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Parallel Background 

“Why Bother?” 



What is Parallel Programming? 

•  Simultaneous use of multiple 
‘processors’ to solve a single 
problem  

•  Use of a group (team) of ‘processes’ 
to cooperatively solve a problem 

•  A demanding challenge that requires 
programmers to “think in parallel” 



Parallel Programming Problems 

•  Difficult to design, develop, and debug 
•  Still not entirely portable, but getting better all 

the time 
•  Open to more latent bugs based on order of 

execution and bulk of code 
–  “Correct execution of a parallel program once is 

no guarantee that it will ever execute correctly 
again.”                 --Jim McGraw,  LLNL 

•  Architectures, and, thus, ‘tricks of the trade’, 
are constantly in flux 



So Why Do It? 

•  Scientific Demand 
–  CERN Large Hadron Collider generates 1 Pbyte of raw data 

per second.  It is filtered to 100Mbyte/sec, but, this leaves 1 
Pbyte/year to be saved. 

–  Boeing’s idea of a supercomputer is one that will do a 
complex Airliner flight simulation in 6-7 hours 

–  ECMWF - European Centre for Medium Range Weather 
Forecasting would like a 10km weather forecast, but they will 
need 50 Tflops sustained to do it. 



More Science Demands… 
•  Estimates for genomics: 

–  Biology is big business ($50 billion/yr) 
–  Modeling a prokaryotics cell (no nucleus) requires tracking 

~30 million structures  
–  40 Tflops sustained to simulate an entire organ 
–  Ab initio protein folding requires 1 Pflop/s 
–  Director of NCSA estimated biology to be an Exaflop level 

challenge 
•  Human brain is a 100 Pflop machine - currently are barely past the 

mouse brain level of computing (100 Tflops) 



The Demands Quantified 

Demand Result Computational 
Increase 

Better Remote Sensors 10x Resolution 100 - 1000 

Increased resolution for models 10x Resolution 1000 - 10000 

Coupled Models Better Accuracy 2 - 5 

Improved Processes Better Accuracy 2 - 5 

Longer Simulations 10-100 times longer 10 - 100 

ALL OF THE ABOVE 100x res, 100x longer, more  
accurate physics 1010 



Aside - On Magnitudes 

Magnitude Number of Words 

Mega (M) Small novel 

Giga (G) Pick-up full of paper or 1 DVD 

Tera (T) 1 million books (US library of 
congress in ~10 Tbytes) 

Peda (P) 1-2 Pbytes is all academic research 
libraries combined 

Exa (E?) Probably less than 5 Ebytes of words 
spoken in human history 



Update for 2010   

CENTER SYSTEM VENDOR NCPUS Max TFLOPS 
ORNL Jaguar Cray XT5 224162 1,759 (1.76 PF) 
NSCS Nebulae Dawning/GPU 120640 1,271  
LANL Roadrunner Bladecenter 122400 1,042 
NICS Kraken Cray XT5 98,928 831.7 
…   
ARSC Pingo Cray XT5 3456 26.21 

Things change quick! 
•  11/2008 Pingo debuted at #109 
•  06/2009 Pingo was #203 
•  06/2010 Pingo is currently #435 



Selected Talks At SC10 
•  Petascale data analytics 
•  190 TF Astrophysical N-body Simulation on a 

cluster of GPUs 
•  Scalable Earthquake Simulation on Petascale 

Supercomputers 
•  Multiscale Simulation of Cardiovascular flows 
•  Multi-scale Heart Simulation 
•  Petascale Direct Numerical Simulation of Blood 

Flow on 200K cores 
•  Building Exascale GPU-Based Supercomputers 
•  Exatran: A language for Exascale Computing 
•  Scaling of a Multimillion-Atom MD Simulation 
•  Panasas: The Road to Exascale Storage 



Update for 2013   

CENTER SYSTEM VENDOR NCPUS Max PFLOPS* 
NUDT Tainhe-2 Xeon CPUs 3.12M 33.86 
ORNL Titan NVIDIA 261632 17.59 
LLNL Sequoia IBM 1.57M 17.17 
RIKEN K SPARC64 705024 10.51 
ANL Mira IBM 786432 8.59 

#1 is Chinese
#2, #3, and #5 are DOE machines
#4 is Japanese

Note  the change to PFLOPS!



Update for 2015   

CENTER SYSTEM VENDOR NCPUS Max PFLOPS* 
NUDT Tainhe-2 Xeon CPUs 3.12M 33.86 
ORNL Titan NVIDIA 261632 17.59 
LLNL Sequoia IBM 1.57M 17.17 
RIKEN K SPARC64 705024 10.51 
ANL Mira IBM 786432 8.59 

#1 is Chinese
#2, #3, and #5 are DOE machines
#4 is Japanese

I’m really surprised it is the same as 2013!



Ok - So Why Parallel? 

•  That’s the only way left to go 
–  Clock speeds are approaching that of light 
–  Machine level instructions are optimized 
–  Pipeline technology has limited scope 
–  Vector processing has scalability limits 

•  Since they can’t build them faster, 
they’re making multi-cpu chips 
–  that go into boards,  

•  that go into nodes,  
–  that go into clusters,  

»  that go into … 



Parallel Architectures 

“UMA, NUMA, NORMA?” 
 



Parallel Architecture Models 
•  Shared Memory Multiprocessor 

–  N processors share a common memory 
–  Ideal is UMA (Uniform Memory Access) 
–  Reality is NUMA (Non-Uniform Memory Access) 
–  To program this machine, use OpenMP 

•  Distributed Memory Multicomputer 
–  N computers interconnected by a network  
–  NORMA (NO-Remote Memory Access) 
–  To program this machine, use MPI 

•  Distributed Shared Memory 
–  To program , use OpenMP and/or MPI 



Acronyms 
•  UMA - Uniform Memory Access 

–  physical memory equidistant from all PEs 
•  NUMA - Non-Uniform Memory Access 

–   physical memory is distributed to processors, thus 
access time varies with the location of the word 

•  NORMA - No-Remote-Memory-Access 
–   physical memory is distributed to processors 



Shared Memory 

•  Large globally shared memory space 
•  These are single nodes in modern systems 
•  Examples include SGI O2000, CRAY SV1, IBM 

Regatta, Cray/NEC SX-6, IBM P690+ 

P0 P1 P2 … PN

    Interconnect Network

M0 M1 M2 … MN



Distributed Memory 
•  Each node contains one processor with its own 

memory.  
•  Nodes are interconnected by message passing 

network (switches or routers) 
•  Examples include typical linux clusters 

P0 P1 P2 … PN

M0 M1 M2 … MN

    Interconnect Network



Distributed Shared Memory 
•  Modest number of processors share memory 

within a single node 
•  Distributed memory among nodes 
•  Example is IBM Winterhawk, p655, p690 

P0 P1 P2 P3 … PN-1 PN

    M0     M1 …     M2

       Interconnect Network



Architecture Comparison 
•  Memory Latency 

– Time to access a memory location 
– Local memory access is low latency (SM, 

DSM) 
– Remote memory access is high latency 

and may be possible only through 
message passing (DM, DSM) 



Architecture Comparison 
•  Memory Contention 

– Occurs when multiple processors attempt 
to access a single memory location - 
particularly for update 

– No memory contention for distributed 
memory - only a single processor can 
access local memory 

– Potential for a high level of memory 
contention for shared memory systems 



Example - Cache Effects on 
Shared Memory 

•  Sharing/False Sharing - 2 (or more) PEs updating 
variable(s) on the same cache line 

•  PE 1 wants to write to cache line X, but PE 2 owns it 
–  request PE 2 to flush cache line X to main memory 
–  invalidate all other PEs cache line X 
–  read cache line X from main memory 
–  update local cache line with value 

•  PE 2 wants to write to cache line X, but PE 1 owns it 
–  Request … 

•  PE 3 wants to write to … 
•  And so on, and so on, … 



Parallel Algorithms 

“Thinking In Parallel” 



Algorithm Requirements 

•  Concurrency - ability to work on a 
problem with separate simultaneous 
tasks  

•  Scalability - ability to produce 
increased speed up as the number of 
processors is increased 

•  Locality - ability to minimize remote 
memory access by accessing local data 
as frequently as possible 



Parallel Programming Models 

•  Shared Memory 
– Communication via memory constructs 
– SPMD (single program multiple data) is the 

most common form  
– For our purposes, the majority of shared 

memory programming will be splitting main 
loops into the available PEs   

 
(sounds simple enough, right?) 



Parallel Programming Models 

•  Distributed Mem/Message Passing 
– Communication is explicit using messages 
– SPMD is most common form of code for a 

homogeneous environment 
– Adapts well to MPMD (multiple program 

multiple data) codes in heterogeneous 
computing systems 



Example - Global Reduction 

•  Global Reduction - parallel 
operation on an array 
– commutative binary operations only 

•  OK:  SUM, PRODUCT(?), MIN, MAX, AVE 
•  NOT OK:  division, subtraction 

– usually defined in standard parallel 
programming libraries 



Global Sum - Shared Memory 

•  Shared Memory 
 
$OMP private(my_sum) 
Do j=my_start,my_stop 

 my_sum = my_sum+data[j] 
End do 
$OMP critical 

 sum = sum + my_sum 
$OMP end critical  
 

•  Notes 
•  Must declare variable scope 
•  Calculate global indices (usually 

automatically done) 
•  Global memory must be protected 

in order to avoid race conditions, 
i.e. EXPLICIT 
SYNCHRONIZATION is required. 

•  Each synchronization construct 
slows code and has potential to 
reduce performance to serial (or 
worse) 



Global Sum - Message Passing 

•  Message Passing 
Do j=start,stop 

 my_sum = my_sum + data[j] 
End do 
If (my_pe==0) then 

 sum = my_sum 
 do j=1,NUM_PE-1 
  Recv(j,remote_sum) 
  sum = sum + remote_sum 
 end do 

Else 
      Send(0,my_sum) 
End if 

•  Notes 
•  Local memory access only 
•  Message passing can be orders of 

magnitude slower than memory 
access 

•  Synchronization is implicit 
•  Boss/Worker paradigm leads to 

load imbalance and, once again, 
has the potential to reduce 
performance to serial (or worse) 

•  How could this be done better? 



Parallel Performance Issues 

(Yep, they’ve got issues) 



Speedup   

•  Definition 
speedup = unimproved run-time / improved run-time 
(Also called application speedup) 

•  Example 
– Program ported to X1 runs in 20 hours 
– Core loop is modified to vectorize, bringing 

run-time down to 5 hours 
– Therefore, speedup = 20 / 5 = 4 



What’s the Big Deal? 

•  If we have a program that takes time 
T1 to run on one processor, why don’t 
we just use p processors to run it in 
time T1/p ? 

1.  To use more than one processor requires 
coordination and communication between 
them, and 

2.  Almost all “real” programs contain 
portions that cannot utilize multiple 
processors. 



Speed Up Goal 
•  Goal: Get N speed up for N processors 
•  Nearly always, Speed Up < N 
•  Fixed problem size has a fixed speed up 

SN  = T1 / TN   SN

N



Speedup Revisited 

•  If we can see a speedup of p for p 
processors, we call that a linear 
speedup 
–  In general, that is the best we can hope for 
– However, there are pathological cases of 

superlinear speedup 
•  Often though, speedup tails off so 

that adding more processors 
could even cause a slowdown  



Amdahl’s Law 

•  Speedup is limited by the fraction of the 
code that does not benefit 

•  E.g., suppose we have a parallel 
machine.  Let 
–  Fs = fraction of code that is inherently serial  
–  Fp = fraction of code that is parallelizable 
–  So Fs + Fp = 1 
–  T1 = time to run on 1 processor 

•  Therefore 
speedup = T1 / (Fs T1 + (Fp T1 / N) = 1 / (Fs + ((1-Fs) / N))  

  



Amdahl’s Law (cont.) 
•  Implication of Amdahl’s Law 

   speedup = 1 / (Fs + (Fp / N)) 
–  Suppose a program runs in 10 hours on one processor and 80% of 

the code can be executed in parallel on 1000 processors.  Then 
•  Tp = 0.2 (10) + (0.8 (10) / 1000) = 2.0 + 0.008 = 2.008 and 
•  speedup = 1  / (0.2 + 0.8 / 1000) = 1 / 0.2008 = 4.98 

•  What if 
–  Fp drops to 50% ? 
–  N goes to infinity? 

 

N    Fs 20% 10% 5% 1% 

4 2.5 3.1 3.5 3.9 

16 4.0 6.4 9.1 13.9 

64 4.7 8.8 15.4 39.3 

256 4.9 9.7 18.6 72.1 

∞ 5.0 10.0 20.0 100.0 



Efficiency 
•  Ratio of actual speed up to perfect speed up 
•  Measure of a parallel program’s ability to use 

multiple processors  
•  Goal is to achieve 100% efficiency 
•  Reality is that Efficiency < 1 
•  Remember Amdahl’s Law?  Here’s the impact 

on efficiency: 
ƒ = 0.2 ƒ = 0.1 ƒ = 0.05 ƒ = 0.01

N = 4 63% 78% 88% 98%
N = 16 25% 40% 57% 87%
N = 64 7% 14% 24% 61%
N = 256 2% 4% 7% 28%



Data Access Issues 
•  Data Scoping:  Private vs. Shared  

–  Refers to the accessibility of data to processes 
–  Private data is accessible only to owning process  
–  Shared data is accessible to all processes in 

group 
J allows work-sharing by multiple processes 
L allows memory contention and data races 

–  DM architectures are all private memory 
–  DSM & SM architectures allow both private & 

shared 



Data Access Issues 
•  Atomic operation: an operation 

that can be performed in a single 
step 

•  Few operations are truly atomic 
Example:  j = j + 1 
Step 1: Load contents of memory location j into  

         register 
Step 2: Increment the contents of the register 
Step 3: Store contents of register to memory 

         location j 



Data Access Issues 
•  Data races occur when multiple PEs attempt 

simultaneous modification of a shared 
variable using a non-atomic operation 

Time PE1 PE2 j PE1 PE2
0 3
1 Load r1, j r1=3
2 Incr   r1 Load r2, j r1=4 r2=3
3 Store  j,r1 Incr   r2 4   j=4 r2=4
4 Store  j,r2 4   j=4



More Parallel Terminology 
•  Granularity - measure of the amount of 

computation involved in a software 
process. e.g. # of instructions, usually 

•  fine (instruction level), 
•  medium (loop level), or 
•  coarse (subroutine/program level) 

•  Load Balancing - assignment of tasks to 
equalize the work load across multiple 
processors 


