the simple rules of geometric ray tracing apply.  For such cases, both β and σ are 

proportional to the geometric cross-sectional area of the particles and are independent of 

wavelength.  Between these extremes, when the particle size and incident wavelengths  

are of a similar size, β and σ can fluctuate wildly due to complicating effects from 

constructive and destructive interference.  Figure 2.13 illustrates these behaviors.  With 

the exception of the 10.6 µm CO2 laser, most lidars operate between the 0.25 to 1.064 µm 

spectral range, placing them well within the Rayleigh approximation with regard to  
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Figure 2.13: Normalized W-band radar backscattering cross sections of water and 
ice as a function of drop diameter.  Backscattering cross sections for a W-band radar (λ 
= 0.32 cm) for ice (dotted) and liquid (solid) water spheres roughly demonstrating the 
Rayleigh approximation (d < 0.5 mm), Mie scattering (0.5 mm ≤ d ≤ 15mm) and the 
geometric optics region (d ≥ 15 mm) (Sassen et al., 2005).   
 
 
 
molecular scattering, and within the geometric optics domain with regard to most cloud, 

precipitation and aerosol particles.            

      

2.5 Polarization Lidar Technique  

One of the most important advances in the realm of lidar research has been the 

development of the polarization technique.  Lidars naturally emit linearly polarized light, 

which means that the orientation of the electric field oscillates in a fixed plane.  When 

this light gets scattered, the orientation of the E-vector can change depending on the 

shape, size and the refractive index of the particles that interact with the beam (Sassen 

and Mace, 2002; Sassen, 2005).  Spherical particles, like liquid cloud droplets, do not 
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modify the orientation of the E-vector in single scattering.  Conversely, solid ice or dust 

particles can reorient the direction of the E-vector a great deal.  As a result, the 

thermodynamic phase of a cloud can be distinguished unambiguously.  Following the 

location and the evolution of the liquid and ice layers in real-time can provide much 

insight into the dynamical processes that are occurring within the cloud.  This is 

especially useful for understanding precipitation or how embedded aerosol layers can 

influence cloud microphysical processes (Sassen, 1991, 2002b; Sassen et al., 2003). 

The P(R) term in Equation 2.14 can be deconstructed into its parallel and 

perpendicular components, simply by specifying the polarization plane of the backscatter 

coefficient, β|| or β┴. The polarization lidar technique involves the calculation of the 

depolarization ratio, δ, which is defined as the ratio between P┴/P||.  The term, δ, 

simplifies to β┴/β||, ignoring any polarization dependence in the transmission term 

(Sassen and Mace, 2002).  The depolarization ratio is the key element underlying the 

polarization technique, and is found directly by taking the ratio of the two measured 

power terms. 

Ray tracing models in Figure 2.14 illustrate how the orientation of the E-field 

vector can change when a photon interacts with a particle.  In the case of spherical 

droplets, single scattered photons that are perfectly backscattered (θ = 180o) can follow 

either one of three paths; an axial reflection off the front or rear inner wall of the drop, or 

a circumnavigation around the peripheral edge.  None of these three interactions alter the 
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Figure 2.14: Three ray tracing models demonstrating changes to the polarization of 
a light beam.  A schematic depiction of how cloud particle shape influences changes in 
polarization of an incident beam of light for a (top) spherical droplet (center) hexagonal 
plate and (bottom) a hexagonal column.  The polarization of the incident and exiting 
beam are identical in the top scenario but internal refractions change the polarization of 
the exiting beam in the center and bottom (Sassen, 2005).     
 
 
 
incident orientation of the E-field, generating δ values that are essentially zero.  However, 

as the beam penetrates deeper into a cloud, the probability of encountering multiple-

scattered photons increases.  Typically, δ values near the base of a water cloud are zero, 

but exhibit a sharp rise due to multiple scattering immediately before the signal becomes 

completely attenuated.   

For the case of solid ice crystals, which come in a variety of habits (shapes) and 

orientations, photons can undergo a series of refractions and internal reflections, causing 

the orientation of the backscattered E-vector to bend. Ray tracing calculations and field 

experiments have shown that the amount of depolarization will depend upon the shape, 

orientation, and particle shape ratio defined as the ratio between the length of the crystal 
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and twice its base (Noel et al., 2002).  An important exception to the rule is the case of 

flat plate crystals which fall with their basal faces nearly horizontal.  The photons from 

zenith pointing lidars undergo specular reflections off the flat base of the plate which 

does not change the incident orientation of the E-field (Sassen, 2005).  By pointing the 

laser a few degrees off zenith, the depolarization values will readjust back to levels more 

appropriate of ice crystals. 

 Depolarization due to pure molecular scattering tends to be less than 5%, while 

aerosols may exhibit a range in δ values depending on their size and composition.  For 

example deliquesced haze particles and smoke exhibit very low δ values (Sassen et al., 

2005), which compares with large irregularly shaped dust particles that can produce δ 

values exceeding 0.20 (Sassen et al., 2003). 

        

2.6 Polarization Lidar Field Observations 

 The use of polarization lidars to study clouds began in earnest during the 1970s 

(Sassen, 1991).  Field work validated by lab experiments demonstrated that δ values for 

spherically shaped cloud particles fell around zero, whereas irregularly shaped ice 

particles could be expected to generate large δ values.  Cloud chamber experiments that 

can create ice crystals of a known shape demonstrated that the amount of depolarization 

was related to the habit (shape) and orientation of the crystal (Sassen, 1991).  Other 

studies have confirmed a link between cirrus cloud temperature and δ values, which 

provide evidence for the discrimination of crystal habit using the polarization lidar 

technique (Sassen and Benson, 2001).    
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Figure 2.15 shows the range normalized backscattering lidar P┴ (white areas) and 

P|| (hatched areas) profiles for a drizzle producing marine stratus cloud, a continental 

mixed phase cumulus cloud and an ice-phase cirrus cloud respectively (Sassen, 1991).  

The liquid marine stratus cloud exhibits low depolarization values in both the drizzle and 

cloud regions, typical of spherically shaped targets.  The small δ-values that are observed, 

especially in the cloud base near 1.95 km, are due to multiple scattering effects.  In the 

rain region of the continental cumulus cloud (center), depolarization ratios are predictably 

low.  However, a sharp spike in both the backscattered power and in the depolarization 

ratio is observed near the 3.3 km level.  This “bright band” anomaly is associated with the 

phase transition region known as the melting layer.  The cause and position of the “bright 

band” near and below the 0oC isotherm varies depending on the type and frequency of the  

 

 
 

Figure 2.15: Three profiles of parallel and perpendicular backscatter. Profiles of 
returned power for the parallel (hatched) and perpendicular (clear) polarization lidar 
channels for a liquid dominated marine stratus cloud (left), the precipitation region below 
a mixed phase continental cumulus cloud (center), and a an ice phase cirrus cloud (right) 
(Sassen, 1991).    
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instrument. In this case, it is likely that snowflakes with large cross-sectional areas near 

the top of the layer are providing bright scattering targets for the lidar.  As the flakes 

melt, they shrink and their number densities decrease due to an increase in their fall 

velocities, contributing to a reduction in the backscattered signal.  The optically thin 

cirrus cloud comprised of ice crystals exhibits consistently high δ values throughout the 

entire layer, although δ values in the 11.5 – 12 km region appear to be larger than in the 

lower 10.7 – 11.3 region, which could reflect differences in the ice crystal shape between 

the colder cloud top and the warmer cloud base.   

Another feature associated with the melting layer is the lidar “dark band” (Sassen 

et al., 2005).  This feature is commonly observed where small ice fragments remain 

embedded in raindrops near the bottom of the melting layer.  The ice nuclei absorb some 

of the light and block axial reflections off the back wall of the raindrop, thereby creating 

the characteristic dip in backscatter of the lidar “dark band.” 

 An interest in cloud seeding experiments during the 1980s lead to research on 

mixed phase alto-cumulus clouds in mountainous regions.  One such study used a 

polarization lidar, Ku-band radar and a dual channel microwave radiometer to monitor 

the structure of an orographic mixed phase cloud in Colorado before and during a frontal 

passage (Sassen, 1984).  The combination of all three instruments provided a thorough 

assessment of the evolution of the internal structure of the cloud as it developed.  

Polarization lidar measurements observed layers of super-cooled liquid droplets 

consistently at temperatures well below -30oC.  During one twenty minute episode, the 

uniform super-cooled liquid layer, which was present during most of the time, 
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temporarily disappeared due to sedimenting ice particles from above.  This lidar 

observation captured the well-known Bergeron-Findeisen process whereby differences in 

the equilibrium vapor pressure over liquid water and ice causes the ice particles to grow 

at the expense of the liquid particles, until the liquid droplets completely evaporate 

(Wallace and Hobbs, 1977).  Also, extremely high δ-values below the liquid layer 

revealed the presence of rimed ice particles, likely created from the descending 

snowflakes through the super-cooled liquid layer.   

Other polarization lidar studies have captured the so-called indirect aerosol effect.  

For months following the eruption of Mt. Pinatubo in 1991, the aerosol laden stratosphere 

provided a rich source of sulfates to the troposphere.  One study, conducted during 

December of 1991, captured a tropopause fold induced by a strong jet stream, which 

allowed stratospheric aerosols to seed a cirrus cloud in the troposphere (Sassen et al., 

1995).  Lidar observations of unusually large haze particles and of unusually high 

concentrations of ice crystals near the tropopause fold revealed various heterogeneous 

cloud forming mechanisms at work associated with the volcanic aerosol.         

More recently, polarization lidars have captured the abnormally active ice 

nucleating properties of desert dust. Unusually warm cirrus clouds over Utah with top 

temperatures exceeding -20oC were observed in association with an Asian dust layer, 

during which a liquid altocumulus cloud became glaciated as it came in contact with the 

dust layer (Sassen, 2002b).  Other observations associated with Saharan dust storms 

indicated unusually strong heterogeneous freezing processes occurring in clouds with top 

temperatures as warm as -8oC (Sassen et al., 2003).  The shape of desert dust mimics that 
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of ice crystals which makes them suitable ice nuclei.  This is confirmed by the 

polarization lidar data, which shows relatively large δ-values (δ > 0.25) associated with 

dust plumes (Sassen, 2005).  Observations of the indirect aerosol effect could not be 

conducted remotely without the use of the polarization lidar technique.    

 

2.7 Sensor Specifications: Polarization Cloud Lidar (PCL) 

            The data used to compare with the MODIS products is acquired by the 

Polarization Cloud Lidar (PCL), informally known as the “ruby lidar” because utilizes a 

ruby crystal to emit a ruby colored (λ = 0.694 µm) laser beam.  The PCL is one of several 

manually operated surface-based instruments used to examine clouds and aerosols 

located at AFARS.  PCL data has been collected regularly since February of 2004, and 

can be found, either in its raw form or as a plot of backscattered power or depolarization 

ratio, at http://rainbow.gi.alaska.edu (Sassen and Zhu, 2008a).  Prior to 2004, the PCL 

operated at the University of Utah Facility for Atmospheric Remote Sensing (FARS) 

located in Salt Lake City, UT.  The Utah data, collected between 1992 and 2002, is also 

available at the rainbow server.   

The PCL shoots vertically polarized pulse of ruby colored (0.694 µm) light 

approximately once every ten seconds.  The maximum energy and the pulse length are 

1.5 Joules and 27 nanoseconds respectively.  This translates to a sampling resolution 

(vertical bin size) of about 8.0 m.  The data collection algorithm averages every six 

consecutive shots corresponding to a 1-minute average, which reduces the noise in the 

 



 82

signal.  The instrument measures the backscattered signal up to an altitude of 14 km 

above mean sea level (MSL).   

The PCL possesses two photo-detectors, one that measures the parallel 

component of the backscattered light and a second that measures the perpendicular 

component.  The ratio of the latter to the former provides the depolarization ratio (δ-

values).  Applications of the depolarization ratio in discriminating cloud particle phase 

have already been discussed in the preceding section.  The instrument is secured to a 

platform that allows the viewing angles to be adjusted manually by the operator.  This is 

useful when trying to discriminate oriented plate crystals from liquid droplets, when the 

instrument needs to be tilted a few degrees off nadir to check for changes in the δ values.  

Instances in which the instrument is tilted away from zenith are denoted by hatch marks 

(x’s) along the top of the plotting window in both the backscattered power and 

depolarization ratio images.  Additional information regarding the PCL and about the 

AFARS in general can be viewed at: http://www.gi.alaska.edu/AtmosSci/Research/ 

afars_site.html (Sassen and Zhu, 2008b). 

The next chapter delves into the methodology of this research.  This section 

covers the MODIS data extraction procedures, lidar data interpretation methods, and data 

interpolation using radiosonde profiles.  In addition, a preview of the results is provided 

in order to demonstrate precisely how the MODIS and lidar datasets get evaluated in 

chapter four.      

          

                

 

http://www.gi.alaska.edu/AtmosSci/Research/%20afars_site.html
http://www.gi.alaska.edu/AtmosSci/Research/%20afars_site.html
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Chapter 3 Methods 

 

3.1 Data Sources 

The primary objective of this study is to evaluate the performance of the MODIS 

cloud mask, cloud phase, cloud top properties (temperature, pressure, altitude) and 

aerosol type against ground based measurements from a dual-channel polarization lidar 

(PCL).  These datasets are extracted from the following MODIS products: MOD04, 

MOD06 and MOD35 (prefix ‘MYD’ for the Aqua products).  On occasion, a true color 

image is created from a MOD02 level-1B radiance file using the ENVI (Environment for 

Visualizing Images) image processing and visualization software.  The determination of 

cloud base and top altitudes, phase and aerosol layers was conducted through visual 

inspection of the lidar plots.  The lidar data is collected over a 3.5-year period beginning 

in February of 2004 and ending August of 2007.  Jiang Zhu manages the rainbow web 

server, and creates the lidar plots using an Interactive Data Language (IDL) code.  IDL is 

a data analysis programming language with plotting capabilities.  To facilitate the 

inspection of the lidar plots, the plotting codes were slightly modified in order to 

superimpose the times of the Aqua and Terra overpasses.                   

 To obtain the concurrent MODIS data product, the precise date, start and end 

times of each lidar acquisitions, as well as the spatial coordinates of AFARS, are queried 

into the Level-1 and Atmosphere Archive and Distribution System (LAADS) website.  

All MODIS files that encompass AFARS during the specified lidar acquisition are 

returned.  Each MODIS HDF file contains five minutes worth of data called a “granule.”  
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The files are downloaded through an ftp server, and the relevant datasets are extracted in 

batch using IDL, which possesses a set of commands specifically designed to manipulate 

HDF formatted files.  

 In addition to the MODIS and lidar data, several other supplemental resources are 

used.  Dr. Sassen, who operates the ruby lidar, keeps a log of his observations during 

each lidar acquisition.  In the majority of the cases, Dr. Sassen records the precise lidar 

signal return times for the bases and tops of the various cloud and aerosol layers present 

during the MODIS overpass.  He also documents the types of aerosols present, cloud 

cover conditions, presence of optical phenomenon or precipitation, and whether or not the 

lidar signal is being attenuated.          

 To help identify precise cloud base and cloud top altitudes, plots representing the 

profile of the lidar returned power averaged over a five minute period are generated for 

each overpass.  A lidar backscatter profile represents the height distribution of the 

average range normalized (1/R2) return signal.  In an atmosphere devoid of clouds or 

aerosols, the profile of returned signal exhibits a smooth exponential decrease with 

height, associated with the exponential decrease in atmospheric density.  The presence of 

a cloud or aerosol layer, however, creates a well-defined spike in the return signal, where 

the inflection points are assumed to represent the layer boundaries.   

These plots are made using an IDL program created, again, by Jiang Zhu.  The 

program allows the user to specify the start and end times over which the return signals 

are averaged.  A five minute (± 2.5 minute) average of the MODIS overpass was deemed 

an acceptable length of time to minimize the noise in the profile.  However, a small 
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handful of cases occur in which a satellite overpass took place within two and a half 

minutes of either the start or end times of the lidar acquisition.  For these cases, the signal 

was averaged for the period beginning (ending) with the lidar acquisition and the two and 

a half minute period after (before) the satellite overpass.  

 In this study, cloud and aerosol boundaries and particle phase are determined by 

visual inspection of the lidar plots.  However, automated computer algorithms can 

perform the same duties using vertical profiles of backscatter and depolarization (Wang 

and Sassen, 2001; Pal et al., 1992).  However, the automated algorithms, which require a 

set of absolute thresholds of backscatter and depolarization, are not always reliable since 

the business of cloud detection can be extremely ambiguous.  

One such program, called the Cloud Base Cloud Top (CBCT) algorithm, is used 

for this research.  The CBCT calculates the base of the lowest cloud layer and the top of 

the highest cloud layer for the specified one minute average or PCL data overlapping the 

MODIS overpass time.  In essence, the algorithm pinpoints the cloud boundaries by 

examining the slope of the lidar backscattered signal.  If a cloud is present, the cloud base 

exhibits a sharp positive slope, larger than a pre-determined noise level, in the 

backscatter.  If the cloud is optically thin, the top represents the point where the slope of 

the backscattered power falls back to the molecular signal.  

Discrimination of clouds from precipitation, aerosols and noise can be difficult 

since these chosen thresholds may vary in time and space.  Another difficulty arises when 

trying to distinguish between an actual cloud top and an effective cloud top caused by the 

rapid attenuation of the signal above the peak (Wang and Sassen, 2001).  The two can 
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usually be distinguished by analyzing the behavior of the slope above the peak return; if 

the slope resembles a smooth exponentially decreasing molecular profile, one can assume 

that the lidar has penetrated completely through to the cloud top.  Likewise, phase 

discrimination can also be conducted using depolarization thresholds from vertical 

profiles of depolarization ratio (Wang and Sassen, 2001), but again, one encounters the 

difficult task of choosing the right thresholds.                            

For this research, the CBCT outputs provide a supplemental source of cloud top 

altitude.  The cloud top estimates for the 1-minute average during and the 1-minute 

averages immediately preceding and following the MODIS overpass are examined.  

These cloud boundaries are examined collectively along with the lidar images and the 5-

minute backscatter profiles to estimate the final cloud and aerosol boundaries.  CBCT 

commonly misses thin cirrus visible in the lidar data and documented in the field notes.  

At other times, the algorithm misidentifies thick aerosol layers as cloud layers.               

  In order to compare the MODIS cloud tops in hPa with the lidar cloud top in 

meters, the pressure (altitude) units need to match.  The conversion of the MODIS top 

pressures to meters and the lidar top altitudes to hPa is accomplished using radiosonde 

profiles of height, pressure and temperature measured.  Weather balloons are launched 

twice per day from approximately 800 stations, including Fairbanks, at 0000 and 1200 

UTC.  Most of the MODIS overpasses over Alaska occur between 2100 and 2300 UTC, 

several hours prior the 0000 UTC balloon sounding.  This time discrepancy is expected to 

introduce some error in the cloud top interpolations since temperature and pressure fields 

are constantly changing in the atmosphere.  However the magnitude of the error is 
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difficult to quantify and may vary depending on the meteorological conditions at the time 

and the delay between the satellite overpass and the radiosonde measurement.  

Atmospheric upper air soundings can be obtained from the University of Wyoming at 

http://weather.uwyo.edu/upperair/sounding.html (Atmospheric soundings, 2008).              

 

3.2 MODIS Data Extraction Procedure 

A minimum distance algorithm locates the pixel directly over the AFARS facility 

using the Pythagorean Theorem.  Each rectangular MODIS granule is comprised of 

individual pixels that approximately reside in a Cartesian coordinate system with latitude 

representing the y-axis and longitude representing the x-axis.  The AFARS site is located 

at 64.87 N, -147.83 W.  To locate the pixel that encompasses the AFARS site, the 

following steps are executed in batch mode: 

 

   1.  Open the latitude and longitude SDS’s in the HDF file. 

   2.  Place the latitude values into a 2-D variable called Latitude; repeat for longitude.  

   3.  Create two new 2-D variables called lat_diff_squared and long_diff_squared where 

                   lat_diff_squared = (64.8689 – Latitude)2,  

                    long_diff_squared = (-147.8281 – Longitude)2. 

   4. Create another 2-D variable called dist_squared where 

                   dist_squared = (lat_diff_squared + long_diff_squared) 

   5. Find the ith and jth coordinate that represents the minimum value of the dist_squared  

       variable.  This coordinate represents the location of the pixel directly above AFARS. 
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Once the correct indices are found, the corresponding ith and jth pixel values for the 

remaining SDS’s are extracted and printed to a text file in batch mode. 

 Similarly, this procedure is used to define the 5 x 5 (25 pixel) box for the 1-km 

cloud mask (MOD35) product.  Once identified, the ith and jth indices of the center pixel 

get stored in a 2-element variable named index, in which i is assigned to the first element, 

index[0], and j is assigned to the second element, index[1].  The variable Box, declared as 

a 2-column by 25-row matrix, stores the ith and jth indices for each of the twenty-five 

pixels.  For example, the corresponding x and y-values (x, y) of the top left, center and 

bottom right pixels in variable Box would represent the coordinates (index[0] - 2, index[1] 

- 2), (index[0], index[1]) and (index[0] + 2, index[1] + 2) respectively.  The pixel indices 

for the remaining twenty-three pixels can be similarly defined.   

By convention, the first index of an IDL array is the zeroth element. Additionally 

IDL follows a “column major format” whereby the first dimension represents the column 

number.  For example, array[3,2] represents the element in column 4, row 3 for the 

variable named array.   

The following fields are routinely extracted for each HDF file: date, scan start 

time, latitude, longitude and sensor zenith angle.  The scan start time is recorded at the 

onset of each new mirror scan about every three seconds.  A new time gets stamped for 

every ten rows, two rows and one row of 1-km, 5-km and 10-km resolution data 

respectively.  The units are given in seconds since January 1, 1993 at 00:00:00.0 UTC, 

and are then converted to UTC.      
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3.3  A Case Study  

 To illustrate precisely how the lidar and MODIS data are extracted, recorded and 

analyzed, an example from the July 24, 2006 lidar acquisition is presented here.  This 

case captures a cirrus cloud, an attenuating liquid altocumulus and several layers of dense 

smoke.   

 According to the AFARS cloud description list, the lidar collection time on July 

24, 2006 occurs from 2006 – 2319 UTC.  These times and the AFARS latitude and 

longitude coordinates are input into the LAADS search query (http://ladsweb.nascom 

.nasa.gov/data/search.html; LAADS, 2008b) in order to locate the overlapping MODIS 

overpasses.  For this case, the search engine returns four granules, two Terra overpasses 

at 2045 and 2220 UTC, and two Aqua overpasses at 2100 and 2235 UTC.   Twelve files 

in total (4 granules x 3 files per granule) are downloaded through and ftp address, the 

relevant SDS’s for the pixel over AFARS are extracted using IDL and printed to a text 

file, which are given in Table 3.1. Table 3.2 provides the first byte of the MODIS cloud 

mask.  The first three rows represent the results of the AFARS centered pixel from the 

MOD06 5-km SDS.  The next three represent the 1-km AFARS centered pixel from the 

MOD35 cloud mask product.  The final three represent the mode or most common value 

of the twenty-five 1-km pixel box (5 x 5) centered over AFARS. The cloud mask pixel 

integers are listed in column seven.  The subsequent columns provide the bit translation.   

The cloud mask results are, for the most part, consistent.  However, note the 5-km 

cloud mask pixel for the 2100 UTC Aqua overpass yields an erroneous confident clear

 



 

Table 3.1: MODIS derived cloud and aerosol data from July 24, 2006.   The four cases comprise two Aqua (A) and two 
Terra (T) overpasses.  The cloud top height values (column 10) are interpolated from the radiosonde profiles.  Cloud product 
parameters are given at 5-km resolution and the aerosol product aerosol type is given at 10-km.   
 

          Sensor Top  
Cloud 
Top Cloud Top 

Cloud 
Top       

      Pixel  Pixel Zenith Retrieval Pressure Temp Height Cloud Cloud Aerosol 
Date Platform UTC Latitude Longitude Angle Method (hPa) (oC) (m) Mask Phase Type 

7/24/2006 T 2045 64.814 -147.79 39.58 3-CO2 285 -43.04 10500 249 2-ice -9999 
7/24/2006 A 2100 64.907 -147.81 51.39 4-CO2 225 -51.51 10800 255 1-water 2-sulfate 
7/24/2006 T 2220 64.864 -147.86 42.37 1-CO2 315 -37.53 8800 249 2-ice -9999 
7/24/2006 A 2235 64.879 -147.83 24.54 2-CO2 275 -45.19 10000 249 2-ice -9999 

 
 
 

Table 3.2:  The first byte (Byte #0) translations of the MODIS cloud mask. Outputs for the (a) ‘5-km point,’ (b) ‘1-km 
point,’ and (c) the ‘1-km box’ methods.  The 1-km data are obtained from the MOD35 file and the 5km from the MOD06 file.  
 

(a) MOD06 '5 km point'   Pixel Pixel Zenith Cloud             
Date Platform UTC Latitude Longitude Angle Mask bit 0 bit 1-2 bit 3 bit 4 bit 5 bit 6-7 

7/24/06 T 2045 64.814 -147.79 39.58 249 D C-Clouds Day sunglint-n sn/ice-n land 
7/24/06 A 2100 64.907 -147.81 51.39 255 D C-Clear Day sunglint-n sn/ice-n land 
7/24/06 T 2220 64.864 -147.86 42.37 249 D C-Clouds Day sunglint-n sn/ice-n land 
7/24/06 A 2235 64.879 -147.83 24.54 249 D C-Clouds Day sunglint-n sn/ice-n land 

(b) MOD35 '1 km point'                       
7/24/06 T 2045 64.852 -147.84 0 249 D C-Clouds Day sunglint-n sn/ice-n land 
7/24/06 A 2100 64.853 -147.85 0 249 D C-Clouds Day sunglint-n sn/ice-n land 
7/24/06 T 2220 64.858 -147.84 0 249 D C-Clouds Day sunglint-n sn/ice-n land 
7/24/06 A 2235 64.858 -147.84 0 249 D C-Clouds Day sunglint-n sn/ice-n land 

(c) MOD35 '1 km box'                       
7/24/06 T 2045 64.852 -147.84 0 249 D C-Clouds Day sunglint-n sn/ice-n land 
7/24/06 A 2100 64.853 -147.85 0 249 D C-Clouds Day sunglint-n sn/ice-n land 
7/24/06 T 2220 64.858 -147.84 0 249 D C-Clouds Day sunglint-n sn/ice-n land 
7/24/06 A 2235 64.858 -147.84 0 249 D C-Clouds Day sunglint-n sn/ice-n land 
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value, likely due to the fact that the center pixel chosen from the 1-km cloud mask 

assigned to the 5-km cloud product is different than the 1-km pixel nearest to AFARS.        

Next the lidar data gets evaluated.  The backscattered power and corresponding 

depolarization ratio plots are given in Figure 3.1.  The top depolarizing layer represents a 

cirrus cloud while the middle and lower layers represent smoke as recorded in Dr. 

Sassen’s field notes.  Note that the 2220 UTC Terra overpass occurs at the edge of a 

signal attenuating altocumulus cloud located at approximately 4 km above MSL.  The 

corresponding range normalized five minute backscatter profiles coinciding with the four 

overpasses are given in Figure 3.2.   Finally, the outputs from the CBCT algorithm are 

listed in Table 3.3.  After examining these sources (Figure 3.1, Figure 3.2, Table 3.3), the 

cloud and aerosol top altitudes, and path integrated cloud phase, listed in Table 3.4, are 

determined for each case.  Additional relevant information, such as the number of cloud 

layers, whether or not the beam was attenuated and aerosol type, are also noted.     

First, note that cloud is clearly present above AFARS during each of the four 

overpasses.  Three of the four contain only one cloud layer (2045, 2100, 2235 UTC) 

while one happens to intercept two layers (2220 UTC).  For this case, note the “shadow” 

situated above the bottom layer, caused by the complete attenuation the lidar beam.  The 

cloud top altitudes for the top layer and the cloud top and base boundaries are denoted by 

the red dots in the five minute backscatter profiles in Figure 3.2.  To be thorough, the 

base and top altitudes of the remaining cloud and aerosol layers are recorded. 
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Figure 3.1: Lidar backscatter and δ-ratio plots for July 24, 2006. Vertical distribution 
of (a) lidar backscatter and (b) depolarization ratio above means sea level (MSL) as a 
function of time (UTC) for July 24, 2007.  The ‘T’ and ‘A’ and the corresponding red and 
blue lines denote approximate Aqua and Terra overpasses. Hatch marks (x) indicate when 
the lidar was tilted away from zenith. 
        
   

 



 

 

Figure 3.2:  Mean five minute profiles of lidar backscatter.  Vertical profiles of mean 
five-minute backscatter of the parallel (PWRB) and perpendicularly (PWRA) polarized 
channels during the (a) 20:45 UTC Terra (b) 21:00 UTC Aqua (c) 22:22 UTC Terra and 
(d) 22:37 UTC Aqua overpasses on July 24, 2006.  Red dots denote visually estimated 
cloud top and base boundaries of the top cirrus layer. 
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(a)     Cloud Cloud Cloud Cloud Cloud Cloud Cloud Cloud Cloud 
    Cloud Mult. Cld. # of cld. Att-Lim L1 Top L1 Base L1 thick. L2 Top L2 Base Path  

Platform UTC Y/N layers (Y/N) layers (Y/N) (km) (km) (km) (km) (km) Phase 
T 2045 Yes No 1 No 10.5 9.6 0.9 --- --- Ice 
A 2100 Yes No 1 No 10.8 8.9 1.9 --- --- Ice 
T 2220 Yes Yes 2 Yes 8.8 6.8 2.0 Att_lim 3.8 Mixed 
A 2235 Yes No 1 No 10.0 6.5 3.5 --- --- Ice 

(b)           Aerosol Aerosol Aerosol Aerosol Aerosol   
    Aerosol Aerosol --- --- L1 Top L1 Base L1 thick. L2 Top L2 Base Cld. & Aero 

Platform UTC (Y/N) Type --- --- (km) (km) (km) (km) (km) (Y/N) 
T 2045 Yes smoke --- --- 4.9 4.3 0.6 2.3 1.7 Yes 
A 2100 Yes smoke --- --- 4.8 3.9 0.9 2.4 1.8 Yes 
T 2220 Yes smoke --- --- 2.9 1.5 1.4 --- --- Yes 
A 2235 Yes smoke --- --- 3 1 2 --- --- Yes 

 
Table 3.3: The CBCT outputs for July 26, 2006.  Cloud base (Cb) and cloud top (Ct) outputs from the CBCT algorithm for 
the minute preceding (min-1), during (min) and after (min+1) the July 24, 2006 satellite overpasses.   

 
 

 
 
 
 
 
 
Table 3.4: Cloud and aerosol data based on the lidar analysis for July 26, 2006.  Results of the lidar analysis related to the 
(a) cloud data and (b) aerosol data for the July 24, 2006 overpasses. ‘L1’ denotes layer 1 or top layer. 

    row scan Cb at Cb at Cb at Mean Ct at Ct at Ct at Mean 
Platform (UTC) (UTC) min-1 (km) min (km) min+1 (km) Cb (km) min-1 (km) min (km) min+1 (km) Ct (km) 

T 2045 20:47:28 5.8 5.77 5.73 5.77 11.83 11.78 11.9 11.8 
A 2100 21:02:24 10.16 10.14 9.96 10.09 11.98 12.03 11.94 11.98 
T 2220 22:25:04 4.85 4.85 4.83 4.84 9.98 8.99 9.98 9.65 
A 2235 22:40:00 7.69 7.75 7.66 7.66 10.54 10.5 10.66 10.57 
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Next, cloud phase gets assessed.  The high δ values (δ ≥ 0.15) within the top 

cloud layer indicate the presence of ice for cases one, two and four under column twelve 

in Table 3.4a.  Due to the presence of both ice and an underlying liquid altocumulus 

layer, the 2220 UTC Terra overpass receives a mixed classification.  However, note that, 

for this case, the actual scan time, below column three in Table 3.3 occurs at 22:25:04 

UTC.  It is not entirely obvious from the five minute profile (Figure 3.2c) that the 

altocumulus layer is present at the instant of the Terra overpass.  Nevertheless, since the 

satellite overpass occurs at the edge of the altocumulus, and because the sensor zenith 

angle was relatively steep (42o), one can judge that the probability that at least part of the 

pixel intercepted the altocumulus is high, which would have introduced a liquid signature 

yielding a mixed (ice + liquid) path integrated phase.  However this case demonstrates the 

ambiguity sometimes inherent in this analysis, especially for the phase analysis.    

 To properly compare the MODIS cloud top estimates against the lidar the units 

must be consistent.  Radiosonde data of temperature, pressure and altitude acquired 

nearest to the MODIS overpass is used to convert the units.  For most cases, this 

coincides with the 0000Z (1500 UTC local) launching, since most MODIS overpasses 

occur between 2100 - 2300 UTC (1200 – 1400 UTC local), several hours prior to the 

balloon launching.  Linear interpolation is used to match the following: lidar top altitude 

(km) to pressure (hPa); MODIS top pressure (hPa) to altitude (km); lidar top altitude 

(km) to temperature (oC).  The results for this case study are given in Tables 3.5 and 3.6.
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Table 3.5:  MODIS and lidar derived cloud top estimates. Estimates of pressure (P), height (Z) and temperature (T) for the 
four July 24, 2006 overpasses.  Fields labeled with an asterisk (*) denote radiosonde interpolated values.    
 

    MOD Top Lid Top ΔP MOD Top Lid Top ΔZ MOD Top Lid Top ΔT 
platform UTC P (hPa) P* (hPa) LidP - MODP Z* (m) Z (m) LidZ - MODZ T (oC) T* (oC) LidT - MODT

T 2045 285 250.41 34.59 9646.4 10500 -853.6 -43.04 -49.42 6.38 
A 2100 225 238.97 -13.97 11193.42 10800 393.42 -51.51 -51.65 0.14 
T 2220 315 322.5 -7.5 8954.98 8800 154.98 -37.53 -36.32 1.21 
A 2235 275 270.67 4.33 9893.14 10000 -106.86 -45.19 -45.56 0.37 

 
 
 
Table 3.6: MODIS and lidar derived cloud and aerosol information.  Information on cloud phase, aerosol type, and the 
relevant MODIS cloud mask ancillary inputs and lidar cloud cover parameters used in the data evaluation.   
 

      Snow Mult. Cld Lidar Cld. MOD06 Lid. Path MOD Lid. Aero MOD04 
Platform UTC Day/Night (Y/N) Layers (Y/N) (Y/N) cld. mask Phase Phase Type Aero Type 

T 2045 Day No No Yes C-Clouds ice Ice smoke -9999 
A 2100 Day No No Yes C-Clear ice Water smoke -9999 
T 2220 Day No Yes Yes C-Clouds mixed Ice smoke sulfate 
A 2235 Day No No Yes C-Clouds ice Ice smoke -9999 
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Once the top properties are obtained, the MODIS value gets subtracted from the lidar 

value to obtain pressure, height and temperature errors (ΔP, ΔZ, ΔT).  

The next four sections explain the various data extraction and analysis procedures 

by variable (cloud mask, cloud top properties, cloud phase, aerosol type).  They convey, 

in greater detail, how the MODIS data are extracted, how the lidar data gets interpreted 

and how the two sets get compared.  

 

3.4  Analyis Methods 

3.4.1  Analysis Methods: Cloud Mask 

 The main byte (Byte #0) of the 1-km MODIS cloud mask is included with the 5-

km cloud product (MOD06).  The 5-km version is generated by assigning the center pixel 

of a 5 x 5 pixel box from the 1-km MOD35 product as the representative 5-km pixel in 

the MOD06 product.  However, as mentioned earlier, this 1 km2 region may not 

accurately represent the cloud cover conditions over the much larger 25 km2 region.  

Therefore, three approaches are used to evaluate the cloud mask.  The first compares the 

the 5-km cloud mask from the MOD06 product, for the pixel centered over AFARS, with 

the with the lidar result, dubbed ‘5 km point.’  The second simply examines the 1-km 

result from the MOD35 product, dubbed ‘1 km point,’ and  the third compares the mode 

value of a 5 x 5 box of 1-km pixels from the MOD35 product, dubbed ‘1 km box.’.   

 The second and third bits of the MODIS cloud mask are translated into one of 

four categories: confident clear, probably clear, probably cloudy, confident cloudy.  The 

origin and meaning of these categories are explained in the algorithm section.  The 
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additional bits of the first byte of the cloud mask are also extracted.  In every case, the 

first bit (bit 0) returned a value of ‘1’, indicating that all cases were deemed Determined.   

As described in the previous section, a cursory inspection of the lidar plots, five 

minute backscatter profiles and field notes is enough to determine if a cloud is present 

during the time of the MODIS overpass.   So with respect to the cloud mask comparison, 

the lidar data can be considered unambiguous.  The presence of cloud over AFARS is 

denoted with either a simple Yes for cloudy or a No for clear (column three Table 3.4a, 

column six Table 3.6).  Also aerosol layers are disregarded.  For example, if a layer of 

smoke is detected over AFARS but clouds are not, the lidar field-of-view is considered to 

be cloud-free.   

 The results of the cloud mask comparison are organized into a table format with 

the four MODIS cloud mask categories displayed as columns and the two lidar categories 

as rows.  An example of such a table is presented below (Table 3.7).  Each case falls 

within one of eight possible categories. Once all of the cases have been grouped, the 

accuracy of the MODIS data can be evaluated following two approaches.  First, the  

 

Table 3.7:  Summary of the MODIS cloud mask results.  The MODIS returns (Conf. 
Clear, Prob. Clear, Prob. Clouds, Conf. Clouds) representing all 549 sample cases are 
sorted by lidar cloud detection (Cloudy, Clear).   
 
Cloud Mask SUMMARY       

Lidar MOD06 Cloud Mask       % Agreement 
Cloud Conf.Clear Prob. Clear Prob. Clouds Conf. Clouds Total Clear1

Cloudy 142 10 31 293 476 83.56 
Clear 55 6 1 11 73 Cloud1

Total 197 16 32 304 549 68.07 
% Agree. Clear2 =  28.64 Clouds2 = 96.43     

 



 

99

probability that the MODIS cloud mask returns a cloudy (clear) result given that the 

Lidar observation denotes clouds (clear) is examined.  These results are presented in the 

far right column under the % Agreement heading.  The clear1 finding is determined by 

dividing the sum of the MODIS conf. clear and prob. clear cases (55 + 6 = 61) in the 

clear row under the lidar cloud column with the total number of lidar clear sky 

observations (55 + 6 + 1 + 11 = 73).  Similarly, the cloud1 agreement is computed by 

summing the MODIS prob. clouds and conf. clouds cases (31 + 293 = 324) in the Lidar 

cloud row with the total number of lidar cloudy sky observations (142 + 10 + 31 + 293 = 

476).  These calculations yield an agreement between the MODIS and Lidar instruments 

of around 83.6% and 68.1% respectively for the clear1 and cloud1 analysis.      

             Alternatively, the MODIS cloud mask can be examined using a reverse approach: 

the probability that the lidar observation of clouds (clear) matches the MODIS result.  

These results are printed along the bottom row.  In this case, clear2 is found by dividing 

the sum of the MODIS conf. clear and prob. clear cases in the Lidar clear row (55 + 6 = 

61) by the sum of the MODIS conf. clear and prob. clear cases (197 + 16 = 213).  

Similarly, cloud2 is computed by dividing the sum of the MODIS prob. clouds and conf. 

clouds cases (31 + 293) in the Lidar cloudy row by the sum of the MODIS prob. clouds 

and conf. clouds cases (32 + 304).  This approach yields dramatically different results 

than the former, where the clear2 (cloud2) agreements have significantly worsened 

(improved) to roughly 24.0% (94.1%).   

 Recall that thin cirrus clouds, considered to be the most difficult type to detect 

from passive satellite sensors, comprise the majority of the cases in this sample.  The 
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poor result associated with the clear2 probability, helps to reinforce this idea that MODIS 

has problems detecting thin cirrus clouds. 

 The results presented in Table 3.7 give the total number of cases.  Using the 

ancillary inputs extracted from bits three and five of the cloud mask (refer to Table 2.2), 

the results can be further separated by the day versus night and the snow versus no snow 

cases in addition to platform (Aqua versus Terra).  These results will be discussed in 

chapter four.             

   

3.4.2  Analysis Methods: Cloud Top Properties 

As discussed, determination of the bases and tops of the various cloud and aerosol 

layers is carried out primarily through visual inspection of the lidar plots, although, 

additional sources, such as the CBCT outputs and the five minute backscatter profiles, are 

consulted.  Locating the bases and the tops of the layers visually from the plots is 

performed using two transparent rulers.  The first connects the platform symbol (A, T) 

representing the approximate MODIS overpass time along the top of the plot with the x-

axis, representing the time in UTC.  The second is lined up perpendicular to the first, 

connecting the cloud or aerosol boundary (base or top), with the MSL height.  This height 

gets recorded to the nearest tenth of a kilometer.  Also, if the separation distance between 

layers is approximately less than 0.5 km, the layers are regarded as part of the same layer. 

This value represents about 25% of 2.1 km, the mean cloud layer thickness.   

 Once the base and top altitudes for a given layer are gathered from the plot, the 

corresponding five minute profiles and the CBCT outputs are reviewed.  On occasion, the 
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original altitude estimates may change by a few tenths of a kilometer after consulting the 

five minute backscatter profiles.  The CBCT estimates, on the other hand, are not given 

much weight.    Recall that CBCT provides only the elevation of the lowest layer cloud 

base and the highest layer cloud top.  Also, it is found that CBCT does a poor job of 

separating clouds from optically thick aerosols and of resolving the boundaries of 

optically thin cirrus clouds.  The CBCT outputs are given in units of height above ground 

level (AGL), therefore, 0.20 km is added to convert the elevation to above MSL. 

 The bases and tops of each cloud and aerosol layer are documented, the existence 

of multiple cloud layers and the number of cloud layers are noted.  As mentioned in the 

cloud top algorithm, multiple cloud layers can contaminate the cloud top estimate, 

especially if the top layer happens to be an optically thin cirrus cloud.  Therefore, this 

analysis will evaluate the accuracy of the MODIS cloud top estimates based on single 

versus multiple cloud layers.       

If it appears based on either the lidar plots, five minute profiles or from Dr. 

Sassen’s field notes that the lidar pulse did not penetrate to the top of the highest cloud 

layer, it gets marked down as an attenuation-limited (att-lim) case.  However, for a 

majority of the these cases, the cloud top altitude can still be inferred since, most of the 

time, the signal only gets blocked temporarily, such as the 2220 UTC Terra overpass on 

July 26, 2006 (Figure 3.1).   Of the approximately 103 att-lim cases in the sample, cloud 

top estimates could not be inferred twenty-four times.  

The MODIS derived cloud top pressure and temperature data are stored as the 

thirteenth and sixteenth SDS’s of the 5-km cloud product (MOD06).  During the 
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extraction, two subroutines convert the pixel numbers, using the appropriate 

scale_factors and offsets, to pressure (hPa) and temperature (oC) values.  In addition, the 

cloud top retrieval method, called Cloud_Height_Method, is extracted.  As discussed, 

MODIS uses two techniques for estimating cloud top pressure: the CO2 density slicing 

algorithm (CO2), applied to clouds with tops above 700 hPa, and the 11-micron 

brightness temperature algorithm (BT11), applied to low clouds assumed to behave as 

blackbodies.  For this analysis, the cloud top errors are partitioned by top retrieval 

method.             

As mentioned, to evaluate the MODIS data against the lidar estimates, the 

MODIS top pressures (hPa) must be converted to units of height (km) and temperature 

(oC), and the lidar top heights converted to pressure, but the temperatures are given with 

the MOD06 product.  These conversions are carried out using radiosonde profiles of 

altitude, pressure and temperature.  The caveats associated with the sounding data have 

are discussed in section 3.1.  

Deriving the MODIS cloud altitudes (lidar cloud pressure, temperature) from 

pressure (altitude) is conducted using a linear interpolation approach.  The generic IDL 

procedure for matching the MODIS cloud top pressure to height using the sounding 

profile is summarized here.  Note the variables i and k signify the ith MODIS case and the 

kth sounding level (altitude) respectively.  The steps are as follows:   

 

   1.  Read in the MODIS cloud top pressure for the ith case, MOD_P[i]. 

   2.  Find the pressure levels on the sounding profile located directly below and above the  
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        MODIS pressure (e.g. locate Sounding_P[k] and  Sounding_P[k+1] where  

        Sounding_P[k+1]  ≤ MOD_P[i] ≤ Sounding_P[k]). 

   3.  Match the two sounding pressure levels with the associated height (Z) levels (e.g.     

         Sounding_Z[k+1]  Sounding_P[k+1]; Sounding_Z[k]  Sounding_P[k])     

4. Compute the slope, Msound, setting the sounding heights as the y-values and the 

sounding pressures as the x-values such that 

 

Msound =  Sounding_Z(k +1) - Sounding_Z(k)
Sounding_P(k +1) -  Sounding_P(k)

 .                        (3.1) 

 

5. Solve for the MODIS cloud top height, MOD_Z[i], using the slope, Msound,  

        calculated from step 4.  A careful derivation reveals the solution for the MODIS  

        cloud top altitude for the ith case, MOD_Top_Z[i], is given by 

 

    MOD_Z[i] = -Msound(Sounding_P[k+1] – MOD_P[i]) + Sounding_Z[k+1].      (3.2) 

 

 Similar derivations provide the lidar cloud top pressure and temperature from the 

altitude estimate.  These IDL procedures are automated so that the files can be processed 

in batch.  For each case, the cloud top pressures, altitudes and temperatures 

corresponding to the MODIS and lidar instruments are printed as separate columns to a 

text file.   
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Next, assuming the lidar represents ground truth, the MODIS cloud top errors are 

computed and then evaluated against a number of conditions.  The error is computed for 

by subtracting the lidar estimate from the MODIS value (e.g. ΔP = MOD_P[i] – 

Lid_P[i]).   

Given the multitude of parameters, these errors (ΔP, ΔZ and ΔT) can be compared 

in a myriad of ways in order to pinpoint the strengths and weaknesses of the MODIS 

algorithm.  For this research, the mean and standard deviations of the errors are assessed 

by platform (Aqua versus Terra), time of day (day versus night), snow cover (snow 

versus no snow), cloud layers (single versus multiple layers) and top retrieval method 

(CO2 versus BT11).  Also, simple scatter-plots of the MODIS results versus lidar results 

are generated, and are separated and by top retrieval method.  Additionally, scatter-plots 

of error versus sensor zenith angle and error versus the geometric thickness of the top 

cloud layer are produced.  The former intends to determine if the steepness of the viewing 

angle affects the cloud top retrievals, and the latter to determine if the MODIS top 

estimates are correlated with cloud depth. The regression lines and correlation 

coefficients, R2, are displayed with the plots.                           

 The errors can also be represented in histogram form.  The errors are sorted and 

counted into 100 hPa, 2000 m and 10oC bins for pressure, height and temperature 

respectively.  The series are also separated by top retrieval method.      

Finally, the errors are plotted by month to determine if any seasonal patterns are 

evident.  It is hypothesized that errors in the MODIS estimates will be more pronounced 
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in winter when sun angles are low, and when snow and surface inversions are likely to be 

present.       

 

3.4.3  Analysis Methods: Cloud Phase 

 Plots representing the vertical distribution of depolarization ratio are used to 

visually evaluate the cloud thermodynamic phase corresponding to the MODIS overpass.      

Detailed discussions on the polarization lidar technique and a definition of δ, the 

depolarization ratio, are covered in chapter two.  Recall different particle shapes generate 

markedly different signatures in δ due to the manner in which laser light gets scattered by 

the particles.  Liquid cloud particles that possess a spherical shape do not change the 

orientation of E-vector during a single scattering event, whereas ice particles generally 

change the orientation of the E-vector a great deal, which is largely a function of the 

particle shape (Sassen, 1991).  As a result, discrimination of cloud particle phase using a 

polarization lidar is somewhat straightforward provided that the signal does not get 

attenuated by an optically thick cloud.  The notable exception to this rule is the case of 

flat hexagonal plate crystals, which fall with their flat surfaces oriented nearly 

perpendicular to the incident zenith-pointing laser.  Such crystals do not change the 

polarity of the reflected light since the photons undergo a specular reflection.  As 

discussed earlier, this problem can be resolved by tilting the laser slightly off nadir.          

 The MODIS cloud product (MOD06) provides three cloud phase SDS’s: one for 

the day overpasses, one for the night, and a third, which combines the two.   The tri-

spectral brightness temperature difference (BDT) method works under all illumination 
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conditions while the visible near-infrared bands ratio (BR) method only works during day 

overpasses.  Results of several individual cloud mask tests are also incorporated.  The 

details of the phase algorithm are discussed in Section 2.3.3.1.  The cumulative 

assessment (day and night) is represented as the 5-km SDS labeled 

Cloud_Phase_Infrared.  Once the phase has been determined, one of seven integers 

representing five categories is assigned to each pixel as follows: clear = 0; water = 1, 5; 

ice = 2, 4; mixed = 3; uncertain = 6.  As mentioned, the uncertain category gets grouped 

under mixed.   

 Evaluation of cloud phase using the lidar δ-plots (Figure 3.1b) is carried out by 

first, locating the satellite overpass time on the plot using the recorded scan times and the 

platform symbols.  Next, a transparent ruler is placed on the image connecting the 

platform symbol along the top of the plot with the x-axis.  If the transect intersects a 

cloud layer, the δ values are examined using the color-coded table as a guide.  Cloud 

layers can be separated from aerosols based on their appearance (large backscatter 

returns, well-defined boundaries, texture) in the corresponding backscatter plot and are 

noted in Dr. Sassen’s field notes.  If the δ-values within the cloud layer are consistently 

greater than 0.15, the layer gets grouped under ice.  Layers that exhibit low δ-values (δ ≈ 

0) near cloud base get grouped under liquid.  These layers also tend to be optically thick, 

generating noticeable ‘shadows’ caused by the attenuation of the signal above the layer. 

 Several criteria are used to identify cases of mixed phase clouds in the lidar data.  

Recall that, with respect to passive remote sensing, the radiation reaching the satellite is 

comprised of a mixture of the individual components along the sensor’s line of sight.  For 
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a situation in which an optically thin cirrus is situated above an optically thick stratus, the 

sensor will detect radiation originating from both sources in different proportions, even 

though the algorithm can only assume one emission source (cloud layer) in its field-of-

view.  Consequently, as discussed earlier, MODIS pixels that possess a liquid layer (e.g. 

marine stratus) underneath an ice layer (e.g. cirrus) commonly get classified into the 

uncertain or mixed categories (Platnick et al., 2003).   

This logic must be considered when assessing the existence mixed phase cases in 

the lidar data in order to be consistent with the MODIS algorithm.  When multiple 

discrete cloud or precipitation layers containing both liquid and ice phases are found to 

exist in the lidar plot during the MODIS overpass, the case receives a mixed label.  

Circumstances classified as mixed cases may include the following:  

 

  1. Cirrus over a low-level water cloud (e.g. cumulus, stratus) 

  2.  Snow or ice virga falling out of a liquid stratus or altocumulus cloud                                      

  3.  Any situation in which one or more liquid cloud layers is present concurrently with  

        one or more ice layers (e.g. cirrus cloud, frozen precipitation, oriented plate crystals) 

 

Discerning particle phase for mid-level clouds, which includes altostratus and 

altocumulus, is somewhat less standardized since mid-level clouds reside in the transition 

zone temperatures between 0oC and -40oC, the transition zone where both liquid and ice 

can be present.  Ice dominated altostratus clouds are traditionally defined as cirrostratus 

clouds which have attained an optical depth of 3.0 sufficient to completely obscure the 
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solar disk (Sassen, 2002a).  These clouds tend to exhibit δ-values commensurate of ice 

clouds, but are, by definition, attenuation-limited.  Embedded layers of super-cooled 

liquid water are commonly seen in ice dominated altostratus clouds (Sassen, 1984), while 

water dominated altocumulus tend to exhibit δ-values, with practically zero 

depolarization near the base and a rapid increase in δ-values due to multiple scattering 

followed by total attenuation of the signal. 

Mid-level cloud phase is determined from the δ-plots.  If the δ-values are 

consistently larger than 0.15 throughout the layer, it gets grouped under ice.  Altostratus 

that originate from a thickening cirrus layer are usually all ice.  If large patches of orange 

and red indicating the presences of liquid droplets, or if the layer exhibits liquid like δ-

values but is precipitating highly depolarizing snow or virga particles, the layer gets 

grouped under mixed.  Most altocumulus cases, however, get classified as liquid because 

their δ-signatures are consistent with liquid clouds.   

A handful of nimbostratus cases are included with the sample.  For these, 

complete attenuation of the lidar signal above cloud base throughout most or the entire 

lidar acquisition period is observed.  Even though it is impossible to discern what lies 

above, these cases receive either a liquid label if they are precipitating rain, or a mixed 

classification if the precipitation is frozen.  None receive the ice-only tag.  Nevertheless, 

one readily admits that being blind to what resides above the cloud base significantly 

increase the risk of misinterpreting cloud phase.  However these cases represent only a 

small fraction of the entire sample.       
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In many situations, Dr. Sassen’s field notes provide helpful sky and cloud cover 

observations that, at times, can be used to clarify or to confirm the phase in the lidar data.  

Observations of halos or coronas corroborate the presence of ice or liquid for those cases 

when the δ-images were difficult to interpret.   

The phase product is compared much in the same way as the cloud mask:  the 

results are counted and organized into a table similar to Table 3.7 in order to see how 

well the two datasets agree.  An example is presented in chapter four. 

  

3.4.4  Analysis Methods: Aerosol Type 

 The MODIS aerosol product (MOD04) includes the 10-km Aerosol_Type_Land 

SDS.  Like the cloud phase, the aerosol types are stored as integers which translate to the 

following categories:  mixed = 0; dust = 1; sulfate = 2; smoke = 3; heavy_smoke = 4.  

Selection of aerosol types based on the various seasonally and geographically defined 

aerosol models developed from the AERONET database is discussed in the section 

2.3.4.1 devoted to the aerosol type algorithm.  

Aerosol layers can, for the most part, be visually differentiated from cloud layers 

in the lidar plots (Wang and Sassen, 2001).  However, the identification of aerosol type is 

best carried out by an experienced observer in the field, a person who can also synthesize 

other sources of information and can put observations into context with conditions on the 

ground.  Dr. Sassen uses a combination of visual observation and real-time lidar data to 

document the bases, tops and types of the aerosol layers.  Dr. Sassen records the layer 

boundaries within a minute of the Aqua or Terra overpass for most cases.                             
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 By far, smoke and Asian dust are the most frequent aerosol types observed during 

this study.  Smoke from boreal forest fires is common over Alaska during the summer.  

Smoke may originate from Alaska or be transported from Siberia or Canada depending 

on the flow patterns (Tirichurapalli, 2006).  In Alaska, the 2004 and 2005 summer fire 

seasons burned approximately 6.7 and 4.5 million acres respectively, ranking as the first 

and third worst fire seasons since 1956 respectively (Rozell, 2006).  Also, frequent spring 

dust storms over the Gobi and Taklamakan deserts transport dust particles into Alaska 

between February and May (Tirichurapalli, 2006).  As mentioned, dust has strong ice 

nucleating capabilities, and discriminating between dust layers and cirrus clouds can be 

difficult (Roskovensky and Liou, 2005).   

 In addition, Dr. Sassen uses the Naval Research Laboratory’s (NRL) aerosol 

monitoring network to anticipate major aerosol events, such as Asian dust storms, before 

they reach Alaska.  Other resources, such as the NOAA Hybrid Single-Particle 

Lagrangian Integrated Trajectory Model (HYSPLIT) can be used for backtrack analysis 

to determine the origin or to validate the source of an observed aerosol.   The NRL’s 

aerosol products can be found at http://www.nrlmry.navy.mil/aerosol/ (Naval Research 

Laboratory, 2008).  The HYSPLIT model can be accessed at http://www.arl.noaa.gov/ 

ready/hysplit4.html (HYSPLIT Model, 2008).  

The aerosol analysis for this research is divided into two sections: the first 

provides a climatological summary of aerosol observations derived from the field notes 

and from the lidar data for all 549 cases.  The second compares the MODIS C004 and 

lidar derived aerosol types for the truncated February 2004 – June 2006 sample.  In 
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addition, since aerosol layers can both resemble and help to form clouds, aerosol 

observations may come in handy at determining how efficient MODIS is at 

differentiating between cloud and aerosol layers, and vice versa.    

 

3.4.5 Analysis Methods: Results by Optical Depth 

3.4.5.1 Definition of Optical Depth 

 The term optical depth loosely describes the opaqueness of a medium or, how 

much light gets attenuated from the original beam via scattering and absorption as it 

propagates through a substance.  In general, turbid media have a large optical depth, 

whereas transparent media have a small optical depth, depending on the wavelength.  

Optical depth ( ) can be expressed mathematically as (Liou, 2002) 

 

 = s                                                                         (3.3) 

 

where  is the extinction coefficient, the combination of scattering plus absorption,  is 

the density of the medium and s is the path length.   is unit-less, and represents, in 

essence, the probability that a photon will interact with the media during its transit time.   

 Remote sensing techniques, such as the LIdar RADar (LIRAD) method, can be 

used to calculate the visible optical depth of cirrus clouds (Comstock and Sassen, 2001) 

however, such a method requires two sets of measurements taken concurrently, one from 

an active lidar and the other from a passive infrared radiometer.  Unfortunately, 
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measurements of infrared downwelling radiances were not taken concurrently with the 

lidar measurements hence the LIRAD method could not be applied for this study. 

 

3.4.5.2 A Proxy Measure of Optical Depth 

Experienced field observations of cirrus clouds have led Sassen to devise an 

optical depth classification scheme based solely on the visual appearance of cirrus 

(Sassen and Cho, 1992).  This scheme is given below in Table 3.8.  Dr. Sassen’s field 

cirrus cloud descriptions consistent with the naming scheme in Table 3.8, are used in 

conjunction with the lidar plots to classify the cases into different categories based on 

optical depth.   

For this study, a slightly modified version of the naming scheme in Table 3.8 is 

used per Dr. Sassen’s instructions.  The categories and their respective optical depths are 

as follows: 1) “---” for clear or aerosol only, 2) “0.03-” for subvisual, 3) “0.03+” for thin, 

4) “0.30-” for thinnish, 5) “0.30+” for opaque, 6) “3.0-” for opaquish and 7) “3.0+” for 

attenuation-limited.  The descriptors (thinnish, opaquish, etc.) are used throughout the 

field notes to describe the visual appearance of the cirrus layers from the ground looking  

 

Table 3.8: Cirrus optical depth classification scheme.  Optical depth estimates of 
cirrus clouds based on their visual appearance.  This table is reproduced from Table 2.1 
from the book Cirrus (Sassen, 2002a). 
 

Category Tau Range Description   
Subvisual <0.03 Invisible against the blue sky 

Thin 0.03-0.30 Translucent, retains a bluish color 
Opaque 0.30-3.0 Usually appears white 

Altostratus >3.0 Disk of sun becomes indistinct 
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towards nadir.  However, they are not used for all cases.  Important optical depths to keep 

in mind include the following: the boundary where the blue sky just barely appears to be 

obscured by a cirrus layer occurs for τ = 0.03, the boundary where the sky loses its bluish 

appearance occurs for τ = 0.30, and the boundary of complete attenuation in which the 

solar disk is no longer visible occurs for τ = 3.0..   

Since the MODIS cloud mask, cloud top property, and to some extent, cloud 

phase estimates are all dependent on optical depth, using it, even if it is a crude estimate, 

should prove to be useful.  However, one readily admits, again, that the specter of 

subjectivity cannot be eliminated entirely from this process.  First, the naming scheme, 

itself, is inherently intuitive since it is based solely on human observation.  And although, 

for most cases, the cirrus layers are described using the terms defined in the naming 

scheme (subvisual, thinnish, opaque, etc.), in some cases, they are not. Also specific 

descriptions of cirrus clouds at precisely the time of the MODIS overpasses are not 

always present.  Hence, it rests on the shoulders of the data analyst to synthesize both the 

field notes and the lidar plots to make a final judgment for many of these interpretations.  

Additionally, it is the intention of the analyst to determine the aggregate optical depth 

between the ground and the top of the highest cloud layer.  For example, if two “thin” 

layers are present, the analyst may group such a case into “thinnish” depending on their 

appearance.    

The next chapter, chapter four presents and discusses the results for this three and 

a half year study.  All results pertaining to optical depth are given at the end of chapter 

four.   
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Chapter 4 Results 

 

4.1 Sample Overview 

4.1.1 MODIS Case Statistics 

This dataset contains 549 individual MODIS overpasses spanning three and half 

years from February of 2004 to August of 2007.  Most cases occur between the hours of 

2000 - 2330 UTC (1100 – 1430 local) when the Terra and Aqua overpasses happen to 

take place within fifteen minutes of each other over Alaska.  Less than 2% of the cases 

occur during the hours of 0520 - 0735 UTC (2020 – 2235 local), a time that coincides 

with additional Terra overpasses.   

Because of Alaska’s high latitude location and MODIS’s wide swath width, a 

lidar collection, occurring over the course of several hours, would frequently capture two 

overpasses per platform.  For example, referring to the case study presented in chapter 

three, the July 24, 2006 lidar collection (Figure 3.1) lasted a little over three hours from 

about 2005 to 2320 UTC.  This collection captures both the 2045 and 2220 Terra and the 

2100 and 2235 UTC Aqua overpasses respectively, yielding a total of four MODIS 

passes during a single lidar acquisition.   

Figure 4.1 separates the cases into five basic groups based on cloud observations.  

The groups are as follows; Lclr (Lidar-clear) – Mclr (MODIS-clear) represents cases where 

both the MODIS and the Lidar instruments observe cloud-free conditions over AFARS; 

Lcld - Mcld are cases where both MODIS and the lidar observe cloud; Lclr – Mcld or F-N,       
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Sample Statistics (549 Cases)
Feb 04 - Aug 07

49

345

107

24
24

Lclr - Mclr
Lcld - Mcld
Lclr - Mcld (F-N)
Lcld - Mclr (F-P)
a-l*

 
 

Figure 4.1:  Sample breakdown sorted by cloud observations. White: Lclr-Mclr; Blue: 
Lcld-Mcld; Yellow: Lcld-Mclr (F-N); Orange: Lclr - Mcld (F-P); Gray: Attenuation-Limited.   
 
 

which stands for ‘false-negative,’ signify cases when MODIS judges the pixel over 

AFARS to be clear while the lidar sees cloud; Lcld - Mclr or F-P, which stands for ‘false-

positive,’ are cases where MODIS detects cloud when the lidar detects cloud-free; finally, 

a-l* represents ‘attenuation-limited’ cases, cases in which the cloud above AFARS 

completely attenuated the laser before it reached the cloud top, and for which a cloud top 

altitude could not be inferred.  Note the above categories may or may not contain aerosol 

layers.   

The attenuation-limited cases are divided even further.  Of the 549 cases in the 

sample, 103 (>18%) are documented to be attenuation-limited.  However, the twenty-four 

cases in Figure 3.1, denoted by an asterisk, represent a special sub-category of 
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attenuation-limited cases for which no information above the laser beam could be 

inferred.   These cases are omitted from the cloud top data analysis, but remain in the 

phase analysis since phase can still be estimated based the field notes and on the 

meteorological conditions at the time of the overpass.  Typically these cases receive 

either a liquid or mixed phase classification.  In fact, many of the a-l* cases in Figure 4.1 

are cases of precipitating stratiform clouds.   

For the other attenuation-limited cases, cloud top information could still be 

deduced.  For example, the 2220 UTC Terra overpass in Figure 4.1 occurs during a ten 

minute period when an alto-cumulus cloud with a base near 4 km passed over the laser.  

Before 2210 and after 2222 UTC, a cirrus layer is visible from 7 – 9 km in altitude.  One 

can safely assume that this layer remains present during the twelve minute window even 

though it was within the shadow of the cumulus cloud.  At other times, a thickening 

cirrus or altostratus cloud may attenuate the signal.  Such clouds barely exceed the τ = 3 

threshold representative of an optically thick cloud, but these cases are still assigned a 

cloud top height since it is assumed that the actual top would fall reasonably close (within 

1 – 2 km) of the apparent top in the lidar plot.  However, one readily admits that such 

guesses are inherently speculative and thus, will likely introduce unknown amounts of 

error into the cloud top estimates.       

 

4.1.2: Lidar and Surface Observations  

Figure 4.2 catalogs the various cloud cover conditions as observed from the 

ground during each MODIS overpass.  The ten categories are specified as follows: 
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Lidar Surface Observations (549 Cases)
Feb 04 - Aug 07

48

268
122

6

10

4
40

4
25

22

Clear

Single Layer Ice
Multi-layer Ice

XLS plates

Ice Fog
Single Layer Mixed

Multi-layer Mixed

Liquid
Att-lim

Aerosol Only

  
 

Figure 4.2: Field and lidar observations of clouds and aerosols.  Cloud and aerosol 
cases observed at AFARS from February 2004 to August of 2007.      

 
 
 

 Clear (clear): Cloud-free; may contain thin aerosol layers. 

 Single layer ice (ice): One and only one ice cloud layer; may contain thin aerosol  

 Multi-layer ice (ice): Two or more ice cloud layers, or one ice cloud layer and  

                  one oriented plate crystal (xls) layer; may contain thin aerosol.     

 XLS (ice): Single or multiple layers of oriented plate crystals (XLS) only; may  

                  contain thin aerosol. 

 Ice fog (ice, clear): Surface ice fog is prevalent; may contain additional very thin  

                 cloud layers or thin aerosol.    

 Single layer mixed (mixed): One and only one discernable altostratus or  
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                 altocumulus layer.  May contain virga (ice or liquid) and/or thin aerosol.   

             Multi-layer mixed (mixed):  Two or more discernable mixed cloud layers, or an  

                   ice cloud layer above one or more mixed or liquid cloud layers; may contain   

                  thin aerosol. 

 Liquid (liquid): One or more liquid layers, usually low level broken cumulus or   

                 thick low level rain producing stratiform.  Regions above can be inferred; may  

                 contain thin aerosol.   

 Att-lim (mixed, liquid): Low or mid level attenuating stratiform clouds.  Unlike  

                 liquid, regions above cannot be inferred; may contain thin aerosol.  

 Aerosol Only (Clear): One or more thick aerosol layers.  No cloud layers.   

        

 These categories are chosen based on several criteria.  First and foremost, they are 

differentiated by phase since phase is the primary cloud variables being evaluated.  Note, 

the italicized phase types (ice, liquid, mixed, clear) adjacent to each category name 

specifies under which group the given category is likely to fall.  The above categories are 

also separated by number of cloud layers (single verse multiple).  Per the chapter two 

discussion, MODIS top pressure estimates of thin cirrus tend to be more accurate for 

single layer cases since additional layers can skew the cloud top estimates towards a 

lower (higher) cloud top height (temperature).  In addition, multiple layers of different 

phase clouds can also impede definitive cloud phase identification.     

The oriented plate crystal caterogy (XLS) represents a unique type of stratum that 

belongs somewhere in between cloud and virga.  These layers are comprised of 
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suspended plate crystals and are on the order of tens to several hundred meters thick.  

Because of their flat shape and orientation, they exhibit low depolarization values (δ ≤ 

0.05) for the reasons discussed in section 2.4.2.  When the beam is tilted off nadir, the 

amount of depolarization undergoes a sharp rise. 

 XLS layers are observed ninety-three times during all twelve months of the year 

at various heights in the atmosphere.  Many appear to be associated with aerosol layers 

such as smoke or Asian dust, or embedded within cloud layers.  Others exist as distinct 

layers and are considered to be subvisual cirrus layers; the tops and bases of which are 

recorded as any other cloud layer would.   

During the winter months, ten ice fog cases are documented.  Ice fog typically 

forms during clear cold conditions within strong surface inversions (Pruppacher and 

Klett, 1997).  Exhaust plumes from cars, buildings and power plants can enhance or even 

cause ice fog to enshroud the city of Fairbanks for days at a time.  Technically, true ice 

fog only forms when the temperature is at or below -40oC, the threshold at which liquid 

droplets homogenously freeze (Pruppacher and Klett, 1997).  However, ice fog in this 

sample is more loosely assigned to cases of regular fog composed of super-cooled liquid 

droplets or diamond dust (large suspended ice crystals) which can develop under similar 

meteorological situations but at warmer temperatures (T ≤ -15oC). In some cases, ice fog 

is treated as a distinct cloud layer with a defined cloud top, usually at or below 2 km, and 

a base at the surface (0 km).  For other cases, it is not.  The criteria under which ice fog is 

or is not treated as a cloud layer is somewhat arbitrary and depends on the strength of the 

backscatter in the lidar plot and highly on the observations in the field notes.  Localized 
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ice fog observations originating from power plant plumes as recorded in the field notes 

are typically disregarded, while thick more widespread events are not.            

One must bear in mind that the terms “thin” and “thick” with respect to cloud, fog 

and aerosol layers are somewhat arbitrary, since calculations of cloud and aerosol optical 

depths from the lidar backscatter profiles are not conducted.  Although, as described in 

section 3.8, a crude measure of optical depth is applied to the data analysis using the 

classification scheme based on visual appearance developed by Sassen.  The results based 

on this classification scheme are organized at the end of this chapter.   

But admittedly, without definitive knowledge of optical depth, it is impossible to 

quantify the limits of the MODIS cloud and aerosol detection algorithms.  For example, 

the aerosol only cases, represented by the orange class in Figure 4.2, are based solely on 

visual inspection of the lidar plots.  If the aerosol layer appears “thick,” producing a 

strong bright backscatter signal in the lidar plot, then it is grouped into aerosol only.  If 

the aerosol layer appears “thin,” then the case is classified under clear.  For this analysis, 

all aerosol layers, regardless of type or opacity, are noted, and the top and base heights 

are documented when possible.  

One might also notice that the twenty-five att-lim cases in Figure 4.2 do not 

match the twenty-four a-l* cases in Figure 4.1, even though they represent the same 

scenario.  This is due to the fact that one of the a-l* also happened to be an F-N case, and 

was subsequently classified into the latter group.    
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4.1.3:  Summary of Comparison by Cloud Type   

A cursory comparison by cloud phase for the MODIS and lidar derived 

observations, presented below in Figure 4.3, reveals large discrepancies in both the sky 

cover conditions and the types of clouds between the two instruments.  As mentioned, the 

sample is comprised mostly of thin cirrus clouds, clouds that enable the lidar to 

completely penetrate to the top of the highest cloud layer.  Unfortunately, thin cirrus 

clouds also represent the most difficult type of cloud for MODIS to detect.  When one 

also considers the northern locale of the AFARS research site, where snow, low sun 

angles and temperature inversions are common over half the year, it is safe to assume that 

this sample represents one of the more difficult ones with which to evaluate the MODIS 

derived cloud parameters.  The large discrepancies observed in Figure 4.3 can be thought 

of as a consequence of these difficult conditions. 
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Figure 4.3: Overall percentage of cases by cloud phase sorted by instrument. 
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MODIS erroneously identifies clear conditions at nearly double the rate of the 

lidar.  These cases are represented by the F-N cases in Figure 4.1.  It is likely, given the 

problems of thin cirrus detection from satellites, many of these missed clouds are of thin 

ice clouds.  This is partly supported by the observed disparity in the percentage of ice 

cloud cases between the two instruments; MODIS detects ice clouds approximately 32% 

of the time while, based on the lidar depolarization plots, ice clouds are detected from the 

surface at over double the rate, 74% of the time.  

 In addition it appears that MODIS overestimates the number of mixed and liquid 

phase clouds.  In the case study presented in chapter three, the 2100 UTC Aqua overpass 

for the July 24, 2006 (Figure 3.1) classifies the pixel over AFARS as water (Table 3.1), 

whereas, based on the δ-plot in Figure 3.1b, the lidar observation is ice (Table 3.4).  A 

more detailed analysis into the false identifications (F-N, F-P) in sections 4.5 and 4.6, 

will show that on occasion the MODIS algorithm can be fooled into identifying smoke as 

liquid, since the two have similar characteristics.    

 

4.1.4 Case Summary by Month           

Figures 4.4a and 4.4b give the monthly frequency of cases by platform (Aqua, 

Terra), time of day (day, night), snow cover (snow, no snow), MODIS cloud top retrieval 

method (BT11, CO2) and false identifications (F-N’s and F-P’s).  The time of day and the 

snow cover cases plotted in Figure 4.4a are derived from the cloud mask bits extracted 

from the 5-km cloud mask SDS.  Recall from chapter two that the MODIS cloud mask 

algorithm uses ancillary inputs, such as time of day, snow cover and surface type, to 
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decide which processing path (domain), and hence, cloud detection tests and 

corresponding threshold values are applied.  The day versus night determination is based 

on the value of the solar zenith angle (θ) at the Earth’s surface: if θ ≤ 85o, the scene 

receives a night flag.  The θ-value is predictable so one expects this flag to be accurate.  

Note, the majority of the night cases (black solid) in Figure 4.4a take place during 

November, December and January, during the weeks surrounding winter solstice.  Even 

though the overpasses occur during the early afternoon, none of the documented cases in 

December receive a day flag due to the lowness of the midwinter sun in Fairbanks.     

 Recall that snow cover is determined either from the NSIDC snow cover maps or 

from the MODIS derived NSDI (Normalized Snow Difference Index).  Unfortunately, 

the number of snow cases (white diamond with black dotted line in Figure 4.4a) during 

the winter months is significantly underestimated.  Meteorological observations from the 

National Climatic Data Center (NCDC) confirm that a measurable snow depth was 

present in Fairbanks on all days spanning Nov, 1 through March, 31 for all three winter 

seasons (04-05, 05-06 and 06-07).  Therefore, any no snow cases (green diamond and 

dotted line) recorded during these months are incorrect.  This error may suggest an over 

reliance on the NDSI method, which uses the reflectance channels (VIS and NIR) to 

determine snow cover.  Widespread areas of spruce forest and asphalt, both of which are 

dark targets, could drastically reduce the reflectance in the visible bands rendering the 

NDSI method ineffective at detecting bright snow.  Also since it relies on the shortwave 

channels, the NSDI can only be applied to the day pixels.  However, the fact that several 
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Figure 4.4: Ten MODIS overpass categories distributed by month.  The cases are 
sorted by (a) platform, time of day, snow cover and (b) MODIS cloud top retrieval 
method, false negative (F-N) and false positive (F-P) cases.  The day, night, snow and no 
snow flags are derived from the 5-km MODIS cloud mask.  The top retrieval methods are 
from the MODIS cloud product. 
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no snow cases are identified in December, even though all of the cases receive a night 

flag, suggests that perhaps the NSIDC snow cover maps are inaccurate.  One could find 

out how the snow cover determination is performed by extracting bits two and three in 

Byte #8 of the cloud mask, however such an analysis is not conducted for this study.   At 

this point, it is unclear how choosing the wrong snow cover flag trickles down into the 

cloud mask and subsequent cloud product estimates.  

 Figure 4.4b gives the time series of the MODIS cloud top retrieval method and 

false cloud identification cases.  Note the retrieval methods appear to exhibit a seasonal 

pattern.  The frequency of CO2 cases (solid blue) is largest during the summer months, 

from May to September, when the surface temperatures are warm, the ground is snow-

free and the days are long.  Conversely, the frequency of BT11 cases (solid red) is largest 

during the winter months, from November to April, when the days are short, surface 

temperatures are cold, inversions are likely, and the ground is snow covered.  Recall that 

if the clear minus the cloudy sky radiances fall within the instrument noise level, the BT11 

method is selected to compute the cloud top height.  This occurs when the clouds are low 

(Pc ≤ 700 hPa), or when cloudy and clear sky signals are difficult to separate, such as for 

the case of thin cirrus over a cold bright surface (Menzel et al., 2002).   

 The false identifications (F-N, F-P) are plotted in Figure 4.4b in conjunction with 

the top retrieval methods to determine if any seasonal pattern can be detected, and to see 

if the false identifications are in any way correlated to top retrieval method.  A cursory 

examination of the F-N plot (dotted orange) seems to show that most of the cases seem to 

take place, with the exception of July, during the summer months from May to 
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September.  The F-P series (dotted gray) is largest between February and April.  Based 

on the cloud mask algorithm discussion, one could hypothesize that the times when 

MODIS would most likely misidentify cloud under clear skies (F-P) is during the winter 

months when the contrast in both temperature and reflectance between the ground and the 

cloud is small.  Similarly, the times during which MODIS would most likely misidentify 

clear sky when a thin cirrus cloud is present (F-N) would be over a warm dark landscape.  

The time series of F-N and F-P in Figure 4.4b seem to support these statements. 

 

4.2 MODIS Cloud Mask Results 

4.2.1. Analysis Methods Revisited 

 The MODIS cloud mask was discussed at great length in section 2.3.1  Recall that 

the cloud mask computes a Q-score, the value of which can fall within one of four 

categories: confident clear, probably clear, probably cloudy and confident cloudy.  For 

this study, the confident clear and probably clear categories as well as the confident 

cloudy and probably cloudy are combined into simply clear and cloudy, which facilitates 

the comparison with the lidar based determination which, itself, yields either clear or 

cloudy.     

 For reasons discussed in section 3.4, the accuracy of the MODIS cloud mask is 

assessed using three different methods.  The first evaluates the cloud mask derived from 

the 5-km pixel derived from the cloud product (MOD06) situated directly over AFARS.  

This method will be dubbed ‘5 km point.’  The second, identified as the ‘1 km point,’ 

evaluates the pixel value obtained over AFARS from the actual 1-km MODIS cloud 
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mask file (MOD35).  The third, labeled ‘1 km box,’ compares the mode value of a 5 x 5 

1-km box of pixels centered over AFARS.   

 The analysis methodology used to compare the MODIS cloud mask with the lidar 

data was explained in section 2.7.3, but will be repeated here for convenience with an 

example.  Tables 4.1a-c summarize the performance of the cloud mask for all sample 

cases with Table 4.1a, 4.1b and 4.1c representing ‘5 km point,’ ‘1 km point’ and ‘1 km 

box’ respectively.  The results are counted using an IDL routine, which partitions the 

cases into one of four MODIS classes (Conf. Clear, Prob. Clear, Prob. Clouds, Conf. 

Clouds) and one of two lidar classes (Cloudy, Clear).   

As discussed, the performance of the cloud mask can be approached in two ways.  

The first compares the MODIS result against the lidar.  These calculations are given 

under clear1 (turquoise) and cloud1 (light green) in the far right column.  In essence, this 

method attempts to answer the following: given a lidar result of clear (clouds), what is the 

probability that a MODIS result of clear (clouds) will match?  These are computed by 

summing the number of confident clear and crobably clear (confident clouds, probably 

clouds) cases in the lidar clear (cloudy) row, and dividing by the total number of lidar 

clear (cloudy) cases.  For example, referring to the ‘5 km point’ method (Table 4.1a), the 

probability that the MODIS cloud mask algorithm returns either a confident clear or a 

probably clear, given a lidar result of clear, is [(55+6)/73]*100, or 83.56%.    

The second compares the lidar result against the MODIS cloud mask finding, 

which in essence, is like attaching a reliability estimate to the MODIS cloud mask.  These 
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Table 4.1:  MODIS cloud mask summary. The results for the (a) ‘5 km point,’ (b) ‘1 
km point’ and (c) ‘1 km box’ methods are sorted by the lidar observation.   
 

(a)   MOD06   ‘5 km point’    
Lidar Conf. Prob. Prob. Conf.  % Correct 
Cloud Clear Clear Clouds Clouds Total Clear1

Cloudy 142 10 31 293 476 83.56 
Clear 55 6 1 11 73 Cloud1

Total 197 16 32 304 549 68.07 
% Corr. Clear2 = 28.64 Cloud2 = 96.43   

 
(b)   MOD35   '1 km point'    

Lidar Conf. Prob. Prob. Conf.  % Correct 
Cloud Clear Clear Clouds Clouds Total Clear1

Cloudy 145 5 30 295 475 71.23 
Clear 50 2 5 16 73 Cloud1

Total 195 7 35 311 548 68.42 

% Corr. Clear2 = 25.74 Cloud2 = 93.93   
 

(c)   MOD35   '1 km box'    
Lidar Conf. Prob. Prob. Conf.  % Correct 
Cloud Clear Clear Clouds Clouds Total Clear1

Cloudy 149 2 20 304 475 76.71 
Clear 56 0 4 13 73 Cloud1

Total 205 2 24 317 548 68.21 

% Corr. Clear2 = 27.05 Cloud2 = 95.01   
 
 
 
calculations are delineated next to the clear2 (yellow) and cloud2 (tan) headings along the 

bottom row.  One way to interpret these results is to consider the following: if MODIS 

determines that a given pixel is clear (cloudy), how accurate is this finding against the 

lidar, considered to be the ground truth?  This probability is computed by summing the 

number of confident clear and probably clear (confident clouds, probably clouds) cases 

within the lidar clear (cloudy) row and dividing by the total number of the MODIS 
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confident clear and probably clear (confident clouds, probably clouds) cases.  For 

example, again using ‘5 km point’ (Table 4.1a), assuming that the MODIS cloud mask 

yields a result of either probably or confident clear, the probability that the sky is, in fact, 

clear is [(55 + 6)/(197 + 16)]*100 or 28.64%.  Both evaluation methods are factual, but 

may yield a wide range of probabilities, which must be interpreted accordingly.   

The cloud mask results are further conditionally evaluated by platform (Aqua, 

Terra), snow cover (snow, no snow) and time of day (day, night), the latter two fields 

being derived from the cloud mask bits.  To conserve space, the results for all categories 

are condensed from twenty-seven tables similar to Table 4.1, into Figures 4.5a and 4.5b.  

The former summarizes the clear-sky probabilities and the latter summarizes clouds.  The 

seven aforementioned groups are labeled along the x-axis.  Black represents the ‘5 km 

point’ method, red represents ‘1 km point,’ and blue ‘1 km box.’  Solid circles 

(diamonds) signify either the clear1 or cloud1 (clear2, cloud2) percentage assessments 

respectively.  The hollow circles and diamonds signify the number of cases associated 

with each series, with the shape and color matching the shape and color of the respective 

category.  The symbols are labeled with the percentage values or the case numbers for 

convenience.  

To help clarify how the results in Table 4.1 are presented in Figure 4.5, note that  

the clear1 (83.6, 71.2, 76.7) and clear2 (28.6, 25.7, 27.1) percentages in Figure 4.5a above 

All coincide with the clear1 and clear2 percentages in Table 4.1 highlighted in turquoise 

and yellow.  The same can be said for the cloud1 and cloud2 percentages in Figure 4.5b.   
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Clear Comparisons (MOD vs. Lidar)
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Figure 4.5: Summary of MODIS cloud mask agreements by analysis approach for 
the a) clear sky and (b) cloudy sky results sorted by the categories All, Terra, Aqua, Day, 
Night, Snow and No Snow are printed along the x-axis.  Diamonds signify approach2, 
circles signify approach1.  Solid black, red and blue denote percent agreements for the ‘5 
km point,’ ‘1 km point’ and ‘1 km box’ methods respectively.  Hollow symbols denote 
the corresponding number of cases.    
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Notice also that the case numbers associated with each category, denoted as hollow 

diamonds and circles, are provided along the bottom.  The actual number of clear1 (73, 

73, 73) and clear2 (213, 202, 207) cases are printed next to the symbols, which match the 

case numbers in Table 4.1, as do the cloud1 and cloud2 cases in Figure 4.5b. 

 

4.2.2  Results by Method: ‘5 km point’ vs. ‘1 km point’ vs. ‘1 km box’ 

As Figure 4.5 illustrates, differences in the probabilities between the three 

methods (‘5 km point,’ ‘1 km point,’ ‘1 km box’) appear to be minimal.  With the 

exception of the night and no snow categories, the ‘5 km point’ surprisingly outperforms 

the other two by about 10-15% for clear1and 1-4% for the cloud2.  Also ‘1 km box’ 

appears to be slightly more accurate (by 1-8%) than ‘1 km point’ for those same cases.  

With respect to the clear2 and cloud1 approaches, the variability between the three 

methods appears to be insignificant.  Overall, ‘5 km point’ seems to be the most accurate 

method.  One should briefly mention that the number of 1-km cases derived from the 

cloud mask MOD35 files is one less, 548, than the number from the cloud product 

MOD06 files because it was found that the April 16, 2006, 2120 UTC Terra overpass 

returned an ‘ND’ signifying not determined for the cloud mask flag.  Hence this case was 

omitted from the cloud mask analysis.   

 

4.2.3 Cloud Mask Summary      

The mean and standard deviations of percent agreement (correct) for the three 

methods are presented in Figure 4.6.  The cloud2 examination consistently yields the best 
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agreement; assuming that the MODIS cloud mask detects cloud, the chances of this 

agreeing with the lidar ranges from 93.8% for no snow to 99.3% for night.  Conversely, if 

the lidar has established that cloud is overhead, the probability that MODIS will agree 

(i.e. cloud1) is much worse, with the low and high-end outcomes of 64.3% to 78.1% for 

the snow and night cases respectively.   

With respect to the clear comparisons, the MODIS cloud mask seems to do a 

decent job with the clear1 approach; if clear conditions over AFARS are initially 

confirmed by the lidar, the probability that the cloud mask agrees ranges from 69.4% to 

97.1% respectively for the snow and no snow cases, with a median value falling around  

 

MODIS Cloud Mask Summary
Mean (5 km pt., 1 km pt., 1 km box) and ± 1 Standard Deviation 

27.1 26.3 27.2 26.9 25.5

68.2 67.3 69.1
65.1

78.1

64.3
69.7

95.1 95.3 95.0 93.6
99.3 99.2

93.8

69.4

97.193.3

74.6
75.3

78.9
77.2

30.6
28.0

0

10

20

30

40

50

60

70

80

90

100

All Terra Aqua Day Night Snow No Snow

 %
 C

or
re

ct

Clear1

Clear2

Cloud1

Cloud2

 
 
Figure 4.6:  Summary of cloud mask accuracy scores.  Each columns and bars 
represent the % correct (agreement) mean and standard deviations derived from the ‘5 km 
point,’ ‘1 km point’ and ‘1 km box’ methods respectively for the clear1 (blue), clear2 
(turquoise), cloud1 (red) and cloud2 (yellow) analysis. 
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77%.  However note that the for many of the categories in Figure 4.5a, the clear1 group 

contains the smallest sample sizes, with night and snow containing only ten and less than 

twenty-six cases respectively.  Therefore, one should view these numbers with some 

skepticism.   

The worst results, by far, are associated with the clear2 approach.  Given a 

MODIS cloud mask result of probably or confident clear, the chances that these results 

match a lidar clear finding falls under 30% for most categories.  This finding is consistent 

with the large number of F-N (false negative) cases denoted in Figures 4.1 and 4.3, and 

the explanation provided in section 4.1.3.        

Differences in the results by platform (Aqua vs. Terra) appear to be 

unremarkable.  The results for all approaches (clear1, clear2, cloud1, cloud2) fall within 2- 

4% of one another for just about all categories.  Terra slightly outperforms Aqua in the 

clear1 and clear2 approaches but also yields a relatively high amount of deviation 

between the three methods. 

The accuracy of the MODIS cloud mask based on time of day (day, night) 

produces a surprising finding; night significantly outperforms day by about 19% for the 

clear1, 13% for cloud1 and 6% for cloud2.  Recall that the number of cloud tests 

associated with the night domain is theoretically fewer that the number available to the 

day domain.  Day should be more accurate than night.  However, notice, again, the 

discrepancy in the sample sizes; there are three times as many day cases associated with 

the cloud1 and cloud2 analysis as there are night cases, and there are only ten clear1 cases 

associated with night (see Figure 4.5a).   
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With respect to the cloud1 and cloud2 analyses, one might expect that the cloud 

mask is more likely to misidentify clouds at night over the cold ground when inversions 

are more likely to form.  But if this were the case, then one might also observe a similar 

result for the snow flagged cases.  However, comparison between the scores for snow and 

no snow cases are mixed:  snow outperforms no snow by about 6% for the cloud2 cases, 

but no snow is over 5% better than snow with respect to cloud1.  Also snow significantly 

outperforms no snow by about 28% in the clear1 category, and although 30.6% 

agreement in the clear2 cases can be considered a poor result, this finding is still 5% 

better than for the similar no snow calculation.  This also represents the highest clear2 

agreement for all the categories.              

 

4.3 Cloud Top Property Results 

4.3.1 Summary of Pressure, Height and Temperature Estimates  

 Omitting the twenty-four a-l* in Figure 4.1, there exist 345 cases of documented 

overlapping cloud top heights between the satellite and the lidar.   As described in chapter 

three, atmospheric profiles of temperature, pressure and altitude collected from the 

nearest radiosonde launchings are used to interpolate the corresponding pressure (hPa) 

and temperature (oC) from the lidar cloud top height (m), and the corresponding height 

and temperature from the MODIS cloud top pressure.  One readily acknowledges that the 

mean, median and max time delays between the MODIS overpasses and the radiosonde 

launchings are found to be 112, 110, and 245 minutes respectively.  This discrepancy will 

introduce some unknown amount of error into the calculations, which will depend on the 
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delay in between the overpass and the radiosonde launching and on the weather 

conditions during this delay.   

The cloud top height (pressure, temperature) derived for each lidar case is 

subtracted from the corresponding MODIS value yielding a ΔZ (ΔP, ΔT) error: the 

smaller the error (ΔZ, ΔP, ΔT ≈ 0), the greater the accuracy.  These errors are evaluated 

against a number of conditions.   

Figure 4.7 plots the raw MODIS derived cloud top parameter of pressure, height 

and temperature as a function of the corresponding lidar derived values.  The blue dots 

represent values derived from the CO2 method and red represents the BT11 method.  

Dashed lines signify ± 200 hPa, ± 2000 m and ± 10oC respectively.  Points residing 

within these arbitrarily chosen error ranges offer reasonable approximations, based on the 

range of modeled pressure error estimates presented in the ATBD (Menzel et al., 2002).     

First, note the general tendency of the MODIS cloud top algorithms to 

underestimate (overestimate) the cloud top height (temperature, pressure).  This finding is 

consistent with the discussion in section 2.3.2.2, which mentions that the CO2 density 

slicing algorithm measures the “radiative center-of-mass” of the cloud, which, optically 

thin cirrus cloud, falls near the geometric center (Menzel et al., 2002).  Theoretically, the 

magnitude of the cloud top error is inversely proportional to the optical thickness of the 

cloud and is also affected by the number and thickness of the underlying cloud layers.  

Figure 4.7 also illustrates the large disparity in the cloud top estimates between 

the CO2 (blue) and the BT11 (red) derived top retrieval methods.  The largest clusters of 

acceptable estimates, those falling within the dashed lines, happen to be the cases derived                  
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MODIS vs Lidar Cloud Top Pressure
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MODIS vs Lidar Cloud Top Height
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Figure 4.7: Scatter-plots of MODIS cloud top parameter versus lidar parameter.  (a) 
MODIS cloud top pressure versus lidar cloud top pressure (hPa) and (b) MODIS cloud 
top height versus lidar cloud top height (m) representing the 345 Lcld – Mcld cases in 
Figure 4.1.  Blue and red dots denote CO2 density slice and BT11 methods respectively.  
Solid lines represent “zero-error” while dashed lines denote   200 hPa and  2000 m.   
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MODIS vs Lidar Cloud Top Temperature
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Figure 4.7 (cont’d): Corresponding scatter-plot of (c) MODIS cloud top temperature 
versus lidar top temperature (oC).   Dashed lines denote  10 oC.    
 
 
 
from the CO2 slicing algorithm (blue), while the least accurate (red) are derived from the 

BT11 method.  Also note that with the exception of one or two cases, almost all BT11 

estimates consistently fall above (below) the solid “zero-error” lines for the cloud top 

temperature (pressure, height) plot, while the CO2 estimates generate a more skewed 

Gaussian appearance around the “zero-error” line. 

These behaviors are best depicted in histogram form in Figures 4.8, 4.9 and 4.10.  

The bins represent different ranges in cloud top error (ΔP, ΔZ, ΔT = MODIStop – Lidartop) 

estimates ranging from ΔP ≤ -400 to ΔP > 400 hPa in 100 Pa intervals for pressure 

(Figure 4.8), ΔZ ≤ -8000 to ΔZ > 8000 m in 2000 m intervals for height (Figure 4.9), and 

ΔT ≤ -40 to ΔT > 40 oC in 10 oC intervals for temperature (Figure 4.10).  Red, blue and  
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Figure 4.8: Histograms of cloud top pressure errors: ( P = PMOD – PLid).  The 
categories are for (a) all, (b) Aqua, (c) Terra, (d) day, (e) night, (f) snow, (g) no snow, (h) 
single cloud layer, (i) multiple cloud layers. Blue, red and black denote CO2, BT11 and all 
cases respectively; ‘F-N’- false negatives; ‘F-P’- false positives; ‘Clr-Clr’- (Lclr - Mclr).   
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Figure 4.9: Histograms of cloud top height errors: ( Z = ZMOD – ZLid).  The 
categories are (a) All, (b) Aqua, (c) Terra, (d) Day, (e) Night, (f) Snow, (g) No Snow, (h) 
single cloud layer and (i) multiple cloud layers. Categories, colors, and labels are 
analogous to those in Figure 4.8. 
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Figure 4.10: Histograms of cloud top temperature errors: ( T = TMOD – TLid).  The 
categories are (a) All, (b) Aqua, (c) Terra, (d) Day, (e) Night, (f) Snow, (g) No Snow, (h) 
single cloud layer and (i) multiple cloud layers.  Categories, colors and labels are 
analogous to those in Figure 4.8.  
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black represent the BT11, CO2 and both (BT11 + CO2) respectively.   Each set of figures 

contains nine plots. All provides the distribution for all cases.  The others are separated by 

platform (Aqua, Terra), time of day (day, night), snow cover (snow, no snow), and cloud 

layers (1 layer, ≥ 2 layers).  The pressure and height plots also give the bins for the false-

negative (F-N), false positive (F-P), and the Lclr – Mclr (clr-clr) cases respectively.   

As in Figure 4.7, the histograms demonstrate the tendency of the MODIS cloud 

top algorithm to significantly underestimate (overestimate) cloud top height (pressure, 

temperature).  Similarly, the BT11 cases (red) contribute the largest source of error, while 

the CO2 (blue) cases, although generally skew towards a lower (higher) cloud top height 

(pressure, temperature), exhibit a more symmetrical distribution around zero.   Also note 

that the BT11 estimates cause the majority of F-P cases.  Only one case of F-P originating 

from a CO2 derived case is documented, which is associated with a day-aqua-no snow 

overpass. 

 Figure 4.11 gives the mean and  1 standard deviation of the cloud top errors for 

each of the nine categories (a-i) represented in the histogram sets (Figure 4.8, 4.9, 4.10).  

The categories are similarly color coded with blue red and black representing the CO2, 

BT11 and all (CO2 + BT11) cases respectively.   As in Figure 4.5, hollow symbols 

represent the number of cases corresponding to the above top retrieval method and the 

case numbers are labeled for convenience.            

On first inspection, it seems that the MODIS cloud top height algorithm performs 

rather dismally. The average cloud top pressure difference for all 345 Lcld-Mcld cases is 

196.8 hPa, corresponding to height and temperature errors of -3008 m and 21.3 K  

 



 

142

Average Cloud Top Pressure Difference
PMOD - PLid

78.1 82.2 63.6
24.3

56.8
84.1

56.0

110.1

347.6
305.8

196.8
215.0

146.9

207.3
185.2

236.6
211.6

157.5 167.7
118.5

213.8

387.6

332.6

235.3

380.3

302.9

370.1

Overall Day Night Aqua Terra Snow No 
Snow

Single
 Layer

2+ 
Layers

345

253

182 163

251
199

146143

41
105

41

143

75
110

58
1089492 109

184

79 71
905351

161 103

-300.0

-200.0

-100.0

0.0

100.0

200.0

300.0

400.0

500.0

600.0

A
ve

ra
ge

  Δ
P 

(h
Pa

)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

C
as

es

(a)

 
 

Average Cloud Top Height Difference
ZMOD - Zlid (m)

-1506

-538

-1545
-1090

-3008 -3178
-2543

-3102
-2904

-3692
-3146-2641

-2507
-2125

-1444
-1228 -1090

-1958

-3600

-5351

-4796
-3841

-5265
-4222

-5524-5068

-4314

Overall Day Night Aqua Terra Snow No 
Snow

Single
 Layer

2+ 
Layers

182 163

251
199

146

41
79 105

41

143
109

58
1089492

253

345

75
143

184

719053
103

51110
161

-10000

-8000

-6000

-4000

-2000

0

2000

A
ve

ra
ge

  Δ
Z 

(m
)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

C
as

es

(b)

 
 
Figure 4.11: Mean and  1 standard deviation of cloud top error by category.  
Parameters include (a) pressure (hPa) and (b) height (m) error sorted by the categories 
listed along the x-axis.  Blue, red and black denote CO2, BT11 and both (CO2 + BT11) 
derived estimates.  Hollow symbols denote associated case numbers.  Values are printed 
next to their respective symbols for convenience. 
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Figure 4.11 cont’d: Mean and ± 1 standard deviation of (c) cloud top temperature (K).  
Categories, colors and symbols are synonymous with those presented in Figure 4.11a and 
4.11b. 
 
 
 
 respectively.  However, it is clear that the source of the error is primarily weighted 

within the BT11 estimates, which, out of 161 cases, yield a deplorable -4796 m, 332.6 hPa 

and 32.9 K mean error for height, pressure and temperature.  In the context of this heavily 

biased thin cirrus sample, the BT11 results can, for the most part, be discounted since this 

method only works for low optically thick clouds.  It seems that the root cause of these 

large BT11 errors lie in MODIS’s failure to detect thin cirrus layers while, 

simultaneously, detecting a nonexistent low cloud.  Such a scenario would lead to the 

enormous disparities between the two estimates observed in the results.   
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In contrast, the CO2 estimates for cloud top height, pressure and temperature fall 

much closer: -1444 m, 78.1 hPa and 11.2 K respectively.  These findings are consistent 

with the ATBD model calculations and with earlier studies discussed in sections 2.3.2.2 

and 2.3.2.3.  The remaining discussion will focus solely on the CO2 results.  

Once again, similar to the cloud mask results, night on average, outperforms day 

by about 70 hPa, 600 m and 4 K, but note that the day sample is three times larger than 

night.  When comparing the CO2 derived heights, the differences between night and day 

are only separated by about 20 hPa, 270 m and 2 K respectively.   

 Conversely, the differences in the CO2 derived errors between Aqua and Terra are 

substantial.  Of the nine categories, Aqua yield the smallest amount of mean P, Z and T 

errors of 24.3 hPa, -538 m and 4.7 K, while for Terra, the corresponding values are four 

to five times greater: 118.5 hPa, -2125 m, and 16.2 K.  It is unclear why Aqua’s CO2 

estimates are substantially more accurate than Terra’s even though the cases are, in 

general, evenly distributed throughout the year (Figure 4.4a).  Also, one must keep in 

mind that both sensors presumably capture similar cloud cover conditions since their 

overpass times occur less than fifteen minutes apart.  Worth noting, however, is that 

Terra contains a significantly higher percentage of CO2 derived cases, 64.4%, to Aqua’s, 

43.4%, even though Aqua’s sample size of 182 is nineteen more than Terra’s 163.  This 

finding seems somewhat paradoxical; Terra more often correctly chooses to use the CO2 

method, but Aqua’s approximations are significantly more accurate.  Such differences 

may lead one to speculate the existence of design or calibration inconsistencies between 

the two MODIS instruments.                          
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 With respect to snow cover, snow cases defeat no snow by 30 hPa, 500 m, and 3.5 

K respectively.  As with the cloud mask results, the fact that snow outperforms no snow 

seems unexpected given how snow camouflages clouds both visually and thermally.  

However differences in sample sizes may, yet again, play some role in the observed error 

disparity; no snow contains nearly three times as many CO2 derived cases as snow.      

 One expected outcome is the link between the error magnitude and the number of 

cloud layers.  Multiple cloud layers are observed over 42% of the time within the Lcld - 

Mcld sample.  As discussed, multiple cloud layers will tend to overestimate 

(underestimate) cloud top pressure (height) for optically thin cloud layers.  This idea 

seems to account for the findings presented in Figures 4.11.  The average CO2 derived 

ΔP, ΔZ and ΔT errors associated with the single layer are 56 hPa, -1090 m and 8.7 K 

respectively.  For the 2+ layer cases, the error magnitudes nearly double to 110.1 hPa, -

1958 m and 15 K.  Given that the sample is biased towards thin cirrus clouds, these 

findings are not unexpected.                       

 Finally, Figure 4.12 gives the mean and ± 1 standard deviation of ΔP, ΔZ and ΔT 

by month to determine if the observed errors exhibit a seasonal correlation.  The colors, 

symbols and error bars in Figure 4.12 are synonymous with those in Figure 4.11.  Also, 

note the number of CO2 and BT11 cases by month presented earlier in Figure 4.4b do not 

correspond with the values in Figure 4.12, since the latter omits F-P and att-lim cases.   

 Unfortunately, samples containing fewer than twenty cases occur eight of the 

twelve months for the BT11 and nine of the twelve for CO2.  Some samples even contain 

fewer than ten cases, making it difficult to draw any definitive statistically significant  
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Figure 4.12: Mean and  1 standard deviation of cloud top error by month. 
Parameters include cloud top (a) pressure (hPa) and (b) height (m).  Blue, red and black 
signify the CO2, BT11 and both (CO2 + BT11) derived estimates respectively.  Hollow 
symbols represent sample sizes associated with each group.  The values are printed next 
to the symbols for convenience. 
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Figure 4.12 cont’d:  Mean and ± 1 standard deviation of (c) cloud top temperature (K).  
Colors and symbols are analogous to those in Figure 4.12a and Figure 4.12b.   
 
 

conclusions regarding the influence of the seasons on the satellite derived estimates of the 

cloud top parameters.  But again, as discussed in section 4.1.4, the selection of cloud top 

retrieval method demonstrates a seasonal correlation; the majority of the retrievals during 

the warmer months (May – September) are carried out using the CO2 method, while BT11 

is preferred during the cold months (October to April).  It is suggested that the cold snow 

covered ground increases the risk that MODIS falsely detects a low cloud, while the risk 

of this occurring during the warm snow free months is smaller for reasons described in 

section 4.1.4. 

 

 

 

 



 

148

4.3.2 Sensor Zenith Angle Effects on Cloud Top Error 

 The sensor zenith angle is defined as the angle made with the zenith, the line 

orthogonal to the ground and the satellite platform, and the sideways “looking” direction 

of the sensor perpendicular to its flight trajectory.  Although not specifically cited as a 

possible error source in the cloud top property ATBD, sensor zenith angle could 

potentially introduce error into the results.  Steeper zenith angles significantly alter the 

viewing geometry between the sensor and the ground, and increase the path length 

through which the radiation reaching the sensor must travel.  According to the ATBD, the 

measured radiances are adjusted for zenith angle effects (Menzel et al., 2002). 

 To find out if this is true, the absolute value of the cloud top pressure differences 

are plotted against the corresponding zenith angles in Figure 4.13.  Figure 4.13a includes 

all 345 cases in the Lcld-Mcld sample, while Figure 4.13b separates the sample by top 

retrieval method.  Linear regression lines have been added and the line equations and R2 

values are printed. 

 It appears, both visually from the random distribution of the points in the plot area 

and empirically from the small R2 values, that zenith angle has no bearing whatsoever on 

the magnitude of the cloud top pressure differences between MODIS and the lidar.  The 

regression lines for the BT11 cases and the overall sample both exhibit a slope that is 

slightly positive and approximately equal to one (1 hPa per 1o in zenith), but the slope of 

the CO2 regression line is approximately -0.8.  The lack of correlation obviously negates 

the significance of these trends.  Therefore, it appears that the MODIS algorithm does an 

adequate job at accounting for the zenith angle effects.           
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Figure 4.13:  Absolute pressure error, |ΔP|, versus sensor zenith angle. Magnitude of 
the MODIS cloud top pressure error versus sensor zenith angle for (a) all Lcld – Mcld cases 
and (b) cases separated by the (blue) CO2 and (red) BT11 top retrieval methods.    
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4.3.3 Cloud Top Error and Top Layer Geometric Thickness 

 Recall that with respect to thin cirrus layers, the cloud top estimate originates 

from the “radiative center-of-mass,” which, for optically thin clouds, falls closer to the 

geometric center.  Since the majority of the clouds in this sample possess optical depths 

smaller than three (τ ≤ 3), one might surmise a link between pressure estimate and cloud 

geometric thickness exists for this biased sample.  The correlation between the ΔP, the 

MODIS minus lidar pressure difference, and cloud geometric thickness could potentially 

go both ways.  If the geometric thickness is directly proportional to optical thickness, ΔP 

would be negatively correlated.  On the other hand, for optically thin vertically thick 

clouds, ΔP error may exhibit a positive correlation with thickness since the “radiative-

center-of-mass” would conceivably fall further below the cloud top as the thickness 

increased. 

During the analysis, the tops and bases of each cloud and aerosol layer was 

recorded and the vertical thickness of the top layer was computed.  The absolute value of 

cloud top pressure error is plotted in Figure 4.14 as a function of the geometric thickness 

of the top cloud layer.  Ideally one would prefer to plot the error estimate as a function of 

cloud optical thickness, since, as discussed in sections 2.3.2.2, pressure error and optical 

thickness are inversely proportional.  Unfortunately, the relationship between cloud 

optical thickness and geometric thickness is tenuous at best, especially when dealing with 

cirrus clouds.  In one sense, when the number density and particle size distribution of 

cloud particles is fixed, optical thickness is directly proportional to geometric thickness.  

However, the number density and particle size distribution can vary widely in space and      
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Figure 4.14: Absolute pressure error, |ΔP|, versus top layer geometric thickness. 
Magnitude of the MODIS cloud top pressure error versus top layer thickness for (a) all 
Lcld – Mcld cases and (b) separated by the (blue) CO2 and (red) BT11 retrieval methods.    
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time and from cloud to cloud.  Some clouds are highly transparent but can be several 

kilometers thick, while others are opaque but may be less than a hundred meters thick. 

 For this particular sample, as the linear regression lines in Figure 4.14 

demonstrate, there is a negative correlation between ΔP error and top geometric 

thickness, suggesting perhaps a crude correlation between optical thickness and 

geometric thickness.  But again, the correlation R2 values are extremely low.  A 

somewhat rudimentary examination of cloud top error versus cloud optical depth is 

presented at the end of this chapter in section 4.7.   

 

4.4  Cloud Phase Results 

4.4.1  Cloud Phase “Sanity Check” 

 As discussed in section 2.3.3.1, accurate cloud phase identification is essential not 

only for understanding the how radiation interacts with cloud, but also for calculating 

cloud microphysical parameters such as optical thickness and particle size (King et al., 

2004).  The MODIS phase detection algorithm relies on the brightness temperature 

difference (BTD) and the bands ratio (BR) tests, both of which were discussed at great 

length in section 2.3.3.  Additionally, results of several cloud detection tests implemented 

by the cloud mask specific to certain cloud types are considered.  Also, according to King 

et al. (2004), a cloud top temperature “sanity check” is applied, whereby the threshold 

temperatures of 233 K (-40oC) and 273 K (0oC) are used to automatically designate pixels 

classified as uncertain or mixed, into either liquid or ice.  The cloud top temperatures are 

obtained from the MODIS cloud product. 
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 The top temperature “sanity check” for this study is presented in Figure 4.15.  

Recall, the uncertain classified pixels have been added to the mixed group as discussed in 

section 2.4.1.  Figure 4.15 illustrates that not all pixels evidently passed the “sanity 

check.”  Although all ice phase pixels had cloud top temperatures correctly below 0oC 

and thus “pass” the test, eight mixed and two liquid cases have top temperatures below -

40oC.  These findings are inconsistent with the “sanity check,” although these ten “failed” 

cases may not necessarily be incorrect in actuality.  For example, a situation in which a 

thin cold cirrus layer with a measured temperature below -40oC situated above a low-  
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Figure 4.15:  MODIS cloud top temperatures sorted by MODIS cloud type.  The 
phase groups are color coded as follows: turquoise – ice; red – mixed; blue – liquid.    
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level water or mixed phase cloud could end up with a mixed or liquid classification 

depending on how much influence each layer has on the measured radiances.  However, 

such a hypothetical does not abide by the rules of the “sanity check” according to King et 

al. (2004).      

 

4.4.2 Summary of the MODIS Cloud Phase  

 Figure 4.3 already alluded to the fact that overall, the MODIS cloud types match 

poorly with the lidar observations.   The total number of ice cases observed from the lidar 

data is over twice the number returned by MODIS, while MODIS detects mixed and 

liquid phase clouds much more frequently than the lidar observations.  Also MODIS 

vastly overestimates the number of clear cases.  

The detailed results of the phase detection are presented below.  The analysis uses 

a methodology identical to the one applied for the cloud mask results in section 4.2.  This 

methodology is examined using an example. 

Table 4.2 summarizes the results of the cloud phase for all cases.  Note the cloud 

phase for the July 28, 2006, 2350 UTC Aqua overpass is undetermined and was omitted, 

leaving the sample with one less, 548, than the actual 549 cases.  The four MODIS phase 

types are listed along the top row with the mixed type being a combination of the mixed 

and uncertain classes.  The left column lists the corresponding lidar phase types.  As with 

the cloud mask analysis, the cloud phase evaluation can follow two approaches. The first 

assesses the probability that the MODIS phase determination matches the lidar.  These  
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Table 4.2: Summary of the MODIS cloud phase retrievals. The MODIS results are 
listed by column and the lidar observations are listed by row.  

 
All cases             

LIDAR MOD06 Cloud Phase Mi+Unc   MOD-LID   
Phase Clear Ice Water Mixed Total % Agree   
Clear 48 3 11 9 71 Clear1 67.61 

Ice 104 152 37 110 403 Ice1 37.72 
Water 1 1 7 1 10 Water1 70.00 
Mixed 3 20 16 25 64 Mixed1 39.06 
Total 156 176 71 145 548 Overall  42.34 

  Clear2 Ice2 Water2 Mixed2       
% Agree 30.77 86.36 9.86 17.24       

 
 
 
percentages are denoted by the superscript ‘1’ along the far right column.  The second 

assesses the probability that the lidar determination matches MODIS.  These are denoted 

by the superscript ‘2’ along the bottom row.  For example, given a MODIS phase 

determination of clear, the probability that this agrees with the lidar (clear1) is equal to 

[(48/71)*100] or 67.6%.  Likewise, given a lidar determination of clear, the probability 

that this matches MODIS (clear2) is [(48/156)*100] or 30.8%.  Similar calculations are 

conducted for the ice, water and mixed cloud phases.  An overall accuracy can be 

computed by summing the diagonal values (48 + 152 + 7 + 25) and dividing by, 548, the 

total number of cases; in this case, the overall phase accuracy is equal to 42.3%   

 Before continuing, it might be helpful to clarify the following issue; the clear1 and 

clear2 calculations associated with the cloud phase SDS will not necessarily agree with 

those associated with the cloud mask (Figure 4.5a).  The reason for this inconsistency is 

due, in part, to the differences associated with how the cloud mask and the cloud phase 

algorithms ultimately determine the cloudiness of a pixel.  Recall that the 5-km cloud 
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mask that comes with the MOD06 product is determined by simply assigning the center 

pixel value of the 25-pixel array from the 1-km MOD35 product.  Theoretically, this 

pixel could deliver a confident clear result even if the remaining twenty-four pixels return 

confident cloudy.  Such a finding obviously does not represent the sky conditions within 

the 25 km2 area.  The cloud phase algorithm, on the other hand, assesses all of the pixel 

values within the 25-pixel box; if four of the twenty-five return a confident or probably 

cloudy result, then the entire area gets designated as cloudy, and a cloud phase 

determination is performed.  As is often the case, a given 5-km pixel from the MOD06 

product may paradoxically end up with a confident clear cloud mask result, but still 

possess values cloud microphysical parameters.  Likewise, the cloud mask could yield a 

confident clouds label, but possess no associated cloud parameters whatsoever.   

The phase comparisons are summarized in Figures 4.16.  The figures are 

separated by cloud type (clear, ice, mixed, liquid) and results are separated by the 

categories listed along the x-axis.  Approach1 percentages are represented by the circles 

while the diamonds represent approach2.  The corresponding sample sizes, hollow 

symbols, stretch along the bottom.  The hollow circles can also be thought of as the total 

number of observed lidar cases and the diamonds as the total number of MODIS cases.  

Results for the 103 attenuation limited cases are provided above the att-lim category, 

third from the right.    

As with cloud mask results, the performance of the MODIS cloud phase 

algorithm is somewhat mixed and depends on the phase in question and on the approach 

used.  Also, small sample sizes are, again, an issue for some of the groups.                       
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Cloud Phase Comparison (Ice)
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Figure 4.16: Summary of MODIS cloud phase agreements.  Cloud phase results for 
the (a) clear sky (yellow) and (b) ice (turquoise) cloud cases.  Approach2 and approach1 
agreements are denoted with the diamonds and circles respectively.  Hollow circles and 
diamonds represent the lidar and MODIS cases, respectively. 
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Cloud Phase Comparison (Mixed)
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Cloud Phase Comparison (Liquid)
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Figure 4.16 cont’d: Summary of cloud phase agreement for (c) the mixed (red) and (d) 
liquid (blue) cloud types.  Categories and symbols are identical to those in Figure 4.16a 
and Figure 4.16b.        
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The clear comparisons (Figure 4.16a) closely mirror those presented in Figure 

4.5a for the cloud mask.  The clear1 percentages all exceed 60%, with the lowest and 

highest accuracies of 61.8% and 96% belonging to the Aqua and snow categories 

respectively.  In addition, as with the cloud mask, night outperforms day and snow 

defeats no snow.  Also note that the att-lim, 1 layer and 2+ layer categories can be 

ignored for this particular comparison since the number of clear lidar cases (hollow 

circles) is inherently zero.  Similarly the clear2 values in Figure 4.16a are almost identical 

to the values in Figure 4.5a, all falling within the 25 – 35% range.                                  

The ice cloud comparisons in Figure 4.16b reveal a wide disparity between ice1 

and ice2.  Assuming an ice cloud is detected in the lidar beam, the probability that 

MODIS will also detect ice (ice1) ranges from a dismal 29.6% for the 304 recorded day 

cases to 62.6% for the 99 recorded night cases, with the median falling around 38.8%.  

With respect to ice2, assuming MODIS detects an ice cloud in the pixel over AFARS, the 

probability that the lidar agrees is significantly higher, ranging from 61.5% to 95.4% for 

the att-lim and 1 layer categories respectively, with the median falling around 85.5%.  In 

summary, if the MODIS phase algorithm assigns ice to a given pixel, there is a high 

chance that this assignment is, in fact, correct.  However it is also clear that MODIS 

consistently underestimates the amount of ice cloud in its pixels represented by the low 

ice1 probabilities. 

Identifying mixed clouds, either from the satellite or through visual inspection of 

the lidar δ-plot, is inherently difficult.  The mixed cloud scenarios determined from the 

lidar, as discussed in section 3.6, encompass a wide diversity of cloud cover conditions.  
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For example, a layer of ice over a layer of liquid (e.g. cirrus over cumulus), a single layer 

altostratus, and ice virga precipitating from a super-cooled liquid cloud would all be 

categorized under mixed.  From the satellite’s viewpoint, these three scenarios may 

appear “spectrally” different.  Consequently, one does not expect the agreements of the 

mixed comparisons to be all that remarkable.   

Not surprisingly, the matches in Figure 4.16c are quite poor.  Mixed1 percentages 

range from 26.7% for Terra to 50% shared between Aqua, night and snow.  The median 

value is 39.5%.  The variation in the mixed2 percentages is significant, with a low of 4.6% 

corresponding to 1 layer to a high of 53.9% for att-lim.  With respect to the former, sixty-

one of the sixty-five MODIS mixed cases under the single cloud layer category are 

considered to be ice by the lidar.  For the latter, recall that the att-lim cases are much 

more likely to be of mixed or liquid phase clouds and are least likely to be ice-only.  

Thus, it is not surprising that the best mixed agreements are associated with att-lim. 

Finally, the liquid category represents the smallest sample of all cloud types.  

Only ten liquid cases in all are documented by the lidar, while MODIS, in contrast, 

detects liquid clouds seventy-one times.  The results are presented in Figure 4.16d.  The 

differences between liquid1 and liquid2 are stark.  Liquid1 values range from 57.1% to 

100%, with a median score of 70%.  The worst and best results are associated with the 1-

layer and the 2+ layers categories respectively.  So given that the lidar detects liquid 

cloud, the probability that MODIS will agree is decent, however note the sample sizes 

(only ten lidar liquid cases) are much too small to be statistically significant.   
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In contrast, the liquid2 comparisons are dismal, and demonstrate that the MODIS 

algorithm significantly overestimates liquid clouds at seven times the rate as the lidar.  

The range encompasses 0% on the low end to about 28.6% on the high end with a median 

value of 10.6%.  The best value, 28.6%, is, again, associated with the att-lim category, 

the one most likely to contain liquid or mixed phase clouds.   

It is possible that MODIS’s consistent overestimation of liquid (water) clouds is 

correlated with its excessive use of the BT11 method for cloud top property retrievals.  Of 

the seventy-one cases of MODIS derived water clouds, approximately 75% of those 

cases applied BT11 for their respective cloud top determinations, which compares with 

63% (92/146) for the mixed phase clouds and 32% (56/176) for ice phase clouds.  This 

implies that perhaps the MODIS algorithm is being tricked into falsely detecting low-

level water clouds during cases of clear-sky or ice clouds.           

 

4.5 Aerosol Type          

4.5.1 Observed Aerosol Climatology at AFARS  

Dr. Sassen chronicles the type and altitude of each aerosol layer during the lidar 

acquisition.  The bottom and top boundaries of each layer (cloud and aerosol) are denoted 

by the return time of the lidar signal in micro-seconds.  These times help to validate the 

boundary measurements in the lidar plots.   

The observations are predominantly that of smoke or Asian dust, but in addition, 

four cases of volcanic aerosol, two cases of Arctic haze, two cases of pollen and four of 

cottonwood seed are also documented.  However, according to Dr. Sassen, it would be 
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dubious to recognize the latter two biogenic types as separate categories since it is 

difficult to ascertain their distribution in the lower atmosphere from AFARS.  Such cases 

are grouped into the category unknown, which includes weak aerosol events of unknown 

origin, such as particulates from biomass, building, power plant and automobile 

emissions.  Local particulate pollution in Fairbanks is common especially in winter 

during inversion events, but such pollution could also get classified under the Arctic haze 

category and vice versa.  Arctic haze is a documented phenomena that has been shown to 

be caused by factory emissions originating from northern Europe and Siberia (Raatz and 

Shaw, 1984).  In spite of this ambiguity, documented observations of smoke and Asian 

dust are considered to be very reliable as is the volcanic aerosol event during February of 

2006.  The other categories (unknown, Arctic Haze) should be regarded with skepticism.   

Surface aerosol observations covering all 549 cases are broken down by month in 

Figure 4.17.  Column heights signify the total number of lidar acquisitions during that 

month; this number is written explicitly as the denominator of the bold italicized fraction 

printed above each column.  The colored regions within each column signify the aerosol 

observations, the sum of which is written as the numerator of the fraction above the 

column.  White areas signify aerosol free observations.  Case numbers for the most 

common aerosols, Asian dust (yellow) and smoke (brown), are printed for convenience, 

with the dust stamped in italics within the respective yellow region and the latter printed 

above the shaded areas.  For example, of the fifty lidar acquisitions collected during the 

month of April, forty-two contain aerosol including thirty-two Asian dusts and ten  
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Figure 4.17: Monthly summary of surface aerosol observations. Surface observations 
of various aerosol types (color-coded) for the February 2004 to August of 2007 period are 
recorded in the field notes.    
 
 
 
unknowns.  For June, forty-two aerosol cases, comprised of twenty-seven smoke, two 

Asian dust, and thirteen unknown are observed out of fifty-one cases. 

Note Figure 4.17 displays specifically what is recorded in the field notes.  With 

the exception of December, aerosols are documented throughout the year, with the 

greatest number of cases being observed during the spring and summer months in 

association with the Asian dust and fire seasons.  Four volcanic cases (dark purple) 

attributed to the eruption of Mt. Augustine in early 2006 are also noted, two each in 

January and February.  Several Arctic Haze (light purple) cases are documented in 

February and March, although one suspects that the unknown (light blue) cases, 
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especially during the months of October through March, could also fall under Arctic 

Haze.  

 The general trends in Figure 4.17 are supported by other research focusing on 

long range aerosol transport over Alaska (Tiruchirapalli, 2006).   A peak is usually 

observed during the spring and summer months in association with smoke and Asian 

dust.  Also, keep in mind that, as with the cloud analysis, optical thickness is not 

computed.  Consequently the performance of the MODIS aerosol detection algorithm 

cannot be tested quantitatively since thin translucent layers get grouped into the same hat 

as the thick ones.                      

     

4.5.2  Aerosol Comparison Summary: MODIS vs. Lidar 

 Table 4.3 lists the MODIS derived aerosol types by column and the lidar derived 

ones by row.  The abbreviation ND represents “None Detected.”  Additionally, the   

 

Table 4.3:  MODIS and lidar aerosol observation comparison.  February 2004 to June 
2006 comparison of aerosol observations between the MODIS derived aerosol types (top 
row) and the lidar observations (left column).    
 

  MODIS  Mixed dust sulfate smoke 
Heavy 
smoke ND 

No-
file Total 

Lidar  unknown 1 1 0 11 0 16 6 35 

  Asian Dust 7 0 0 13 0 48 3 71 

  volcanic 0 0 0 0 0 1 3 4 

  smoke 1 0 2 26 0 17 2 48 

  Arctic Haze 0 0 0 0 0 2 0 2 

  ND  1 0 0 7 3 94 76 181 

  Total 10 1 2 57 3 178 90 341 
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MODIS no-file category represents cases in which the MOD04 aerosol product file was 

unavailable, a situation that commonly arises in winter if all of the pixels in the overpass 

receive a night flag.  Recall that a night label gets attached if the solar zenith angle ( ) is 

greater than 85o.  Such conditions are common in Fairbanks during the afternoon 

wintertime MODIS overpasses.  A night label automatically renders the aerosol algorithm 

inoperative, even if the sun happens to be above the horizon during the overpass.  Note 

that no-file does not account for cases where files exist but where pixels may have still 

received a night flag; such cases would have been grouped under the none detected (ND) 

category.  The ND group implies that the pixel was flagged as day, the aerosol algorithm 

is applied, and no aerosols are detected.  At this time it is unknown how many of the 

night pixels fall under the ND heading.   

It is evident from Table 4.3 that the aerosol type identifications between the two 

instruments do not strictly match.  The MODIS product contains a mixed category, but it 

is unclear which aerosols mixed represents, as the five MODIS aerosol types along the 

top of Table 4.3 do not explicitly match with the aerosol models discussed in Kaufman 

and Tanré (1998) or Remer et al. (2006) (see Table 2.3).   

The lidar and MODIS instruments simultaneously observe aerosol of some form 

or another over AFARS sixty-two times.  This compares with 160, the total number of 

aerosol observations made by the lidar and seventy-three, the total number of MODIS 

aerosol type returns.  Recall from the earlier discussion and from Figure 4.2 that surface 

observations of aerosols get documented regardless of thickness or cloud presence.  Of 

the 549 cases represented in Figure 4.2, only twenty-two fall purely under aerosol only 
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defined as “one or more thick aerosol layers; no cloud layers”.  This number is likely to 

be slightly fewer for this particular C004 sub-sample (341 cases).  Nonetheless, one can 

expect that cloud contamination from above will impede aerosol detection from the 

satellite.  For example, the July 24, 2006 lidar acquisition presented in Figure 3.1 

contains two distinct layers of smoke, one situated near 4.5 km and the other, which 

roughly extends from the surface to about 2 km in altitude.  From MODIS’s point-of-

view, these layers are obstructed by a cirrus cloud.  According to the C005 aerosol data 

(since C004 does not extend past June of 2006), the 2045 and 2220 UTC Terra 

overpasses as well as the 2235 UTC Aqua overpass do not detect aerosol (the 2100 Aqua 

UTC erroneously returns a sulfate identification) in the field-of-view, presumably, in 

part, because the cloud is blocking the view.  Therefore, the strict standards applied to the 

lidar aerosol analysis will inevitably cause disagreements with the MODIS data, since 

lidar aerosol observations from the ground are usually less impeded by cloud cover. 

 The only match in Table 4.3 worth noting is associated with the smoke categories.  

Similar to the cloud mask and cloud phase analysis, the evaluation can be divided into the 

smoke1 and smoke2 approaches.  The former is equal to the number of smoke matches 

divided by the total number of smoke cases identified by the lidar: [(26/48)]*100 = 

54.2%.  The latter divides by the number of MODIS cases: [(26/57+3)]*100 = 43.3%.  

Note the total number of MODIS smoke cases include fifty-seven smoke as well as three 

heavy_smoke cases.  Also, peculiarly enough, it appears that the MODIS sensor detects a 

dust case even though, according to the Kaufman and Tanré (1996) “dust will be sensed 

 



 

167

only over the ocean.”   Dust detection over land is only provided with the collection 005 

version and higher, which is not used in this analysis.  

 The monthly distributions of aerosol cases corresponding to the February 2004 to 

June 2006 C004 MOD04 dataset are presented below in Figure 4.18 with the MODIS 

types given on top and the lidar types underneath.  Figure 4.18 is analogous to Figure 

4.17 with the column heights representing the total number of lidar acquisitions and the 

colored regions representing the fraction of aerosol cases by type, also denoted by the 

fraction printed above each column.  Additionally, the numbers corresponding to the 

MODIS smoke cases and lidar smoke and Asian dust cases are printed for convenience.                            

To examine the performance of the MODIS aerosol identifications in Figure 

4.18a, recall the limitations of the C004 aerosol data.  First, the algorithm does not 

operate at night, nor does it operate over snow and ice covered surfaces since it relies on 

the dark target approach.  This limits the aerosol detection to daytime overpasses from 

about the middle of April to the middle of October, and why there are no aerosol detected 

from October to February.  Although in Fairbanks, snow usually remains on the ground 

through the end of April, it is mostly hidden under the dark spruce forest canopy, and any 

large piles still left in the urban areas have a low albedo due to the accumulation of soot 

and gravel.   Therefore, old end-of-season snow-pack probably will not significantly 

influence the application of the “dark target” approach.     

With the exception of one smoke case in March, the MODIS aerosol type cases 

span the months of April through September.  The distribution in Figure 4.18a roughly  
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Figure 4.18: Monthly distributions of MODIS and lidar aerosol observations. 
Distribution of aerosols by month for the (a) MODIS derived and the (b) lidar and surface 
derived observations for the 341 MODIS collection 004 cases beginning in February of 
2004 and ending in June of 2006. 
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mimics the one in Figure 4.18b, with the aerosol season peaking during the summer in 

association with fires season.  However Asian dust, a significant source of aerosol from 

late winter through spring, does not manifest itself in the MODIS data. Many of the 

Asian dust events in April and May get misclassified as either smoke or mixed (Table 

4.3), while many more in February and March go undetected, ND, or are misidentified as 

an ice cloud, which will be discussed later.  In general, the frequency of smoke cases 

between MODIS and the lidar are pretty closely matched from June to September, though 

at the case-by-case level in Table 4.3, the match is somewhat more tenuous.     

 

4.5.3 MODIS Heavy_Smoke: Three Case Studies 

MODIS erroneously detects three heavy_smoke cases in September, one on 

September 7, 2004 at 2305 UTC, the second on September 2, 2005 at 2215 UTC and the 

third on September 11, 2005 at 2210.  All three are detected from the Aqua platform.  

From the lidar plots (Figure 4.19), these appear to be elevated cirrus layers with δ-values 

exceeding 0.15.  Note the 2210 UTC Aqua overpass on 9/11/2005 (Figure 4.19c) seems 

to have barely grazed what appears to be a cirrus cloud located near 11 km.  The Aqua 

overpass occurs a little past 2212 UTC although the cloud does not appear until about 

2215 UTC.   According to both the field notes and the CBCT outputs, the overpass did 

clip the edge of some cirrus.  Furthermore the cloud seems to be vertically sliced off in 

the lidar data lending evidence that the cloud was present during the Aqua overpass; 

ultimately for this case, the cloud top is recorded at 11.7 km, however it is possible that  
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(a) 

 
(b) 

 

 

(c) 

 
Figure 4.19:  Lidar δ-plots corresponding to three MODIS heavy_smoke cases.  Plots 
represent the (a) September 7, 2004, (b) September 2, 2005 and (c) September 11, 2005 
lidar acquisitions. The turquoise lines denote approximate Aqua overpass times 
corresponding to the heavy_smoke cases in Figure 4.18a.    
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(a) 

 
 

 (b) 
 
 

 
(c) 

 
Figure 4.20: Aqua MODIS true color composite images for three heavy_smoke cases.  
Images for the (a) September 7, 2004 2305 UTC, the (b) September 2, 2005 2215 UTC 
and the (c) September 11, 2005 2210 UTC overpasses.  The black arrows (center) denote 
Fairbanks. Images courtesy of http://modis-atmos.gsfc.nasa.gov.  
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MODIS could have missed the cloud altogether, depending on the viewing geometry.   

The true-color MODIS images corresponding to the three Aqua overpasses are 

presented in Figure 4.20.  The two 2005 cases do, in fact, appear to be that of cirrus 

cloud, and thus cases of mistaken identity (Figure 4.20b, 4.20c).   However, the 2004 

image in Figure 4.20a captures a large area of smoke burning several hundred miles north 

of Fairbanks along the Yukon River.  It is possible that this plume, observed in the lidar 

and the field notes as cirrus, contains smoke transported by the westerly to northwesterly 

trajectories of the clouds and the smoke plume apparent in the image (4.20a).  The 5-km 

MODIS cloud mask for these three cases all return clear, yielding three of the 107 

documented false negative (F-N) cases in Figure 4.1.  These F-N cases get scrutinized 

more closely in the next section.      

 

4.6 False Negative (F-N) Analysis 
 

False-negative (F-N) cases are instances in which the lidar unambiguously detects 

cloud situated over AFARS while MODIS simultaneously detects cloud-free conditions.  

One hundred and seven of the 549 cases, or 19.5% of the total sample, receive an F-N 

label, denoted earlier in Figure 4.1.  The underlying causes resulting in such a high 

percentage of F-N identifications are discussed in sections 4.1.3 and 4.1.4.  The primary 

explanation put forth is that the sample is overwhelmingly comprised of thin single layer 

cirrus clouds (Figure 4.2), the most difficult type to detect with a passive satellite 

instrument.  This statement is circuitously supported in Figure 4.3, which shows that 
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MODIS detects fewer than one half the number of ice clouds observed by the lidar, while 

it detects double the number of clear-sky conditions compared with the lidar.   

Additionally, when one ranks the top five number of F-N cases by month in 

Figure 4.4b, four of the five months (June, May, September, August) happen to reside 

within the warm, snow-free part of the year.  It has been speculated that thin cirrus 

projected against a warm dark background are more likely to get missed by the satellite, 

than cirrus against a cold bright ground.  Although a cloud would be better camouflaged 

against a cold reflective background, such a surface tends to lead to a higher frequency of 

false positive (F-P) detections and a higher rate of the BT11 retrievals during the cold 

months (Figure 4.4b).  Therefore, it is likely that the seasonal difference in the F-N 

observations is more an artifact of MODIS coincidentally capturing a thin cirrus cloud 

when it believes that a low-level thick water cloud is present.     

Figure 4.21 compares how the F-N cases are distributed among the various 

categories compared to the overall sample.  The four categories are broken down by 

platform (Aqua, Terra), snow cover (snow, no snow), time of day (day, night) and season 

(cold*, warm*).  The cold* season is defined from October 1 to March 31 and the warm* 

season from April 1 to September 31.  The most striking difference between the F-N 

cases and the sample overall, is the distribution of cases by season.  While overall the 

cases are pretty evenly distributed between the warm and cold months, the chances of an 

F-N occurring during a warm* month is approximately three times greater than during a 

cold* month, for reasons just discussed in the previous paragraph.   
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Figure 4.21:  Distribution of false negative cases sorted by various categories.  A plot 
depicting how the 107 F-N cases are distributed by category compared to the distribution 
of categories overall.  The columns represent ‘percent of sample’ for the (maroon) F-N 
cases only and for the (blue-gray) sample overall. Cold* spans the six months from 
October 1 to March 31 while warm* encompasses April 1 to September 31.         
 
 
 

Although the disparity is not quite so large, differences between the day and night 

categories are also significant.  Whether or not this is due to the fact that daylight is an 

influencing factor or it is simply an artifact of having a greater amount of overlap 

between the day cases in the warm* categories, is uncertain.  One category implies that 

temperature is the influencing factor while the other implies that illumination conditions 

are most important.  It is likely that both play some role based on the above discussion.  

 Snow cover also appears to have a small but meaningful influence on the F-N 

frequency.  Again, F-N’s are more likely to fall under the no snow category but, with the 
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exception of the six MODIS flagged snow cases in April (Figure 4.4a), all of the warm* 

category cases are no snow.  

It is apparent that MODIS frequently fails to detect clouds, but could this 

observation be a case of mistaken identity?  Figure 4.22 depicts sixty-two of the 107 F-N 

cases sorted by lidar cloud phase for the shortened sample coinciding with the collection 

004 MODIS aerosol data (February 2004 – June 2006).  First, note that the overwhelming 

majority of F-N’s, fifty-nine of the sixty-two, fall under the MODIS ice category.  Also, 

not one of the F-N cases fall under the ten lidar derived liquid cases.  Within the lidar 

derived ice column, thirty-four of the forty-seven F-N cases or 72% (not counting the No- 
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Figure 4.22:  Distribution of F-N cases sorted by lidar phase and MODIS aerosol 
type.  The sample encompasses the C004 MODIS aerosol product (February 2004 – June 
2006).  Numbers printed above the columns denote the total number of F-N cases 
corresponding to a given lidar cloud phase. 
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file cases) are determined by MODIS to have some form of aerosol be it smoke, 

heavy_smoke or mixed.  The three heavy_smoke case studies are closely examined in 

section 4.5.3.  Similarly, all three lidar mixed cloud categories coincide with two MODIS 

smoke and one heavy_smoke  

In summary, it seems that MODIS regularly misidentifies ice and occasionally 

mixed clouds for aerosols.  In one sense, this finding is encouraging since it shows that, 

for the majority of the F-N cases, the satellite is at least detecting something in its field-

of-view, although it may have a hard time distinguishing aerosols from clouds, especially 

ice clouds.  Perhaps better spectral fingerprinting tests can be developed to alleviate this 

problem. 

 The F-N cases for the entire dataset (549 cases) are presented in Figure 4.23.  

After re-examining all 107 F-N cases, the cases get binned under four hypothetical 

categroies possibly to blame for MODIS’s cloud detection failures, based on the lidar 

observations.  The two most obvious explanations are from thin cirrus, or from the 

overpass occurring at a moment when a cloud edge is in the vicinity of AFARS.   These 

cases (62 + 12), when combined, represent the largest percentage of explanations falling 

within the realm of “reasonability.”  Some cases may even fall under both categories.  

For example, recall the controversy surrounding the 9/11/2005 2210 UTC Aqua overpass, 

a case in which it appears MODIS barely intercepts the edge of a thin cirrus cloud (Figure 

4.19c). 
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Figure 4.23: Breakdown of F-N cases based on hypothetical deductions from the 
lidar observations.  Columns are divided up by MODIS aerosol type.  Bold italicized 
numbers at the top signify total number of cases in the respective category.  Regular 
numbers signify number of cases for which MODIS C004 data was unavailable.  
Italicized fractions along the bottom denote fraction of cases for which C004 data was 
available in which a MODIS aerosol type was returned.    
 
  

The unknown group represents cases which occur neither near a cloud edge nor, 

as best as one can tell, over a thin cirrus layer.  These are cases of relatively “thick” cloud 

layers that, for the most part, should have been detected by MODIS.  Hence, the reasons 

for missing the cloud in the FOV are unknown.  However, as Figure 4.23 illustrates, a 

very large percentage of the dataset for which MOD04 aerosol data is available (70%), 

yield an aerosol type in this category.  This, again, supports the argument conveyed 

earlier, that MODIS appears to, at times, have a hard time distinguishing clouds from 

aerosols.    
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Lastly, note that one of the F-N cases occurs during one of the ten ice fog events.  

Although based on the lidar returns and the field notes, this 12/24/2004 case appears to be 

a relatively thick, deep layer of surface ice fog, expecting MODIS to detect shallow 

boundary layer ice fog may not be reasonable even though the chances that the BT11 

method gets applied under these cold low-level inversion scenarios seems rather high 

(Figure 4.4b)         

 Analagous to Figure 4.22, Figure 4.23 provides the breakdown of F-N cases 

coinciding with the MODIS C004 aerosol data (February 2004 – June 2006).  These 

cases include the colored stacks up through black.  The remaining September 2006 to 

August 2007 cases are represented by the top blue-grey regions, of which there are thirty-

one, four and ten cases for the thin cirrus, cloud edge and unknown categories 

respectively.  The fractions written to the right of each column along the bottom, in 

italics, signify the number of cases in which an aerosol is observed out of the total 

number of cases represented in the C004 subcategory.  For example, the fraction 18/24 

associated with the thin cirrus group means that of the twenty-four cases in which a 

MOD04 aerosol file is available (omitting the No-file cases in black), MODIS detects 

aerosol eighteen times; the type is denoted by the color in the legend.                       

 Assuming that all of the F-N cases within the thin cirrus or cloud edge categories 

are correctly accounted for, and that the aerosol detections documented within unknown 

are, in fact, the underlying causes of the F-N identifications, then very few unaccounted 

for unknown cases remain.  There can be no more than eighteen (6-white, 2-black, 10-

bluegrey) and no fewer than six (6-white) unknown cases, which completely lack a 
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reasonable explanation for why MODIS failed to see cloud.  However, this analysis 

admittedly bumps into the major drawback of subjectivity.  Since there are no 

quantitative definitions of “thin” and “thick,” and since cloud optical thickness is not 

explicitly measured, it is impossible to know for certain if the cases belonging to the 

unknown category, or even within the thin cirrus or cloud edge categories, possessed 

optical thicknesses that were appropriately above or below MODIS’s own cloud 

detection limits.   

          

4.7 False Positive (F-P) Analysis 

4.7.1 Summary of F-P Cases 

 False positives, or F-Ps, are defined for cases in which the MODIS pixel over 

AFARS detects a cloud while simultaneously the lidar indicates cloud-free conditions.  

Twenty-four F-P cases are observed, significantly fewer than the 107 associated with the 

F-Ns.  Possible causes include mistaking an aerosol layer for a cloud, a cloud edge in the 

vicinity of AFARS and the presence of cold surface inversions.   A discussion regarding 

the influence of inversions on cloud detection can be found at Liu et al., (2004).         

 All twenty-four F-P cases are closely examined.  The results are organized below 

in Figure 4.24.  Similar to Figure 4.23, possible explanations for the erroneous 

identifications are presented along the x-axis.  Again, the terms “heavy” and “thin” with 

regards to aerosol optical thickness are subjective.  Also, a strong inversion is defined as 

a temperature increase exceeding 5oC over the first 500 m of the atmosphere (T ≥ 5oC per 

500 m), and a weak inversion is defined as a temperature increase below 3oC over the   
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Figure 4.24: False positive cases sorted by hypothetical underlying deductions from 
the lidar and field observations. The columns are partitioned by lidar aerosol 
observations; the types are denoted by the colors in the legend.   
 
 

first 500 m (0oC ≤ T ≤ 3oC per 500 m).  The strong inversion cases correspond to the 

1/17/2005 2230 UTC and the 1/18/2006 0600 UTC Terra overpasses, and the weak 

inversions with the 2/20/2007 2130 UTC Aqua and the 3/01/2007 2245 UTC Terra 

overpasses.   

Unknown is comprised of three cases which do not fit into the other five 

categories.  Two of the three cases contain aerosol layers, which are deemed much too 

thin and amorphous to be grouped under thin aerosol.  As in Figure 4.23, the fractions 

above the columns represent the fraction of aerosol observations for that category. 

 Numerous F-P cases coincide with lidar derived aerosol layers, again raising the 

possibility of mistaken identity.  Nine of the twenty-four cases are deemed heavy aerosol, 
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of which, four are identified as smoke and two as volcanic.  These cases will be 

elaborated on in the next two sections as case studies.   

 Both of the strong inversion cases are aerosol-free, which eliminates aerosol 

contamination a possible cause, leaving the inversion as the main culprit for the MODIS 

F-P identification.  On the other hand, tenuously thin aerosol layers are documented for 

both weak inversion cases.    

 Figure 4.25 further sorts the F-P cases by MODIS derived cloud phase.  Note 

that, unlike the F-N cases in Figure 4.22, the majority of the F-P cases correspond to the 

liquid (MODIS – water) and mixed categories.  Only three are determined to be ice cases.  

All five smoke cases reside within the liquid category, which seems sensible considering 

that smoke releases vast amounts of water vapor into the air, and its low depolarization 

characteristics are similar to that of water droplets (Sassen et al., 2006).  Also the single 

cloud edge case in Figure 4.24 happens to intercept a thin smoke layer, and it occurs near 

the edge of low-level attenuating cumulus clouds, hence the liquid classification in Figure 

4.25.  

Analagous to Figure 4.21, Figure 4.26 compares the distribution of F-P cases by 

category (e.g. platform, season, etc.) with the overall dataset.  The most notable disparity 

between the F-P cases and the overall dataset is differences associated with the top 

retrieval methods.  BT11 is selected twenty-three of the twenty-four F-P cases (96%), 

which compares to roughly 51% of the time overall.  Also, F-P cases are also more likely 

occur for the day and snow flagged pixels during the cold* season.   
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Figure 4.25: Distribution of F-P cases sorted by MODIS cloud types.  The columns 
incorporate concurrent lidar derived aerosol observations separated by type. 
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Figure 4.26: Distribution of false positive cases sorted by various categories.  F-P 
cases sorted by platform, snow cover, time of day, top retrieval method, and season 
compared to the overall sample.  Cold* denotes October 1 to March 31; warm* denotes 
April 1 to September 30.    
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4.7.2  A June 27, 2005 Case Study: Cloud as Smoke                      

 Recall, four of the nine heavy aerosol cases in Figure 4.24 coincide with smoke 

aerosol based on the lidar and surface observations.  This section will examine two of 

these cases: the 2135 and 2145 UTC Terra and Aqua overpasses for June 27, 2005.  

 The lidar plots of backscattered power and depolarization ratio corresponding to 

the aforementioned cases are given in Figures 4.27.  Both indicate the presence of several 

contiguous layers, extending from the surface to roughly 5 km in altitude.  The top layer 

becomes diffuse and eventually disappears a little after 2130 UTC.  The layers exhibit 

very low depolarization values (Figure 4.27b) consistent with smoke or a water cloud, but 

in the case of a water cloud, the lidar tends not to penetrate much beyond a few hundred 

meters above cloud base.  Additionally, the depolarization of liquid droplets exhibits a 

rapid increase above base due to multiple scattering effects.  In this scenario, neither clue 

is observed.  Therefore one can conclude that this layer is undoubtedly that of smoke.          

 Figures 4.29 and 4.30 are maps of cloud top pressure and aerosol optical depth 

coinciding with the Terra image in Figure 4.28.  The cloud top pressures and the aerosol 

optical depths are given at 5 km and 10 km resolutions respectively. Note the narrow 

smoke plume visible in Figure 4.28 appears to coincide with the red tongue of apparent 

low clouds in Figure 4.29 and with the black region in 4.30.  Note also, the approximate 

location of AFARS is marked by the small yellow star within these regions.  If Figure 

4.29 and Figure 4.30 are stacked on top of one another, the clear dark regions of the latter 
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(a) 

 

 

(b) 

 
Figure 4.27: Lidar plots of an F-P smoke case study.  The plots give (a) returned 
power and (b) depolarization ratio corresponding to the June 27, 2005 acquisition.  The T 
and A along the top of the plot windows denote approximate overpass times for the Terra 
and Aqua platforms. 
 

 



 

185

 

 
 

Figure 4.28: MODIS true color composite image of smoke over Alaska.  The image 
corresponds to the 6/27/2005 2135 UTC Terra overpass.  The red arrow indicates the 
approximate location of AFARS beneath the smoke plume.  Image was generated from a 
MOD02 1-km geo-calibrated radiance channel file using ENVI.      
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Figure 4.29: MODIS derived cloud top pressure of a smoke layer.  This view 
corresponds to the 6/27/2005 2135 UTC Terra overpass (Figure 4.28) at 5km resolution.  
The yellow star in the center-right denotes the approximate location of AFARS.  Cloud 
top pressures are given by the legend.  Courtesy of http://ladsweb.nascom.nasa.gov.     
 
 
 
 

 
 
 

Figure 4.30: MODIS derived aerosol optical depth (AOD) of smoke.  The AOD map 
corresponds to the 6/27/2005 2135 UTC Terra overpass at 10 km resolution.  The yellow 
star, center-right, denotes AFARS.  Courtesy of http://ladsweb.nascom.nasa.gov.    

 

http://ladsweb.nascom.nasa.gov/
http://ladsweb.nascom.nasa.gov/
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would almost fit precisely into the colored regions of the former, like a jigsaw puzzle. 

However, the fit is not perfect.  Some overlap exists between the aerosol optical depths 

and cloud top properties over the same regions, demonstrating how the aerosol algorithm 

uses a cloud mask different from the main MODIS cloud mask used by the cloud 

products, discussed in section 2.3.4.1.  Hence, it is possible for aerosol and cloud data to 

be retrieved concurrently from the same area.  In fact, the C004 aerosol type 

determinations and the cloud product data for the June 27, 2005 2135 and 2145 UTC 

Aqua and Terra overpasses return smoke and cloud top property values simultaneously, 

illustrating that the MODIS cloud and aerosol detection are not mutually exclusive. 

 The cloud top properties over AFARS for the Aqua and Terra overpasses both 

yield a cloud top pressure, altitude and temperature of 985 hPa, 233.2 m and 23.4oC 

respectively.  However, the actual top of the smoke layer in the lidar plots falls near 5 

km, which is not even close to the MODIS estimation.  Furthermore, the MODIS cloud 

product yields a liquid cloud phase result, which is, at least, consistent with the cloud top 

temperature “sanity check” and with the low lidar depolarization values in Figure 4.27b.   

 

4.7.3   A February 2, 2006 Case Study: Cloud as Volcanic Aerosol 

 Two F-P cases happen to coincide with a volcanic plume originating from Mt. 

Augustine, an active volcanic island situated on the southwestern side of Cook Inlet.  

Throughout January and early February of 2006, Mt. Augustine erupted numerous times, 

spewing ash and steam as high as 12 km into the atmosphere (Sassen et al., 2007).  

During one such event, the flow pattern was set up such that the ash plume got 
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transported directly over AFARS.  The lidar was able to capture this plume as it passed 

over Fairbanks on February 2, 2006.  Two MODIS overpasses occur during this event: a 

2155 UTC Terra and a 2210 UTC Aqua overpass.   

Figure 4.31 provides the lidar return power and depolarization ratio plots 

corresponding to the February 2 ash plume.  The layer of volcanic aerosol is 

approximately 2 km thick and its top sits at approximately 3.5 km.  Note the relatively 

high amounts of depolarization (0.10 ≤ δ ≤ 0.25) denoted in Figure 4.31b, which is 

suggestive of small irregularly shaped particles consistent with volcanic ash particles 

(Sassen et al., 2007).  The relatively smooth yet stratified texture of this layer (Figure 

4.31a) is also indicative of an aerosol as opposed to the patchy sheared appearance of an 

ice cloud.   

The February 2, 2005 MODIS Aqua true color composite image and the 

corresponding cloud top pressure map is provided in Figure 4.32 and Figure 4.33.  The 

approximate location of AFARS is denoted by the yellow arrow in the former and the 

blue arrow in the latter.  The counter-clockwise flow pattern advects the plume initially 

east across Prince William Sound in the lower right and then north over interior Alaska.  

Results from the Puff model, a Lagrangian computer model designed to track in real-time 

the trajectory of volcanic ash plumes, further validates the trajectory of Augustine’s 

plume over Fairbanks (Sassen et al., 2007).   

The MODIS cloud top data corresponding to the February 2, 2006 2155 and 2210 

UTC Terra and Aqua overpasses indicate that the pixels over AFARS possess tops of  

620 hPa, 3476 m, and -33.4oC respectively.  These values match well with 3900 m, the  
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(a) 

 

(b) 

 
Figure 4.31:  Lidar plots capturing Mt. Augustine’s ash plume.  Plots depicting the 
lidar (a) returned power and (b) depolarization ratios, which depict Augustine’s ash 
plume over AFARS on February 2, 2005.  The A and T symbols at the top of the plot 
areas denote the Aqua and Terra overpasses.  
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Figure 4.32: MODIS true color composite image of the Mt. Augustine eruption.  The 
image covers south-central Alaska for the 2/2/2006 2210 UTC Aqua overpass.  Red and 
yellow arrows denote approximate locations of Mt. Augustine and AFARS respectively.  

 
 
 

 
 

Figure 4.33: MODIS derived cloud top pressure of Mt. Augustine’s plume.  Map 
corresponding to the 2/2/2006 2210 UTC Aqua overpass.  Pressures are color-coded in 
the legend.  The blue arrow denotes the approximate location of AFARS. Courtesy of 
http://ladsweb.nascom.nasa.gov. 

 

http://ladsweb.nascom.nasa.gov/
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approximate aerosol top derived from the lidar plots, CBCT outputs and field notes.   

Interestingly, the air and dewpoint temperature measured by the upper air profiler 

at  3710 m altitude, are -35.9oC and -39.3oC respectively which puts the relative humidity 

at 71% with respect to water, but a little over 100% with respect to ice, illustrating that 

conditions within the plume are favorable for possible heterogeneous ice nucleation.  

Also, Terra yields an ice phase cloud while Aqua returns mixed.  The moderately 

high depolarization values (   0.10) associated with the ash plume in Figure 4.31b 

eliminates the possibility that the particles are either spherical or liquid.  However, one 

can assume that the index of refraction for volcanic mineral particles at 8.55, 11.03 and 

12.02 µm (the BTD bands) is different than that of pure ice, which begs the question; if 

the BTD algorithm detects an ice-like signature, how much water ice is present in this 

layer and to what degree are these ash particles behaving like CCN?                            

It is clear that even though the MODIS falsely identifies this layer as a cloud, it 

still detects and accurately estimates the location of this layer in the atmosphere above 

AFARS.  However, it is difficult to discern the water content from strictly the lidar plots, 

and to know for certain the ratio of water to ash particles without in situ measurements, 

but perhaps the MODIS determination is more correct than previously thought.    

   

4.8 Comparison by Optical Depth 

 The methodology followed to estimate cloud optical depth is presented in section 

3.8.  Recall that optical depth is not computed quantitatively, but rather estimated 

subjectively using the field note descriptions and the lidar plots.  There are six groups of 
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optical depth, not including the clear-sky category, which range from “0.03-” for 

subvisual to “3.0+” for attenuation-limited.  The specific categories are listed in section 

3.8.2.   

 Figure 4.34 provides the breakdown of the sample by optical depth.  The largest 

percentage of cases falls within the thin (τ = 0.03+) category, while the second largest are 

deemed to be attenuation-limited.  The other cases are distributed rather evenly between 

the opaquish (τ = 3.0-), opaque (τ = 0.30+), thinnish (τ = 0.30-) and subvisual (τ =  0.03-) 

categories. Note, after re-examining all 549 cases, the number of attenuation- limited 

cases presented in Figure 4.34, ninety-three, is ten fewer than the number initially  

reported in section 4.1.1.  Similarly, the seventy-two no cloud cases, which theoretically 

combines the forty-eight clear and twenty-two aerosol only categories in Figure 4.2, does 

not in fact, match the sum of these latter two groups.   With respect to the attenuation-     
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Figure 4.34:  Breakdown of sample by estimated cloud optical depth.  The cloud 
groups range from subvisual (0.03-) to attenuation-limited (3.0+).  
limited cases, several borderline altostratus clouds initially deemed to be attenuation-  

limited are, after a second look, later considered to be “opaquish”.  With respect to the 

no-cloud cases, two of the ten ice-fog cases in Figure 4.2 are classified under no-cloud in 

Figure 4.34.  These relatively minor inconsistencies are not expected to alter the results 

presented in the preceding sections in any significant way.  But this illustrates how 

utilizing a relatively subjective methodology to analyze a dataset may lead to inconsistent 

results even when efforts are made to standardize the analysis.     

 The MODIS cloud mask and cloud top property errors, when sorted by estimated 

optical depth, tend to separate out in a predictable manner with the greatest amount of 

error associated with the thinnest cloud categories, and the least amount associated with 

the thickest.  Note how the false identifications are generally distributed by estimated 

optical depth in Figure 4.35.  First, MODIS incorrectly detects cloud (F-P) about one 

third of the time assuming cloud-free conditions in the lidar FOV.  This is validated by 

the results given earlier in Figure 4.1 where the rate of F-P identification is approximately 

32.8%.  Second, the rate of F-N identifications initially starts around 70% for the 

“subvisual” category, but then drops rapidly to below 40% for “thin” and then fluctuates 

between 2 -7% for the remaining four categories.   As expected and observed thus far, the 

thinnest clouds pose the greatest challenge to the MODIS sensor.     

These results are also further validated by the MODIS cloud mask agreements.   

Figure 4.36 gives the summary of cloud mask agreements sorted by estimated optical 

depth, and is almost the inverse of Figure 4.35.  Theoretically, the columns for each  
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Figure 4.35: Distribution of false identifications by estimated optical depth.  Cloud 
detections are based on the results of the MOD06 cloud top property dataset.     
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Figure 4.36:  Summary of MODIS cloud mask agreements by estimated optical 
depth.  This plot provides the clear1 and cloud1 results as clear2 and cloud2 are 
meaningless in the context of this analysis.         
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category in Figure 4.35 and in Figure 4.36 should equal 100% when combined, however, 

they do not for the same reasons described in section 4.4.2 regarding the inconsistencies 

between the number of clear cases returned by the MODIS cloud phase dataset versus the 

number returned by the cloud mask. With respect to the lidar no clouds category, the 

probability that MODIS agrees with the lidar (clear1) exceeds 80%.  As in Figure 4.35, 

the cloud detection agreements in Figure 4.36 become progressively better as estimated  

cloud optical depth increases from “subvisual” to “thinnish” and then subsequently levels 

off to around 90%.  Note that the MODIS cloud mask agreements in Figure 4.36 are 

determined following the same procedures described in sections 3.4 and 4.2.2, using 

tables similar to Table 4.1.  Also note that the approach2 findings are lacking from Figure 

4.36 since the lidar sky observations are, in essence, absolute, meaning that there are no 

lidar cloudy cases for the clear comparison, nor are there any lidar clear cases for the 

cloud comparison.  Hence, clear2 will always equal 100% for no cloud and 0% for the 

remaining cloud groups.  Likewise, cloud2 will always equal 0% for no cloud and 100% 

thereafter.  Therefore, the approach2 findings in this context are essentially meaningless.   

 The mean cloud top errors arranged by estimated optical depth are provided in 

Figure 4.37.  Recall from the discussion in section 2.3.2.2 that for the case of single layer 

optically thin clouds, the CO2 density slicing method will tend to estimate the cloud top 

near the cloud’s “radiative center-of-mass” below the actual geometric top.  Hence as 

optical thickness increases, one generally expects the error to decrease, which is precisely 

what is manifested in Figure 4.37.  Mean maximum differences in cloud top pressure, 
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Figure 4.37: Mean and  1 standard deviation of cloud top errors by optical depth. 
Plots give the (a) cloud top pressure (hPa) and (b) cloud top height (m) errors.  Red, blue 
and black diamonds denote BT11, CO2 and all (BT11 + CO2) results respectively.  Hollow 
symbols signify case numbers associated with each group.  Case numbers and mean 
errors are printed next to their respective symbols for convenience.   
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Figure 4.37 cont’d:  Mean and  1 standard deviation of (c) cloud top temperature error 
(K) sorted by estimated cloud optical depth.  Categories, colors and symbols are 
analogous to those presented in Figure 4.37a and 4.37b.   
 
 
 
height and temperature between MODIS and the lidar are largest for the subvisual (0.03-) 

group and smallest for the attenuation-limited category (3.0+).  Also note how the 

magnitude of the error is correlated with the frequency with which the CO2 density 

slicing method gets applied; the CO2 method is selected 0% of the time for the subvisual 

group containing the largest amount of error, but increases steadily to over 60% of the 

time for the opaque (0.30+) and opaquish (3.0-) groups, cases with the smallest 

associated error.  Given how MODIS is more likely to see “thick” cirrus clouds, it 

follows then that the chances MODIS properly selects the CO2 method increases for 

those high cirrus clouds that it can perceive (thick clouds) as opposed to those that it may 

miss altogether (thin clouds).      
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 Mean and  1 standard deviations of cloud top error based on the number of cloud 

layers (single versus multiple) are plotted in Figure 4.38.  Note that the diamonds and 

circles denote single and multi-layer (+2) groups respectively.  As in previous 

assessments, small sample sizes for several sub-groups in Figure 4.38 unfortunately 

reduce the confidence levels attributed to the mean error calculations, resulting in 

unusually large or small deviations as is evident for several of the categories.  However, 

some results can still be salvaged.   

First, the single layer CO2 derived errors are predictably smaller than those linked 

to the multi-layer calculations for the thin cloud categories (0.03+, 0.30-).  Note CO2 is 

not selected for any of the subvisual (0.03-) cases, since these clouds are, in all 

likelihood, too translucent for MODIS to detect.  At the 0.30+ group and above, the 

differences in the errors become a bit more arbitrary.  Recall from section 2.3.2.2 that the 

largest theoretical cloud top pressure difference (PMOD – Pactual) of 220 hPa occurs for an 

optically thin ice cloud situated above a thick water cloud.  In this sample, most of the 

non-attenuating multi-layer cases are comprised of two or more cirrus layers of unknown 

optical depth.  Nonetheless, MODIS cloud top estimates for single layer cases are still 

more accurate for both the optically thin cloud cases (Figure 4.38) and for the sample 

overall (Figure 4.11).  

Note that for the attenuation-limited category (3.0+), the mean CO2 derived mean 

pressure error for single layer clouds actually goes negative (-63.8 hPa) while for the 

multi-layer clouds, it stays positive (80 hPa).  Theory supported by the findings up to this 

 

 



 

199

Average Cloud Top Pressure Difference
PMOD - PLid (hPa)

87.6
61.0

408.1

347.6

245.1

30.6

418.4

328.3
361.4

183.7

-63.8

65.9

67.2 57.9

194.2

80.0
85.2

245.1

183.5

237.9

366.6

3.0+3.0-0.30+0.30-0.03+0.03-

29

14

3735
23

63

13
28

2625

13

20 25

3

13 111010

43

162023

49

38

109
20

12

24

611 11

-300

-200

-100

0

100

200

300

400

500

600

700
A

ve
ra

ge
  Δ

P 
(h

Pa
)

0

25

50

75

100

125

150

175

200

225

250

275

300

Ca
se

s

All-1
All-2+
CO2-1
CO2-2+
BT11-1
BT11-2+

(a) 

 

Average Cloud Top Height Difference
ZMOD - ZLid (m)

-3354.7

-1645.9
-1306.2 -1386.4

-5234.8

-4014.3

0.0

-6098.7

-5274.5 -5383.8

-1069.4

-3510.4

-1371.1 -1222.0

1101.3

-1494.5

-2590.9

-3110.3

-31.2

-4932.6

-3935.6

-5322.1

3.0+3.0-0.30+0.30-0.03+0.03-

43

3

24
29

14
13

63

23
35 37

28
20

13

25 26 25

10 1113
10

23
20 16

49
38

12

20

9 10
6

11 11

-12000

-11000

-10000

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

A
ve

ra
ge

  Δ
Z 

(m
)

0

25

50

75

100

125

150

175

200

225

C
as

es

All-1
All-2+
CO2-1
CO2-2+
BT11-1
BT11-2+

 
(b) 

 
Figure 4.38: A comparison of the mean and  1 standard deviaton of cloud top error 
sorted by cloud layers.   The plots give (a) cloud top pressure (hPa) and (b) cloud top 
altitude (m) for single layer cases (diamonds with solid error bars) and multi-layer cases 
(circles with dashed error bars) sorted by optical depth.  Blue, red and black signify errors 
associated with the CO2, BT11 and All (CO2 + BT11) cases respectively.  The number of 
cases associated with each category is represented by the hollow symbols.   
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Figure 4.38 cont’d: Mean and  1 standard deviation of (c) cloud top temperature (oC) 
error for the single and mult-layer cloud cases sorted by optical depth.  Categories, colors 
and symbols are analogous to those in Figure 4.38a and 4.38b.   
 
   

point indicate that this negative mean pressure error is somewhat of an anomaly, but bear 

in mind that single layer attenuation-limited cases are likely to consist of thick altostratus 

ice clouds.  Even though penetration of the lidar signal may not be complete, a cloud top 

altitude may still get documented.  Such an underestimation in the cloud top height 

translates to an overestimation in pressure leading to a negative pressure difference as is 

seen for the single layer 3.0+ group in Figure 4.38a.  In all likelihood, the MODIS cloud 

top height (pressure) is still being undervalued (overvalued) somewhat, but it is 

impossible to know definitively, without knowing the actual cloud top altitude.     

On the other hand, multiple layer attenuation-limited cases are much more likely 

to consist of cumulus or alto-cumulus clouds below a cirrus layer.  In this situation the 
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cirrus top can still be correctly delineated in the lidar data since cumuliform clouds only 

tend to block the lidar signal for short periods of time.  Therefore, cloud top pressure 

differences are much more likely to remain predictably in positive territory, as is evident 

in Figure 4.38. 

The distribution of cloud phase agreement sorted by estimated lidar derived cloud 

optical depth is depicted in Figure 4.39.  Again the clear comparison (Figure 4.39a) uses 

the results derived from the cloud phase dataset, not those derived from the cloud mask.  

As with Figure 4.16, circles and diamonds denote approach1 and approach2 results 

respectively and the hollow symbols give the associated case numbers.  

The clear results, Figure 4.39a, are consistent with earlier findings, and like the 

cloud mask analysis presented in Figure 4.36, the approach2 results with respect to this 

comparison can be ignored.  Of the seventy MODIS clear cases in the lidar no cloud 

group, the lidar data match 67.1% of the time.  MODIS also returns a significant number 

of clear cases for the subvisual (0.03-) and thin (0.03+) groups, reiterating its 

aforementioned weakness at detecting thin clouds.   

More specifically, its weakness at detecting thin ice clouds is best depicted in 

Figure 4.39b.  MODIS ice matches with the lidar only 2.3% and 21.3% of the time for the 

thinnest cloud categories (0.03-, 0.03+) respectively.  However, this agreement improves 

markedly for the thicker cirrus groups possessing an estimated optical depth of around 

0.30 or higher.  The ice1 agreements for these thicker groups range from 54.4% to 71.1%, 

and have relatively large samples.  The ice2 agreements are consistently high in many  
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Figure 4.39: MODIS cloud phase agreements sorted by estimated optical depth.  The 
comparisons for the (a) clear and (b) ice phase clouds are given.  Solid circles and 
diamonds denote the approach1 and approach2 values respectively.  Hollow symbols 
represent the respective case numbers.  Percentages and case numbers are printed next to 
their respective symbols for convenience.   
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Figure 4.39 cont’d: Cloud phase agreements for the (c) mixed and (d) liquid phase 
clouds.  Categories and symbols are synonymous with those depicted in Figure 4.39a and 
4.39b.    
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cases even yielding perfect agreements for the “thin” and “thinnish” groups.  But the 

agreements drop steadily as cloud optical thickness approaches the attenuation-limited 

threshold.  This is likely an indication of an increase in the frequency of the mixed and 

liquid observations in the lidar data as optical depth increases.     

 As for the mixed and liquid results presented in Figure 4.39c and 4.39d, it is clear 

that MODIS frequently and inappropriately returns mixed and liquid phase types for 

many cases of thin ice clouds.  Under most circumstances, optically thin mixed or liquid 

phase clouds do not exist, hence the lidar sample sizes associated with the approach1 

agreements are exceptionally small. Of the six optical depth groups, only the attenuation-

limited group (3.0+) is worthy of attention, since it is the only category with any sizeable 

number of lidar mixed or liquid cloud observations.   

The mixed1 and mixed2 agreements in Figure 4.39c are generally fair assuming 

optically thick clouds.  Given a lidar determination of mixed, MODIS agrees 41.2% of 

the time, and given a MODIS result of mixed, the lidar agrees 60% of the time.  Both 

agreements also have relatively large samples, fifty-one and thirty-five respectively.  The 

liquid agreements seem to be a little less reliable.  MODIS agrees with the lidar 75% of 

the time, however the lidar only documents a total of eight liquid phase cloud cases.  Of 

the twenty-one MODIS liquid cases, the lidar only agrees 28.6% of the time.  Keep in 

mind that many of these attenuation-limited cases are comprised of multi-layer ice over 

liquid scenarios.  So in all likelihood, there is a high chance that cases of thin ice cloud 

over a liquid cumuliform cloud, which would be denoted as a mixed case in the lidar data, 

are getting classified as liquid by MODIS.  
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Overall, given the inherent drawbacks of this dataset and the complex surface 

cover of the field site, the MODIS cloud products seem to deliver what they promise.  

The important results will be summarized in the next and last chapter, chapter five.    
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Chapter 5  Conclusions and Future Work 

 

Rising sea levels, more extreme weather events, and geographical shifts to plants, 

animals and diseases are expected to have major social and economic consequences in 

the coming century.  If mankind is to adapt, it is necessary to anticipate how ever 

increasing greenhouse gas concentrations and their associated feedback mechanisms (e.g. 

water vapor feedback) will alter temperature and precipitation patterns at the local, 

regional and global scale.  The climate system is complex: the variables influencing the 

climate are numerous and their coupled relationships, nonlinear.  Global circulation 

models currently offer the best tool with which to simulate climate, but their capacity to 

predict future climate scenarios, although improving, remains in question.   

 Clouds are widely considered to be the source of greatest uncertainty in climate 

model predictions.  One reason for this is due simply to a basic lack of knowledge of their 

distribution in space and time. Better global measurements would surely lead to improved 

GCM parameterizations and more reliable predictions, but expensive, small-scale, in-situ 

measurements alone, do not offer the spatial and temporal coverage of cloud and aerosol 

data needed parameterize the climate models.     

Satellite sensors, such as MODIS, have the potential to alleviate this problem.  

MODIS atmosphere products provide a global inventory of the physical and radiative 

properties of clouds and aerosols every day at relatively high spatial resolutions.  But, can 

the data be trusted?  Inferring cloud top altitude, temperature, water content, phase and 

particle size distribution using passive remote sensing techniques is inherently difficult.  
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In response, a slew of validation studies from the ground, air and space are currently 

underway to pinpoint the weaknesses of the MODIS algorithms in hopes that they can be 

improved.     

 This thesis presents one such study.  A long-term comparison of cloud and aerosol 

data between a ground based PCL and the MODIS sensor is performed.  The comparison 

specifically examines the following data: the presence or absence of cloud, cloud top 

properties, cloud thermodynamic phase and aerosol type. The data analysis is further 

broken down by MODIS platform, snow cover conditions, time of day, month of the 

year, number of cloud layers, sensor zenith angle, and cloud optical and geometric 

thickness.   

The sample is biased towards thin cirrus clouds, clouds that are particularly 

challenging to detect using space-borne passive sensors. Additionally, the training site, 

AFARS, is located in a sub-arctic mixed urban environment where darkness, low sun 

angles, snow cover and strong low-level temperature inversions are present during much 

of the year.  Such conditions make cloud detection by MODIS an especially difficult 

undertaking, but nonetheless important considering the growing consensus that cirrus 

clouds augment the greenhouse effect.  With respect to the cloud mask comparison, the 

lidar observations are considered to be the ground truth.  However the protocols for 

deriving cloud top altitude, phase and optical depth are rather subjective since they rely 

primarily on visual inspection of the lidar plots and field notes.  Nevertheless, the results 

presented in chapter four compared to other studies (Frey et al., 1999; Mahesh et al., 
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2004; Liu et al., 2004; Mace et al., 2005) suggest that the methods described in chapter 

three are sufficiently standardized.  The findings are briefly summarized below.      

MODIS failed to detect cloud 107 of the 476 times (Fig. 4.1) when cloud was 

evident over AFARS (F-Ns), and the lidar -plots seem to indicate that most of these F-N 

cases are ice clouds (Fig. 4.3).  This is supported further in section 4.7 where it is found 

that the vast majority of F-Ns fall within the subvisual (0.03-) and thin (0.03+) cloud 

categories (Fig. 4.34), but for clouds with an estimated optical depth larger than 0.30, 

MODIS rarely misses.  It is also found based on the MODIS aerosol data that MODIS 

frequently misidentifies thin ice cloud as aerosol, usually smoke (Fig. 4.22). 

 MODIS falsely detects cloud twenty-four of the seventy-three times when cloud 

is absent over AFARS (F-P), many, of which, appear to involve cases of mistaken 

identity with thick aerosol events.  Two such case studies are presented in sections 4.6.2 

and 4.6.3. One involves a moderately depolarizing volcanic aerosol layer, which MODIS 

mistook for an ice cloud.  In this situation, the MODIS cloud top estimate, 3476 m, fell 

within 0.5 km of the actual top.  Upper air soundings collected two hours later, find this 

layer to be saturated with respect to ice, which may vindicate somewhat the MODIS 

assessment.   The other case study involves a dense layer of smoke, which exhibits a 

weakly depolarizing signal.  MODIS falsely identifies this layer as a low-level water 

cloud, but did not accurately calculate its top. 

 Results pertaining to the MODIS cloud mask are mixed.  First, the variability in 

the performances between the three defined methods, ‘5 km point,’ ‘1 km point’ and ‘1 

km box,’ is small, although, on the whole, ‘5 km point’ outperforms the other two by 7-
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12% for the clear1 category.  The median probability that a MODIS cloud mask finding 

of clear (cloudy) agrees with the lidar is approximately 77% (68%) (Fig. 4.6).  

Conversely, the probability that a lidar clear (cloudy) agrees with MODIS is 27% (95%).  

The poorest agreement associated with the clear2 category is yet another sign that 

MODIS misses a significant number of the thin ice clouds.   

When sorted by estimated optical depth, the cloud mask agreements separate out 

in predictable ways, with the worst agreements associated with the thinnest cloud layers 

and the best, with the thickest (Fig. 4.36).  Additionally the snow/ice background flag, 

extracted from the 5-km cloud mask bit, significantly undercounts the times when the 

ground is snow covered (Fig. 4.4a).  However, it remains unclear how choosing the 

wrong cloud mask “domain,” in this case, no snow over snow, contaminates other cloud 

product algorithms such as thermodynamic phase and cloud top properties.      

 The cloud top property (P, Z, T) estimates demonstrate an enormous disparity 

between the CO2 derived tops and the BT11 derived ones (Fig. 4.7-4.11).  Although both, 

as expected, underestimate (overestimate) the cloud top height (pressure, temperature), 

the average difference in cloud top height (pressure, temperature) associated with the 

CO2 cases is -1444 m (78.1 hPa, 11.2 K), ballpark errors consistent with the ATBD 

calculations.  Conversely, the average BT11 cloud top error falls around -4796 m (332.6 

hPa, 32.9 K) (Fig. 4.11a-c), which is not even close.  It is hypothesized that many of 

these large errors are attributed to MODIS falsely detecting the presence of a non-existent 

low-level water or mixed phase cloud while altogether missing a thin ice layer.  Evidence 

for this hypothesis can be found in the cloud top error by optical depth analysis (Fig. 
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4.37).  Both the errors and the percentage of cases using BT11 are high for the thin cloud 

categories, which MODIS is most likely to miss.  But as optical depth increases, both the 

mean cloud top error and the frequency with which BT11 gets selected decrease.  This is 

due in part to two reasons: first, MODIS is better able to estimate clouds that it can 

actually “see,” as opposed to clouds that it cannot, and second, as optical depth increases, 

the “radiative center-of-mass” approaches the actual geometric top of the cloud.      

 Cloud top retrieval method is also found to follow a seasonal pattern (Fig. 4.4b) in 

which BT11 is preferred during the colder months (October – April), while CO2 is the 

method of choice during the warm months (May – September).  Recall, the BT11 method 

gets selected when the clear minus cloudy sky radiances fall within instrument noise 

levels, which is more likely to occur in winter when the visible and thermal contrast 

between cloud and the cold snow covered ground is poor.  Conversely during summer, 

the contrast between cold bright cloud and the warm dark surface is significantly greater, 

which increases the chance that the algorithm correctly chooses the CO2 method.  In 

addition, twenty-three of the twenty-four F-P cases (96%) are associated with the BT11 

method, which compares to 51%, the overall BT11 selection rate (Fig 4.26). 

With respect to platform, Aqua’s CO2 derived estimates fall much closer to the 

lidar estimate than Terra’s, however it is found that Terra is much more likely to choose 

the CO2 method over BT11, which, within the context of this cirrus-biased dataset, is the 

more appropriate of the two methods (Fig. 4.11).  The age difference between the two 

sensors could be a factor.   
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Surprisingly, the average cloud top errors associated with the night and snow 

categories are smaller than those associated with day and no snow (Fig. 4.11).  This could 

be attributed to differences in sample size with the day (no snow) cases exceeding night 

(snow) by nearly three to one.  However, day and no snow do select the CO2 method at a 

higher rate than do night and snow. 

 As expected, multiple cloud layers are found to influence the magnitude of the 

cloud top errors (Fig. 4.11), which is especially weighted towards the “thin” and 

“thinnish” cases (Fig. 4.38).  The average CO2 derived cloud top pressure error for cases 

containing more than one cloud layer, 15 hPa, was nearly double the error, 8.7 hPa, 

associated with single layer cases. 

 Cloud top error is not found to be correlated with sensor zenith angle (Fig. 4.13), 

indicating that the algorithms do properly account for changes in path length due to 

changes in viewing geometry.  Also, a small negative correlation between cloud top error 

and the geometric thickness of the top layer is observed (Fig. 4.14) although the 

correlation coefficient is less than 0.10, and is even smaller when the results are parsed 

by top retrieval method.  But, a correlation between cloud top error and estimated optical 

depth is found to exist (Fig. 4.37).   

Results of the phase analysis are also mixed and are unfortunately marred by 

small sample sizes. In this study, MODIS frequently overestimates clear, liquid and 

mixed clouds while it underestimates ice clouds (Fig. 4.3).  Eight cases of mixed cloud 

and two cases of liquid failed the cloud phase “sanity check” described by King et al. 
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(2004) (Fig. 4.15).  The corresponding cloud top temperatures for these ten cases are all 

found to be colder than -40oC, the cut-off for ice only.          

  Regarding the phase comparison, the ice2 analysis, by far, yields the best 

agreement; given a MODIS result of ice, the chance that the lidar agrees is 86.4% (Fig. 

4.16b).  Conversely, of 403 lidar ice cases, MODIS agrees 37.7% of the time.  The other 

consistently high agreement, 70%, is associated with the liquid1 group, although, again, 

the sample size is abysmally small; only ten cases of liquid only exist from the lidar -

plots, even though MODIS returns liquid seventy-one times (Fig. 4.16d).  With exception 

to the clear1 results, the remaining agreements are consistently at or below 50%.   

 When sorted by estimated optical depth, the phase agreements exhibit some rather 

predictable patterns (Fig. 4.39).  Ice1 agreements are poor for thin clouds, but then 

increase steadily as estimated optical depth increases.  This implies that the ice 

agreements between MODIS and the lidar are relatively good so long as MODIS can 

“see” the cloud.   With respect to the mixed and liquid phases, it is clear that MODIS does 

tend to overestimate the number of both cloud types during situations of thin cirrus cover 

for reasons already discussed.  However, the mixed and liquid agreements for the 

attenuation-limited category (3.0+), the group most likely to contain lidar detected mixed 

and liquid clouds, is rather strong, with the exception of liquid2.                     

 In general the comparison by aerosol type is rather inadequate.  To start, an older 

version of the MODIS aerosol data, C004, is used since the updated version, C005, 

seemed to be giving spurious results.  Unlike the C005, the algorithm used to generate the 

C004 product does not detect dust over land.  Hence one of the two major sources of 
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aerosol pollution over Alaska could not be properly evaluated.  The other main aerosol, 

smoke, did appear to demonstrate some conformity.  Smoke1 and smoke2 agreements fall 

around 54% and 42% respectively (Table 4.3).  

The aerosol observations did prove useful when evaluating the false 

identifications (F-N, F-P).  As discussed in great detail, MODIS frequently confuses 

clouds for aerosols and vice versa.  The two most notable examples, mistaking volcanic 

aerosol for an ice cloud and smoke for a low-level liquid cloud, have been cited.   

 In summary, the ground based PCL has proven to be an excellent and inexpensive 

source of cloud and aerosol data with which to validate overlapping satellite 

measurements.  It can detect the presence of clouds and aerosols unambiguously and 

pinpoint precisely their boundaries so long as the integrated optical depth is relatively 

low, less than three.  In addition, information gleaned from its two polarization channels 

can infer the shape, size and phase of the particles within its field of view.  However, 

such procedures have yet to be automated and visually interpreting the lidar data is 

inherently subjective and can be difficult in situations of multi-layer clouds or super-

cooled mixed phase clouds.   

 Future studies would ideally employ an additional ground-based instrument to 

measure down-welling infrared radiation so that the LIRAD method can be used to obtain 

a much more precise measure of optical depth.  This would help to define, more 

accurately, the detection limits of the satellite algorithms.  Also, a site with a more 

homogeneous surface cover would help minimize the amount of error introduced by 

surface mixing.  Isolating the signature of a translucent cirrus cloud is difficult over a 
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relatively large spatial area, containing a mixture of both rural and urban land cover 

types.  It is not clear how much of a negative impact, if any, this may have had on the 

outcomes of this study.  Considering all the complexities associated with measuring 

primarily thin cirrus clouds over a mixed sub-arctic environment, the overall performance 

of the MODIS cloud products, evaluated here, appear to have met the basic expectations 

outlined in the theoretical basis documents.   
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