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Abstract

In a society in which information is one of the
highest-valued commodities, information networks are
the economic backbone.  Therefore, network
vulnerability is a major hazard.  Analysis of
communications system traffic suggests that there are a
variety of similar dynamical characteristics in widely
varying systems. There are some universal features of
communication networks that may determine the main
dynamics of communications. These are: 1) hardware
limitations on network capacity, 2) forcing from the
increasing number of users towards the network
capacity, and 3) a high level of complexity in those
systems.  These common features may drive the system
dynamics and determine its main intrinsic
vulnerabilities.  The nontrivial character of network
dynamics has already been found in traffic analysis of
local area networks that display self-similarities and
long-range correlations. This suggests a complex
dynamics in the traffic of packets over the network.  In
this work simple distribution network models with
different levels of complexity are examined and
compared to each other and to characteristics of real
Internet data.

1. Introduction

Complex systems such as, communication networks,

distribution systems, and electrical power transmission

grids which run near their operational limits, can

develop non-periodic major cascading disruptions which

can have serious consequences.  Large-scale disruptions

of these systems have an obvious impact on national

security and may point out a vulnerability in the

Nation s infrastructure.  Individually these disruptions

can be attributed to a specific cause, or causes, such as

hardware failure, unexpected traffic, lightning strikes or

shorts through trees. However, finding these individual

causes overlooks the global dynamics of the system in

which repeated major disruptions, from a wide variety of

sources, are a virtual certainty.  

Increased system security might decrease the risk of

an individual event, but does not eliminate the

possibility of global disruptions of the system in

question.  The reason for this is that these types of

disruptions are intrinsic to the dynamics of many

complex systems.  This type of global dynamical

system behavior has been connected to the concept of

Self-Organized Criticality (SOC)[1].  A SOC system is

one in which the nonlinear dynamics in the presence of

perturbations organizes the overall average system state

near to, but not at, the state that is marginal to major

disruptions.  These systems are characterized by a

spectrum of spatial and temporal scales of the disruption

events that exists in remarkably similar form in a wide

variety of different physical systems.

Analysis of Ethernet traffic measurements has already

shown the self-similar character of the data and the

existence of long time correlations that can not be

explained by simple statistical models[2-5].  The

algebraic tails of the probability distribution function of

this data is suggestive of SOC type dynamics.

Although sophisticated statistical models can be (and are

being) used in interpreting the data, there is the need for

development of dynamical models if we want to

understand the temporal operation of the systems as well

as having some ability to control the flows (information,

power etc.) and to understand as well as avoid

vulnerabilities in the networks. The SOC character of

communication network has been put forward for traffic

flow by Nagel and collaborators[6].  We utilize the

universality of the SOC concept to investigate the

dynamics of communication and distribution systems,

with the emphasis on catastrophic failure, from a very

general system point of view.  The applications can be
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directed to general distribution systems as well as to

information networks and power transmission systems,

discussed elsewhere, in particular.  

If communication networks are in a SOC state then

some direct results of understanding this could come in

the following forms:  First and most straight forward is

a more realistic failure statistic which would allow for

more realistic risk analysis. Next, understanding the

general system dynamics could allow changes in design,

making the system inherently less susceptible to major

cascading disruptions.  Finally, the possibility of semi-

quantitative predictions of the onset of major system

collapses, through real time monitoring, could allow

preventative steps to be taken to mitigate or even prevent

the disruption.

Simple analysis of communications system traffic

dynamics, as well as that of most other distribution

systems, suggests that though the details differ there are

in each similar dynamical characteristics.  In a relatively

brief time, networks have developed from relatively

small LANs to the Internet. While each type of network

has its own distinctive characteristics and

communication technology both of which are rapidly

evolving in time, there are some universal features of

network communication that may determine the main

dynamics of communication. These are: 1) hardware

limitations on the network capacity, 2) the forcing from

the constantly increasing number of users towards the

limiting capacity of the network, and 3) a high level of

complexity in those systems. These common

characteristic features may drive the dynamics of

communication and determine its main intrinsic

vulnerabilities.

The nontrivial character of communication network

dynamics has already been shown[7,2] in the analysis of

traffic in local area networks. Although the arrival of

communication packets in a local network maybe

thought to be random, the arrival process is neither

Poisson nor compound Poisson. The analysis of local

area network traffic has shown that it is self-similar in

nature with long-range correlations. This suggests a

complex dynamics in the traffic of packets over the

network.  This complex behavior has been characterized

by the existence of a dynamical phase transition in the

Internet traffic[3].

Simple models of the communication traffics have

been build[7,8] that illustrate the existence of the phase

transition. These models are characterized by a fixed rate

of packet creation and do not have steady state traffic in

the congested regime. They are inspired by traffic

models that have such a phase transition between

flowing and congested traffic[9]. A cellular automata

model[6] has been used to investigate some aspects of

the collective behavior of the computer network. This

model is 1-D and is basically concerned with the

queuing problem.

Here, we investigate the dynamics of communication

models incorporating some possible self-organization

dynamics that can allow the development of steady state

traffic even in the congested regime.  We base some of

these mechanisms on existing congestion control

methods being applied to communication networks.

2. Basic Communication Model

We have developed a communications model based

on the model of Ohira and Sawatari[8]. The model is

applicable to arbitrary network configurations, but here

we consider only a two-dimensional lattice network

configuration (Fig.˚1).  These lattices are square and

identified by N, the number of nodes on a side.  Thus an

N˚=˚20 lattice contains 20
2
 nodes.  Nodes on the edges

of the lattice are denoted as hosts that could both create

and receive packets.  (Note that hosts are not connected

to each other directly and that nodes at the corners of the

lattice were not used at all, as they can be connected

only to hosts.)  Interior nodes are denoted as routers,

responsible for moving packets in the direction of their

destination.  Each router can move one packet per time

step.  If the router receives more packets than can be

processed, they are buffered by the router into a queue

and processed in the order received.  This buffer can have

a fixed size; if that limit is exceeded, the router becomes

incapable of receiving packets until the queue size is

again below the limit.

Fig.˚1.˚˚An N˚=˚6 lattice network.  Nodes
along the edges of the lattice are
designated as hosts; interior nodes are
routers.  Nodes at the corners can be
connected only to hosts, and therefore
are not used.

A shortest path algorithm determines distance

between nodes in the lattice.  This is implemented as a

breadth-first search through the network where each

connection between nodes is assumed to have a weight

of one.  These distances are calculated at the beginning

of the calculation and accessed using a lookup table

thereafter.
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The model is based on the following rules:

1. Hosts create packets with a probability λ , and insert

them into the system.  Generated packets are given a

random destination chosen from the hosts in the

lattice.

2. Routers forward the top packet in the queue to the

neighboring node closest to the destination of the

packet.  If the closest distance is shared by more

than one node, selection is made randomly between

them.  If a neighbor s queue is full, the router

chooses the next closest neighboring node.

3. Hosts that receive packets addressed to them delete

the packets — this removes the packets from the

system.

Without some method of congestion control, the

network undergoes a phase transition at a value of λ,

denoted by λcrit.  When this critical value is exceeded,

the network becomes locked in a traffic jam  where

routers are receiving packets more quickly than they can

process them.  This is illustrated in figure 2 where we

have used a square network with 400 nodes and carried

out the calculations for 10
5
 steps. A transition is

observed for a value of the probability of creating

packages λ =˚0.12.  When the probability of package

creation is increased above this value, we observe a sharp

increase in the average time for delivering a package,

while the averaged distance travel per package remains

the same.

101

102

103

104

105

10-3 10-2 10-1

<Time traveled>
<Distance traveled>

<
T

im
e 

or
 d

is
ta

nc
e 

tr
av

el
ed

>

λ

Fig.˚2.˚ Averaged time and distance
traveled by each packet as a function of
the packet creation rate

After the transition, the averaged traveled time

simply depends on how long the calculation runs.  At

this point, there is a global traffic jam and the system is

not in steady state. Packets accumulate at all routers and

the delay in delivering the packages increases with time.

There are additional ways of detecting the transition, one

being through calculating the averaged number of

packages waiting in line to be transmitted by the routers.

There is a continuous increase in the list length with an

increase of the probability λ.  However, at the transition

point, there is a clear jump. The size of the jump

depends on the time that the code has been running for

the reasons discussed above.

3. Communication models with self-
organization

In order to deal with these traffic jams and maintain

the circulation of information in the system, it is

necessary to implement methods of congestion control.

These methods can induce a self-organization of the

communication network and can help in understanding

the operation dynamics of the real system. Four methods

of congestion control were extracted from actual

networking techniques and implemented in the

simulation[11]. We assume that each router node has a

buffer of limited capacity able to hold a fixed number of

packets to be transferred.  The congestion control

methods that we have considered are:

• Dropping packets — The simplest technique for

dealing with congestion is to delete those packets

that arrive at a node with a full buffer.

• Congested signaling — This scheme involves

introducing a time delay, Td, to deal with

congestion.  If a buffer overrun occurs, the host that

generated the packet that caused the overrun is put

into a suspended state where it will not generate

packets for a set number of time steps.

• Simplified choke packet — This technique also

introduces a time delay; however, instead of

suspending the generating host, the node that

delivered the packet is suspended.

• Backpressure — Analogous to a backpressure-

plumbing valve, this congestion method deals with

congestion by changing the value of λ at the

generating host by an amount ∆λ.

In real-world networks, communicating commands

to delay hosts, change the rate of packet generation, etc.

would have to be done with packets as well, thus adding

more traffic to the network.  This extra traffic was not

deemed statistically significant and for simplicity, the

model does not include them.

Several diagnostics are used to measure the

performance of the calculation and to compare network

congestion schemes.  They include: throughput, given

by the number of packets delivered divided by the total

time in the simulation; the mean, variance, and

probability distribution function of the time traveled by

the packets; and the mean, variance, and probability

distribution function of the distance traveled.

Throughput as defined and measured in this study is

analogous to throughput in a real-world network — that

is, how much information can be moved in a given
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time.  The effective packet creation rate, λeff, of the

system is calculated as the throughput divided by the

number of hosts and used for comparison with the value

for λ, the desired packet creation rate.  The average time

traveled by the packets is analogous to real-world

network speed — how quickly a given piece of

information in averaged can be moved from one point to

another.  

Once the congestion control methods are in

operation, the evolution of the system reaches a steady

state independently of the creation rated desired. We can

see this by just looking at the number of packets moved

through the system every time step (Fig.˚3).

Fig.˚3.˚˚Time traces of the number of
packets moved per step in a square
network with 400 nodes and for two
different values of the packet creation
rate.

4. Dynamics of the packet traffic in a
communications network model

Each of the congestion control techniques was tested

with a network of N˚=˚20 for values of λ ranging from

0.02 to 0.8.  The same random number seed was used in

each case, and the number of time steps for the

simulation was held constant.  The buffer size for the

routers for all cases was arbitrarily set to 60.  A delay of

30 time steps was used for the congested signaling and

simplified choke packet methods.  This combination of

values was found to be effective in giving congestion

control for most of the methods and most values of l. A

∆λ  of 10% was chosen arbitrarily for the backpressure

method.  We compared the various control methods and

examined the average time traveled for packets in the

system as well as throughput.  We found it useful to

introduce a measure of the efficiency of the system as the

averaged number of packets delivered per averaged packet

transit time. This combines the previous measures in a

single parameter.

A transition was again observed in the time traveled

for each case as the network went from a non-congested

state to one in which traffic jams are occurring (Fig.˚4).

However, in the cases with the congestion control, the

size of the change between presence and absence of traffic

jams was both much lower and actually bounded relative

to the calculations that did not include congestion

control methods.  Again, the efficiency is found to have

a maximum close to the critical point.

10-2

10-1

100

101

102

103

10-2 10-1 100

Throughput/<Time>

<Time>

T
hr

ou
gh

pu
t/<

T
im

e>

<
T

im
e>

λ

Fig. 4. Efficiency and averaged time
traveled for an N˚=˚20 network with
congested signaling control method.

Near the critical point, the first 3 congestion control

methods have effectively the same behavior, with a

variation in the averaged traveled time of at the most a

factor of 2.  The exception is the backpressure scheme

that will be discussed later on. The congestion control

methods effectively maintain the creation rate of packets

close to the critical value (Fig.˚5).

The two main parameters in the control methods, the

time delay and the buffer size play an important role in

the capability of the system to keep the packets moving

and deliver them in the congested regime.  If the value

of one or both parameter is too small, the system

collapses and the effective creation rate goes practically

to zero. In the steady state and above the critical point

seem to be only these two states. There is the normal

operation state with effective packet creation rate close to

the critical value and the collapsed  operation state with

the effective creation rate close to zero. This is illustrated

in Fig.˚6 by changing the time delay for the congested

signaling method. Similar results are obtained by
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varying the buffer size and for the different congestion

control methods. The exact value of these parameters for

which the transition between states occurs is dependent

on the congestion control method and the requested

packet creation rate.
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Fig. 5. Effective creation rate versus the
requested creation rate of packets for to
of the congestion control methods
considered in this paper.

The backpressure scheme had a slight increase in time

traveled around the critical point, but at higher values for

λ returned to values seen before λcrit was reached.  This

particular behavior in the backpressure method

throughout the study prompted modified version of the

technique to be created.  In this altered backpressure

technique, each host attempts to increase their value for

λ by a given rate of change ∆′λ if they had been

decreased by a router.  This modified technique produced

throughput and packet averaged time traveled curves that

were consistent with the other techniques.  Additionally,

when the hosts were given an initial λ of one, this

method produced an averaged λ that equaled λcrit.

Fig. 6. Number of packets moved per
time step for two values of the time
delay using the congested signaling
method.

An important consequence of operating near the

critical transition point is that the probability

distribution function of the travel time has an algebraic

tail.  In Fig. 7, we have plotted the probability

distribution function of the time traveled by the packet

for three of the methods considered. The plot is for

λ =˚0.18, that is for a creation rate above the critical

point.  All PDFs show approximately a decade of

algebraic decay with a decay index of about —1.3. 
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the time traveled by the packet for three
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For single packet dynamics as we have described, the

distribution of time between arrival of packets in a given

host node is Poisson like. This, results disagrees with

many of the measurements of arrival times done in real

networks. The main reason for that is that we have not

considered trains of packets.  As the host is ready to

send some amount of information over the network, this

information is broken in a number of packets that are

being sent. These packets are initially correlated and this

correlation is translated in the breaking of Poisson

statistics. We have implemented a variation in the

dynamics to take into account the size of the information

to be sent. The method that we have implemented is as

follows. If a host pulls decides to send a message by

picking a random number, it also selects randomly the

number of packets to be send.  If there is more than one

packet, they will be sent in successive time steps. In this

situation the tail of the PDF of arrival times changes

from exponential to an algebraic tail. An example is

shown in Fig. 8, where the PDF of the time between

arrivals of packets is plotted for different values of the

maximum possible length of an individual message. As

we allow for larger messages, a longer algebraic tail

develops.
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5. Dynamics of the packet traffic in real
communications networks

In order to make comparisons to the modeling

results, we have performed a series of analyses to

compare data traffic flow over two types of network

connections.  Others have performed similar analysis on

a variety of network data as discussed earlier. Our

analysis was performed on data collected over the period

of two weeks by continuous pinging of two sites.  One

site had a path that remained in the ESnet network

(swxaty-p2-9.ens.ornl to brxatyf1.ens.ornl.to

orgwy.ctd.ornl to ornl-rt3f0.ctd.ornl to lbl-atms.es.to

lbnl2-es-fddi.es.to sas.nersc.gov) while the other site had

a path dominantly on the open Internet.  Esnet was a

closed network for energy systems research that had a

large amount of traffic but was usually not near its limit.

Both paths had multiple hops, with the total paths being

from Oak Ridge to LBNL for one and the other from

Oak Ridge to UW-Madison.  The pinging was done

with a one second interval while retaining the round trip

time as well as a packet loss index.  The raw data itself

is instructive with clearly visible correlations much

longer then a few ping times in the busy (stressed)

network (Fig.˚9) and much less apparent correlations in

the less stressed (ESnet) network data (Fig.˚10).
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Fig˚9 Raw data from the busy (open
internet) route
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Fig 10.  Raw data from the ESnet route.

More significantly, the power spectrum of the round

trip ping time displays the 1/f behavior characteristic of
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a SOC system both for the busy and the less stressed

network (Fig. 11).  In the highly active system (the open

internet route) the 1/f region extends over nearly 2

decades reminiscent of a strongly driven SOC system.

In the less stressed (ESnet) system the 1/f regime is

much smaller showing much less power in the low

frequency regime.  This could suggest that even a

network system that is not close to its operational limit

still displays SOC behavior. This could have

implications for both how to control and prevent

network collapses as well as providing a possible tool

for diagnosing the proximity of a network to trouble.

Another test of long time correlations in systems is the

R/S statistic[12-14]. A Hurst exponent of 0.5 signifies

gaussian random numbers and therefore no long time

correlations.  In the busy (open internet) route there is a

large regime in which the Hurst exponent (the slope on a

log-log graph) is close to 1 signifying strong long time

correlations.  The less busy network shows much less

long time correlated dynamical behavior which is

consistent with the power spectra.
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Fig˚11. Frequency spectra for the two
routes showing a clear 1/f region in both
data sets.  The range of the 1/f region is
much larger in the busy networks data
set.

The PDFs of the travel time are another instructive

measure.  Figure 12 shows the travel time PDF for the

busy network and for the model with a value for λ of

0.12. The model data is rescaled so as to have the same

time scale as the real network data, a reasonable thing to

do because the definition of time and the system size are

clearly different. It should be noted that the meaning of

this rescaling could be related to the intrinsic

simplifications in the system that lead to the fixed time

scale. The value of 0.12 is important because it is

approximately the critical value of λ . The agreement

between the model data and the real network data is

striking and is made even more sticking by noting that

for other values of λ the curves do not overlap as well or

sometimes at all.  This suggests that the real network

maybe operating near its critical point.  If so, this is

likely because of the self-organization of the system

through its self-regulating mechanisms.  
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Fig. 12 Probability distribution function of
packet travel time for real busy internet
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6. Conclusions

A simple dynamical model of communication

network traffic displays a phase transition between a

smoothly flowing regime and a clogged regime.  When

simple self-regulating congestion rules are added to the

model, the system seems to self-organize  at a point

near to but not necessarily right at the critical phase

transition point.  The results of this could help explain

how such a system finds its operating point.  Analysis

of real network data suggests that busy networks (such

as the internet) have long time correlations and other

characteristics of SOC systems.  Perhaps even more

importantly, the PDFs of the internet travel times

closely resembles the model data for values of the

control parameters very close to the critical point.  This

suggests that the real network might be operating near to

its critical point which has important implications for

the probability of disruptions and network risk analysis
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and suggests that the real system could have intrinsic

vulnerability to large-scale disruptions.

In these studies, we have limited the application of

the model to simple networks systems with single self-

regulation schemes.  Further work to allow more

realistic systems dynamics and regulation are being

undertaken.
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