
Parallel Programming Concepts

Tom Logan

Parallel Background

“Why Bother?”

What is Parallel Programming?

•  Simultaneous use of multiple
‘processors’ to solve a single
problem

•  Use of a group (team) of ‘processes’
to cooperatively solve a problem

•  A demanding challenge that requires
programmers to “think in parallel”

Parallel Programming Problems

•  Difficult to design, develop, and debug
•  Still not entirely portable, but getting better all

the time
•  Open to more latent bugs based on order of

execution and bulk of code
–  “Correct execution of a parallel program once is

no guarantee that it will ever execute correctly
again.” --Jim McGraw, LLNL

•  Architectures, and, thus, ‘tricks of the trade’,
are constantly in flux

So Why Do It?

•  Scientific Demand
–  CERN Large Hadron Collider generates 1 Pbyte of raw data

per second. It is filtered to 100Mbyte/sec, but, this leaves 1
Pbyte/year to be saved.

–  Boeing’s idea of a supercomputer is one that will do a
complex Airliner flight simulation in 6-7 hours

–  ECMWF - European Centre for Medium Range Weather
Forecasting would like a 10km weather forecast, but they will
need 50 Tflops sustained to do it.

More Science Demands…
•  Estimates for genomics:

–  Biology is big business ($50 billion/yr)
–  Modeling a prokaryotics cell (no nucleus) requires tracking

~30 million structures
–  40 Tflops sustained to simulate an entire organ
–  Ab initio protein folding requires 1 Pflop/s
–  Director of NCSA estimated biology to be an Exaflop level

challenge
•  Human brain is a 100 Pflop machine - currently are barely past the

mouse brain level of computing (100 Tflops)

The Demands Quantified

Demand Result Computational
Increase

Better Remote Sensors 10x Resolution 100 - 1000

Increased resolution for models 10x Resolution 1000 - 10000

Coupled Models Better Accuracy 2 - 5

Improved Processes Better Accuracy 2 - 5

Longer Simulations 10-100 times longer 10 - 100

ALL OF THE ABOVE 100x res, 100x longer, more
accurate physics 1010

Aside - On Magnitudes

Magnitude Number of Words

Mega (M) Small novel

Giga (G) Pick-up full of paper or 1 DVD

Tera (T) 1 million books (US library of
congress in ~10 Tbytes)

Peda (P) 1-2 Pbytes is all academic research
libraries combined

Exa (E?) Probably less than 5 Ebytes of words
spoken in human history

Update for 2010

CENTER SYSTEM VENDOR NCPUS Max TFLOPS
ORNL Jaguar Cray XT5 224162 1,759 (1.76 PF)
NSCS Nebulae Dawning/GPU 120640 1,271
LANL Roadrunner Bladecenter 122400 1,042
NICS Kraken Cray XT5 98,928 831.7
…
ARSC Pingo Cray XT5 3456 26.21

Things change quick!
•  11/2008 Pingo debuted at #109
•  06/2009 Pingo was #203
•  06/2010 Pingo is currently #435

Selected Talks At SC10
•  Petascale data analytics
•  190 TF Astrophysical N-body Simulation on a

cluster of GPUs
•  Scalable Earthquake Simulation on Petascale

Supercomputers
•  Multiscale Simulation of Cardiovascular flows
•  Multi-scale Heart Simulation
•  Petascale Direct Numerical Simulation of Blood

Flow on 200K cores
•  Building Exascale GPU-Based Supercomputers
•  Exatran: A language for Exascale Computing
•  Scaling of a Multimillion-Atom MD Simulation
•  Panasas: The Road to Exascale Storage

Update for 2013

CENTER SYSTEM VENDOR NCPUS Max PFLOPS*
NUDT Tainhe-2 Xeon CPUs 3.12M 33.86
ORNL Titan NVIDIA 261632 17.59
LLNL Sequoia IBM 1.57M 17.17
RIKEN K SPARC64 705024 10.51
ANL Mira IBM 786432 8.59

#1 is Chinese
#2, #3, and #5 are DOE machines
#4 is Japanese

Note the change to PFLOPS!

Update for 2015

CENTER SYSTEM VENDOR NCPUS Max PFLOPS*
NUDT Tainhe-2 Xeon CPUs 3.12M 33.86
ORNL Titan NVIDIA 261632 17.59
LLNL Sequoia IBM 1.57M 17.17
RIKEN K SPARC64 705024 10.51
ANL Mira IBM 786432 8.59

#1 is Chinese
#2, #3, and #5 are DOE machines
#4 is Japanese

I’m really surprised it is the same as 2013!

Ok - So Why Parallel?

•  That’s the only way left to go
–  Clock speeds are approaching that of light
–  Machine level instructions are optimized
–  Pipeline technology has limited scope
–  Vector processing has scalability limits

•  Since they can’t build them faster,
they’re making multi-cpu chips
–  that go into boards,

•  that go into nodes,
–  that go into clusters,

»  that go into …

Parallel Architectures

“UMA, NUMA, NORMA?”

Parallel Architecture Models
•  Shared Memory Multiprocessor

–  N processors share a common memory
–  Ideal is UMA (Uniform Memory Access)
–  Reality is NUMA (Non-Uniform Memory Access)
–  To program this machine, use OpenMP

•  Distributed Memory Multicomputer
–  N computers interconnected by a network
–  NORMA (NO-Remote Memory Access)
–  To program this machine, use MPI

•  Distributed Shared Memory
–  To program , use OpenMP and/or MPI

Acronyms
•  UMA - Uniform Memory Access

–  physical memory equidistant from all PEs
•  NUMA - Non-Uniform Memory Access

–  physical memory is distributed to processors, thus
access time varies with the location of the word

•  NORMA - No-Remote-Memory-Access
–  physical memory is distributed to processors

Shared Memory

•  Large globally shared memory space
•  These are single nodes in modern systems
•  Examples include SGI O2000, CRAY SV1, IBM

Regatta, Cray/NEC SX-6, IBM P690+

P0 P1 P2 … PN

 Interconnect Network

M0 M1 M2 … MN

Distributed Memory
•  Each node contains one processor with its own

memory.
•  Nodes are interconnected by message passing

network (switches or routers)
•  Examples include typical linux clusters

P0 P1 P2 … PN

M0 M1 M2 … MN

 Interconnect Network

Distributed Shared Memory
•  Modest number of processors share memory

within a single node
•  Distributed memory among nodes
•  Example is IBM Winterhawk, p655, p690

P0 P1 P2 P3 … PN-1 PN

 M0 M1 … M2

 Interconnect Network

Architecture Comparison
•  Memory Latency

– Time to access a memory location
– Local memory access is low latency (SM,

DSM)
– Remote memory access is high latency

and may be possible only through
message passing (DM, DSM)

Architecture Comparison
•  Memory Contention

– Occurs when multiple processors attempt
to access a single memory location -
particularly for update

– No memory contention for distributed
memory - only a single processor can
access local memory

– Potential for a high level of memory
contention for shared memory systems

Example - Cache Effects on
Shared Memory

•  Sharing/False Sharing - 2 (or more) PEs updating
variable(s) on the same cache line

•  PE 1 wants to write to cache line X, but PE 2 owns it
–  request PE 2 to flush cache line X to main memory
–  invalidate all other PEs cache line X
–  read cache line X from main memory
–  update local cache line with value

•  PE 2 wants to write to cache line X, but PE 1 owns it
–  Request …

•  PE 3 wants to write to …
•  And so on, and so on, …

Parallel Algorithms

“Thinking In Parallel”

Algorithm Requirements

•  Concurrency - ability to work on a
problem with separate simultaneous
tasks

•  Scalability - ability to produce
increased speed up as the number of
processors is increased

•  Locality - ability to minimize remote
memory access by accessing local data
as frequently as possible

Parallel Programming Models

•  Shared Memory
– Communication via memory constructs
– SPMD (single program multiple data) is the

most common form
– For our purposes, the majority of shared

memory programming will be splitting main
loops into the available PEs

(sounds simple enough, right?)

Parallel Programming Models

•  Distributed Mem/Message Passing
– Communication is explicit using messages
– SPMD is most common form of code for a

homogeneous environment
– Adapts well to MPMD (multiple program

multiple data) codes in heterogeneous
computing systems

Example - Global Reduction

•  Global Reduction - parallel
operation on an array
– commutative binary operations only

•  OK: SUM, PRODUCT(?), MIN, MAX, AVE
•  NOT OK: division, subtraction

– usually defined in standard parallel
programming libraries

Global Sum - Shared Memory

•  Shared Memory

$OMP private(my_sum)
Do j=my_start,my_stop

 my_sum = my_sum+data[j]
End do
$OMP critical

 sum = sum + my_sum
$OMP end critical

•  Notes
•  Must declare variable scope
•  Calculate global indices (usually

automatically done)
•  Global memory must be protected

in order to avoid race conditions,
i.e. EXPLICIT
SYNCHRONIZATION is required.

•  Each synchronization construct
slows code and has potential to
reduce performance to serial (or
worse)

Global Sum - Message Passing

•  Message Passing
Do j=start,stop

 my_sum = my_sum + data[j]
End do
If (my_pe==0) then

 sum = my_sum
 do j=1,NUM_PE-1
 Recv(j,remote_sum)
 sum = sum + remote_sum
 end do

Else
 Send(0,my_sum)
End if

•  Notes
•  Local memory access only
•  Message passing can be orders of

magnitude slower than memory
access

•  Synchronization is implicit
•  Boss/Worker paradigm leads to

load imbalance and, once again,
has the potential to reduce
performance to serial (or worse)

•  How could this be done better?

Parallel Performance Issues

(Yep, they’ve got issues)

Speedup

•  Definition
speedup = unimproved run-time / improved run-time
(Also called application speedup)

•  Example
– Program ported to X1 runs in 20 hours
– Core loop is modified to vectorize, bringing

run-time down to 5 hours
– Therefore, speedup = 20 / 5 = 4

What’s the Big Deal?

•  If we have a program that takes time
T1 to run on one processor, why don’t
we just use p processors to run it in
time T1/p ?

1.  To use more than one processor requires
coordination and communication between
them, and

2.  Almost all “real” programs contain
portions that cannot utilize multiple
processors.

Speed Up Goal
•  Goal: Get N speed up for N processors
•  Nearly always, Speed Up < N
•  Fixed problem size has a fixed speed up

SN = T1 / TN SN

N

Speedup Revisited

•  If we can see a speedup of p for p
processors, we call that a linear
speedup
–  In general, that is the best we can hope for
– However, there are pathological cases of

superlinear speedup
•  Often though, speedup tails off so

that adding more processors
could even cause a slowdown

Amdahl’s Law

•  Speedup is limited by the fraction of the
code that does not benefit

•  E.g., suppose we have a parallel
machine. Let
–  Fs = fraction of code that is inherently serial
–  Fp = fraction of code that is parallelizable
–  So Fs + Fp = 1
–  T1 = time to run on 1 processor

•  Therefore
speedup = T1 / (Fs T1 + (Fp T1 / N) = 1 / (Fs + ((1-Fs) / N))

Amdahl’s Law (cont.)
•  Implication of Amdahl’s Law

 speedup = 1 / (Fs + (Fp / N))
–  Suppose a program runs in 10 hours on one processor and 80% of

the code can be executed in parallel on 1000 processors. Then
•  Tp = 0.2 (10) + (0.8 (10) / 1000) = 2.0 + 0.008 = 2.008 and
•  speedup = 1 / (0.2 + 0.8 / 1000) = 1 / 0.2008 = 4.98

•  What if
–  Fp drops to 50% ?
–  N goes to infinity?

N Fs 20% 10% 5% 1%

4 2.5 3.1 3.5 3.9

16 4.0 6.4 9.1 13.9

64 4.7 8.8 15.4 39.3

256 4.9 9.7 18.6 72.1

∞ 5.0 10.0 20.0 100.0

Efficiency
•  Ratio of actual speed up to perfect speed up
•  Measure of a parallel program’s ability to use

multiple processors
•  Goal is to achieve 100% efficiency
•  Reality is that Efficiency < 1
•  Remember Amdahl’s Law? Here’s the impact

on efficiency:
ƒ = 0.2 ƒ = 0.1 ƒ = 0.05 ƒ = 0.01

N = 4 63% 78% 88% 98%
N = 16 25% 40% 57% 87%
N = 64 7% 14% 24% 61%
N = 256 2% 4% 7% 28%

Data Access Issues
•  Data Scoping: Private vs. Shared

–  Refers to the accessibility of data to processes
–  Private data is accessible only to owning process
–  Shared data is accessible to all processes in

group
J allows work-sharing by multiple processes
L allows memory contention and data races

–  DM architectures are all private memory
–  DSM & SM architectures allow both private &

shared

Data Access Issues
•  Atomic operation: an operation

that can be performed in a single
step

•  Few operations are truly atomic
Example: j = j + 1
Step 1: Load contents of memory location j into

 register
Step 2: Increment the contents of the register
Step 3: Store contents of register to memory

 location j

Data Access Issues
•  Data races occur when multiple PEs attempt

simultaneous modification of a shared
variable using a non-atomic operation

Time PE1 PE2 j PE1 PE2
0 3
1 Load r1, j r1=3
2 Incr r1 Load r2, j r1=4 r2=3
3 Store j,r1 Incr r2 4 j=4 r2=4
4 Store j,r2 4 j=4

More Parallel Terminology
•  Granularity - measure of the amount of

computation involved in a software
process. e.g. # of instructions, usually

•  fine (instruction level),
•  medium (loop level), or
•  coarse (subroutine/program level)

•  Load Balancing - assignment of tasks to
equalize the work load across multiple
processors

