
The OpenMP Crash Course
(How to Parallelize Your Code with

Ease and Inefficiency)

Tom Logan

Course Overview

I.  Intro to OpenMP
II.  OpenMP Constructs

III.  Data Scoping
IV.  Synchronization

V.  Practical Concerns
VI.  Conclusions

Section I: Intro to OpenMP
•  What’s OpenMP?

• Fork-Join Execution Model

• How it works
• OpenMP versus Threads

• OpenMP versus MPI

•  Components of OpenMP
• Compiler Directives
• Runtime Library

• Environment Variables

What’s OpenMP?
•  OpenMP is a standardized shared memory

parallel programming model
• Standard provides portability across platforms
• Only useful for shared memory systems
• Allows incremental parallelism
• Uses directives, runtime library, and environment

variables

Fork-Join Execution Model
•  Execution begins in a single master thread
•  Master spawns threads for parallel regions
•  Parallel regions executed by multiple threads

•  master and slave threads participate in region
•  slaves only around for duration of parallel region

•  Execution returns to the single master thread
after a parallel region

How It Works

 0

!$OMP PARALLEL

master 0 1 2 3 slave
thread 0 threads 1,2,3

!$OMP END PARALLEL

 0

OpenMP versus Threads
•  Both Threads and OpenMP use the same

Fork-Join parallelism
•  Threads

• Explicitly create processes
• More programmer burden

•  OpenMP
•  Implicitly create processes
• Relatively easy to program

OpenMP versus MPI
•  OpenMP

•  1 process, many threads

•  Shared architecture

•  Implicit messaging
•  Explicit synchronization

•  Incremental parallelism

•  Fine-grain parallelism
•  Relatively easy to program

•  MPI
•  Many processes
•  Non-shared architecture
•  Explicit messaging
•  Implicit synchronization
•  All-or-nothing parallelism
•  Coarse-grain parallelism
•  Relatively difficult to program

Components of OpenMP

Compiler Directives
•  Compiler directive based model

• Compiler sees directives as comments unless
OpenMP enabled

• Same code can be compiled as either serial or multi-
tasked executable

• Directives allow for
• Work Sharing
• Synchronization

• Data Scoping

Runtime Library
•  Informational routines

omp_get_num_procs() - number of processors on system
omp_get_max_threads() - max number of threads allowed
omp_get_num_threads() - get number of active threads
omp_get_thread_num() - get thread rank

•  Set number of threads
omp_set_num_threads(integer)

 - set number of threads
 - see OMP_NUM_THREADS

•  Data access & synchronization
•  omp_<*>_lock() routines - control OMP locks

Environment Variables
•  Control runtime environment

•  OMP_NUM_THREADS - number of threads to use
•  OMP_DYNAMIC - enable/disable dynamic thread adjustment
•  OMP_NESTED - enable/disable nested parallelism

•  Control work-sharing scheduling
•  OMP_SCHEDULE

•  specify schedule type for parallel loops that have the RUNTIME schedule
•  static - each thread given one statically defined chunk of iterations
•  dynamic - chunks are assigned dynamically at run time
•  guided - starts with large chunks, then size decreases exponentially
•  Example would be: setenv OMP_SCHEDULE “dynamic,4”

Section II: OpenMP Constructs
•  Directives
•  Constructs

• Parallel Region
• Work-Sharing

• DO/FOR Loop
• Sections
• Single

• Combined Parallel Work-Sharing
• DO/FOR Loop
• Sections

Directives: Format
sentinel directive_name [clause[[,] clause] …]
• Directives are case insensitive in FORTRAN and case-

sensitive in C/C++
• Clauses can appear in any order separated by

commas or white space

Directives: Sentinels
•  Fortran Fixed Form

123456789
!$omp
c$omp
*$omp

•  Fortran Free Form
!$omp

•  C/C++
#pragma omp

{ … }

Directives: Continuations
•  Fortran Fixed Form - character in 6th column

123456789
c$omp parallel do shared(alpha,beta)
c$omp+ private(gamma,delta)

•  Fortran Free Form - trailing “&”
!$omp parallel do shared(alpha,beta) &
!$omp private(gamma,delta)

•  C/C++ - trailing “\”
#pragma omp parallel do \
 shared(alpha) private(gamma,delta)

{ … }

Directives: Conditional Compilation

•  Fortran Fixed Form
123456789
!$
c$
*$

•  Fortran Free Form
!$

•  C/C++
 #ifdef _OPENMP

…
#endif

Example: Conditional Compilation

•  conditional.F (note the .F invokes cpp)
PROGRAM conditional

 print *,’Program begins’
!$ print *,’Used !$ sentinel’
#ifdef _OPENMP

 print *,’Used _OPENMP environment variable’
#endif
#ifdef _OPENMP
!$ print *,’Used both !$ and _OPENMP’
#endif

 print *,’Program ends’
END

Example: Conditional Compilation
% f90 -o condf cond.F90
% ./condf
 Program begins
 Program ends

% f90 -mp -o condf cond.F90
% ./condf
 Program begins
 Used !$ sentinel
 Used _OPENMP environment variable
 Used both !$ and _OPENMP
 Program ends

OpenMP Constructs

Constructs: Parallel Region
•  FORTRAN
!$ OMP parallel [clause] …

 structured-block
!$ OMP end parallel

•  C/C++
#pragma omp parallel [clause]...

 structured-block

•  All code between directives is repeated on all threads

•  Each thread has access to all data defined in program

•  Implicit barrier at the end of the parallel region

Example: Parallel Region
!$omp parallel private(myid, nthreads)

 myid = omp_get_thread_num()
 nthreads = omp_get_num_threads()
 print*,’Thread’,myid,’thinks there are’,nthreads,&
 ‘threads’
 do i=myid+1,n,nthreads
 a(i)=a(i)*a(i)
 end do

!$omp end parallel

Constructs: Work-Sharing
•  FORTRAN
!$ OMP do

!$ OMP sections
!$ OMP single

•  C/C++
#pragma omp for

#pragma omp sections
#pragma omp single

•  Each construct must occur within a parallel region
•  All threads have access to data defined earlier
•  Implicit barrier at the end of each construct
•  Compiler copes with how to distribute work
•  Programmer provides guidance using clauses

Work-Sharing: Do/For Loop
•  FORTRAN
!$ omp do [clause] …

 do-loop
[!$ omp end do [nowait]]

•  C/C++
#pragma omp for

[clause] ...
 for-loop

•  Iterations are distributed among threads
•  Distribution controlled by clauses & env. vars.
•  Data scoping controlled by defaults & clauses
•  Implicit barrier can be removed by nowait clause

Example: Do/For Loop

!$omp parallel
!$omp do

 do i = 1, n
 a(i) = a(i) * a(i)
 end do

!$omp end do
!$omp end parallel

#pragma omp parallel
 {
#pragma omp for

 for (i=0; i<n; i+)
 {

 a[i] = a[i]*a[i];
 }

 }

Work-Sharing: Sections
•  FORTRAN
!$ omp sections [clause] ...

[!$ omp section

 code for this section] …

!$ omp end sections [nowait]

•  C/C++
#pragma omp sections [clause]...

 {

 [#pragma omp section

 code for this section] …
 }

•  Defines concurrent sections of code
•  Distributes sections among threads

Example: Sections

do i = 1, nlines

 call read_line(filea,ina)
 call read_line(fileb,inb)
 do j = 1, linelen

 out(j,i)=ina(j)*conj(inb(j))
 end do

end do

!$omp parallel
do i = 1, nlines
!$omp sections
 call read_line(filea,ina)
!$omp section
 call read_line(fileb,inb)
!$omp end sections
!$omp do
 do j = 1, linelen
 out(j,i) = ina(j)*conj(inb(j))

 end do
end do
!$omp end parallel

Work-Sharing: Single
•  FORTRAN
!$ omp single [clause] …

 structured-block
!$ omp end single [nowait]

•  C/C++
#pragma omp single

[clause] ...
 structured-block

•  Defines serial code in a parallel region
•  An unspecified single thread executes the code
•  No implicit barrier at the start of the construct
•  Common use is for performing I/O operations

Example: Single
integer len
real in(MAXLEN), out(MAXLEN)
!$omp parallel

 do i = 1,nlines
 !$omp single

 if (i.GT.1) call wrt_line(out,len)
 call read_line(in,len)

 !$omp end single
 !$omp do

 do j=1,len
 call compute(out(j), in, len)
 end do
 end do

!$omp end parallel
call wrt_line(out,len)

integer len
real in(MAXLEN), out(MAXLEN)

do i = 1,nlines
 call read_line(in,len)
 do j=1,len

 call compute(out(j), in, len)
 end do
 call wrt_line(out,len)
end do

Constructs: Parallel Work-Sharing

•  FORTRAN
!$ OMP parallel do

!$ OMP parallel sections

•  C/C++
#pragma omp parallel for

#pragma omp parallel sections

•  Combines parallel construct with work-sharing
•  Basically it’s a shorthand convenience
•  Most common OpenMP construct is parallel do

Parallel Work-Sharing: Do/For
•  FORTRAN
!$ omp parallel do[clause] …

 do-loop
[!$ omp end parallel do]

!$omp parallel do

 do i = 1, n
 a(i) = a(i) * a(i)
 end do

!$omp end parallel do

•  C/C++
#pragma omp parallel for [clause]...

 for-loop

#pragma omp parallel for

 for (i=0; i<n; i+)
 a[i] = a[i]*a[i];

Parallel Work-Sharing: Sections
•  FORTRAN
!$ omp parallel sections [clause] …
[!$omp section

 code for this section]…
!$omp end parallel sections

•  C/C++
#pragma omp parallel sections [clause]…
{
 [#pragma omp section

 code for this section] …

}

Section III: Data Scoping

•  Defaults

•  Rules
•  Data Scoping Clauses

•  Guide to Choosing Scope Attributes

What is Data Scoping?
•  Most common sources of error in shared memory

programs are
•  Unintended sharing of variables

•  Privatization of variables that need to be shared

•  Determining whether variables should be shared
or private is a key to parallel program correctness
and performance

•  Most difficult part of OpenMP programming

OpenMP Data Scoping
•  Every variable has scope shared or private
•  Scoping clauses consist of

•  shared and private explicitly scope specific variables
•  firstprivate and lastprivate perform initialization and

finalization of privatized variables
•  default changes the default rules used when variables are

implicitly scoped
•  reduction explicitly identifies a reduction variable

Default Data Scopes
•  If a variable in a parallel region is not

explicitly scoped, then it is shared
• Correct behavior if variable is read but not modified
•  If the variable is assigned in the parallel region, then

may need to
•  Explicitly scope

•  Add synchronization

Scoping Example 1

•  BAD

#pragma omp parallel for
for (i=0; i<nl; i++)
 {

 int x;
 x = func1(i);
 y =func2(i);
 a[i] = x*y;

 }

•  GOOD

#pragma omp parallel for private(y)
for (i=0; i<nl; i++)
 {

 int x;
 x = func1(i);
 y =func2(i);
 a[i] = x*y;

 }

Scope Terminology
•  lexical scope refers to the scope of accessibility of

variables within a program (e.g. global or local)
•  lexical extent of a parallel region consists of code

contained directly within the region
•  dynamic extent of a parallel region includes

lexical extent and code contained within
subroutines invoked within parallel region

Default Data Scopes
•  Exceptions to default shared

•  Parallel loop indices (in Fortran, index variables of sequential loops
within the lexical extent of parallel regions are also scoped private)

•  Nested declarations occurring within lexical extent of parallel
regions (C/C++)

•  Variables in subroutines called from parallel regions
•  Exception to the exception

•  variables in subroutines called from parallel regions marked as save
(FORTRAN) or static (C/C++) have a shared scope

Example 2 - Fortran
subroutine caller(a,n)
integer n, a(n), i, j, m
m=3

!$omp parallel do

 do i=1,n
 do j=1,5
 call callee(a(i), m, j)
 end do
 end do

end

(Answers at end of slides)

subroutine callee(x,y,z)
common /com/ c
integer x,y,z,c,ii,cnt
save cnt

cnt = cnt+1
do ii=1,z

 x= y+c
enddo
end

Example 2 - C
void caller(int a[],int n)
{
 int i, j, m=3;

 #pragma omp parallel for

 for (i=0; i<n; i++) {

 int k=m;

 for (j=1;j<=5;j++) callee(&a[i], &k, j);
 }

}

(Answers at end of slides)

extern int c;
void callee(int*x,int*y,int z)
{

 int ii;

 static int cnt;

 cnt++;

 for (ii=0; ii<z; ii++)
 *x = *y + c;

}

Scoping Rules
•  Any variable can be scoped, including

•  globals (C/C++)

•  common blocks and module variables (Fortran)

•  Scope clauses must be in lexical extent of each
variable named

•  Scoping clauses apply only to accesses to named
variables occurring in lexical extent of directive
containing scoping clause

Scoping Rules
•  An individual variable can appear in at most

a single scoping clause

•  Variable to be scoped must refer to an
entire object, not a portion of an object
•  Can not scope array element or field of a structure
•  Can scope struct or class (C/C++) and entire

common blocks (Fortran)

Data Scoping Clauses
•  SHARED: shared(varlist)

• Declares variables that have a single common
memory location for each thread

• All threads access the same memory location, thus
access must be carefully controlled

Data Scoping Clauses
•  PRIVATE: private(varlist)

•  Declares variables for which each thread has its own copy
(separate memory locations)

•  Private variables only exist in parallel region
•  Value is undefined at start of parallel region

•  Value is undefined after end of parallel region

Private Clause Notes
•  Exceptions to undefined private variables

•  Parallel loop control variables are defined
•  C++ class objects

•  each thread invokes constructor upon entering region
•  each thread invokes destructor upon completion of region

•  Allocatable arrays in Fortran 90
•  Serial copy before parallel region must be unallocated
•  Each thread gets a private unallocated copy of the array
•  Copy must be allocated before use
•  Copy must be explicitly deallocated before end of loop
•  Original serial copy is unallocated after loop

Private Clause Notes
•  Must be able to determine size of the

variable declared private
•  Fortran formal array parameter of adjustable size

must fully specify the bounds
•  C/C++ can not use variables with incomplete types

•  Can not declare C++ reference type
variables as private

Data Scoping Clauses
•  FIRSTPRIVATE: firstprivate(varlist)

• Declares variables for which each thread has its own
copy (separate memory locations)

• Each thread’s copy of the variable is initialized to the
value the master held before entering the loop

• This may be more efficient than declaring some
variables to be shared

Data Scoping Clauses
•  LASTPRIVATE: lastprivate(varlist)

• Loads the master’s variable with the last value, as
set by the last iteration of the loop

•  If you do not do the last iteration, behavior is
undefined

Data Scoping Clauses
•  DEFAULT:

•  Fortran Syntax: default(private|shared|none)

•  C/C++ Syntax: default(share|none)
•  Can’t have default(private) since standard libraries often reference global

variables

•  changes the default scoping attributes for any variables not
specifically declared otherwise

•  default(none) helps catch scoping errors by forcing explicit
scoping of all variables in lexical extent

Data Scoping Clauses
•  REDUCTION:reduction(redn_oper:varlist)

•  Declares that a scalar variable will be involved in a reduction
operation

•  In Fortran, reduction operators can be +, *,
-, .AND., .OR., .EQV., .NEQV., MAX, MIN, IAND, IOR, IEOR

•  In C/C++, reduction operators can be +, *, -, &, |, ^ , &&,
||

•  Floating point arithmetic may not be commutative!

Example: Reduction
!$omp parallel do reduction(+:sum)

 do i=1,ndata
 a(i) = a(i) * a(i)
 sum = sum + a(i)
 end do

#pragma omp parallel for reduction(+:sum)

 for (i=0; i<ndata; i++){ a[i]=a[i]*a[i]; sum+=a[i];}

Data Scoping Clauses
•  SCHEDULE: schedule(type[,chunk])

•  Control distribution of iterations in do/for directives

•  Type can be
•  Static chunks assigned in round-robin order
•  Dynamic chunks given out dynamically
•  Guided first large and then smaller chunks are

 allocated to each processor
•  Runtime schedule determined at runtime using

 environment variable OMP_SCHEDULE

•  Chunk is a positive integer

Scheduling Types
•  Static

•  Use if each iteration takes about the same time
•  Has the least overhead
•  Chunk size iterations assigned in round-robin
•  Default chunk size is #(iterations)/#(threads)

•  Dynamic
•  Use if each iteration may take different amount of time
•  First come first served policy of chunk size iterations
•  Default chunk size is 1; make sure to specify larger

Scheduling Types
•  Guided

• Similar to dynamic - first come first served
• Different from dynamic

•  Initial assignment of work is large
• Size of work assignments decreases exponentially
• Minimum work assignment size specified by chunk
• Default chunk is 1

Data Scoping Clauses
•  COPYIN: copyin(list)

•  initializes threadprivate variables to the master’s
value

Data Scoping Clauses
•  IF: if (expr)

• Controls loop execution for parallel or serial
• Used with parallel constructs (parallel, parallel do,

parallel sections)
•  If expr evaluates to true, loop is executed in parallel
•  If expr evaluates to false, loop is executed in serial

Data Scoping Clauses
•  ORDERED: ordered

• Specifies that an ordered construct will appear within
a loop

• Used with a do directive

• Must be included if an ordered directive is used in the
loop

Data Scoping Clauses
•  NOWAIT: nowait

•  specifies that no implicit barrier exists at the end of a
construct

Threadprivate
•  FORTRAN
!$omp threadprivate (list)

•  C/C++
#pragma omp threadprivate (list)

•  Makes global variable(s) private
•  This over rides the default of shared

Scope Attribute Choosing Guide
•  Consider a PARALLEL DO construct, assume

the loop is actually parallel
 sum = 0.0
!$omp PARALLEL DO SHARED (??) PRIVATE (??) ??
 DO I = 1, N
 A(I) = x
 B(I) = Y(K)
 temp = A(I) * B(I)
 sum = sum + temp
 END DO
 print *, sum

Scope Attribute Choosing Guide
0) Make a list of all the variables in the loop
•  sum, I,n, A, x, B, Y, k, temp

1) Variables only simply subscripted by the parallel loop index are
SHARED

•  See A and B
•  Subscript must be only the loop index. If A(I) = x were A(I-1) = x, then there is

a dependence between iterations that may prevent parallelization
•  Variables can appear on either side of the assignment statements
•  Each OpenMP thread accesses different elements of these arrays based on the

iterations they are assigned. Two threads cannot access the same element
because no two threads are assigned the same iteration

Scope Attribute Choosing Guide
2) Variables not subscripted by the parallel loop index

 a) Variables only on right hand side of assignment statements are SHARED
1.  See N, x, Y and K
2.  Variables assigned values before parallel loop; values are not changed
3.  Each thread accesses the same variable. Read access does not change the value of the

variable, and no conflicts or races can occur.

 b) Variables used in reduction operations are SHARED
1.  See sum.
2.  Reduction variable initialized before the parallel loop & used after
3.  For each REDUCTION variable, an invisible PRIVATE variable is created for each thread to

compute partial results. PRIVATE variables are accumulated to visible SHARED variable
before loop is completed.

Scope Attribute Choosing Guide
 c) Variables that are defined before being used are PRIVATE

1.  See temp.
2.  The variable is not referenced before or after the parallel loop.
3.  Compiler creates variable with same name but with different storage location for each

thread. Threads cannot access variables of the same name in another thread.

3) The parallel loop index is handled by the compiler, and should not
appear in a PRIVATE or SHARED clause. The compiler will ignore
whatever specification is given, and do the right thing.

•  See i

Scope Attribute Choosing Guide
•  Correct scoping specifications for this parallel loop are

 !$omp PARALLEL DO SHARED (A, B, N, x, Y, K, sum) &

 !$omp PRIVATE (temp) REDUCTION (+:sum)
•  More simply, using the fact that default scope is SHARED

 !$omp PARALLEL DO PRIVATE (temp) REDUCTION (+:sum)
•  If all variables in a loop cannot be described as in the guidelines

above, then the loop needs deeper analysis or it is not parallel. If it
can, then the loop is parallel and you got the scoping right!

Section IV: Synchronization

Constructs - Synchronization
•  FORTRAN
!$ OMP [end] master

!$ OMP [end] critical [(name)]
!$ OMP barrier

!$ OMP atomic

!$ OMP flush [(list)]

!$ OMP [end] ordered

•  C/C++
#pragma omp master

#pragma omp critical [(name)]
#pragma omp barrier

#pragma omp atomic

#pragma omp flush [(list)]

#pragma omp ordered

Master
•  FORTRAN
!$omp master

 structured-block
!$omp end master

•  C/C++
#pragma omp master

 structured-block

•  Region is executed only by the master thread
•  There is no barrier either before or after a

MASTER region

Critical
•  FORTRAN
!$omp critical [(name)]

 structured-block
!$omp end critical [(name)]

•  C/C++
#pragma omp critical [(name)]

 structured-block

•  Allows one thread exclusive access to code block
•  Order of threads in block is non-deterministic

Barrier
•  FORTRAN
!$omp barrier

•  C/C++
#pragma omp barrier

•  Synchronizes all threads in a team
•  Halts program execution until all threads arrive

Atomic
•  FORTRAN
!$omp atomic

 expression-statement

•  C/C++
#pragma omp atomic

 expression-statement

•  Specialized case of the CRITICAL directive
•  Protects from simultaneous updates on a scalar

variable by multiple threads

Flush
•  FORTRAN
!$omp flush [(list)]

•  C/C++
#pragma omp flush [(list)]

•  Sets a memory fence (synchronization point)

Ordered
•  FORTRAN
!$omp ordered

 structured-block
!$omp end ordered

•  C/C++
#pragma omp ordered

 structured-block

•  Used to order loop iterations for a code block
•  Forces section of a loop to be ordered as if it

were executing serially
•  Must be combined with the ordered clause

Input Serialization (fico)
 /*At each grid point, read in a chunk of each image...*/
#pragma omp critical
 readMatrix(szImg1,s,FLOAT_COMPLEX,srcSize,srcSize,

 x1- srcSize/2+1, y1-srcSize/2+1, wid, len,0,0);

#pragma omp critical

 readMatrix(szImg2,t,FLOAT_COMPLEX,trgSize,trgSize,

 x2 - trgSize/2 + 1, y2 - trgSize/2 + 1, wid, len,0,0);

Output Serialization (fico)
#pragma omp critical
 {
 fprintf(fp_output,"%6d %6d %8.5f %8.5f %4.2f\n",

 x1,y1,x2+dx,y2+dy,snr);

 fflush(fp_output);

 if (!quietflag&&(goodPoints<=10||!(goodPoints%100)))

 printf("\t%6d %6d %8.5f %8.5f %4.2f/%4.2f\n",
 x1,y1,dx,dy,snrFW,snrBW);

 }

Section V: Practical Concerns
•  OpenMP Usage Suggestions
•  Common OpenMP Problems & Gotchas

•  Restrictions on Parallel Loop Indices
•  Conclusions

OpenMP Usage Suggestions
•  Don’t use clauses if at all possible - instead

•  Declare private variables in parallel regions (C/C++)

•  Convert parallel regions into subroutines (FORTRAN)

•  Don’t use synchronization if at all possible -
particularly ‘flush’

•  Don’t use locks if at all possible - if have to use
them, make sure that you unset them

OpenMP Usage Suggestions
•  Only use parallel do/for constructs

•  Everything else in the language will slow you down
•  Unfortunately, they are often necessary evils

•  Scheduling
•  Use static unless load balancing is a real issue
•  If load balancing is a problem, use static chunks
•  Using Dynamic or Guided requires too much overhead

Typical Overheads
•  Some example overheads (in clock cycles)

• Thread Id 10-50
• Static Do/For 100-200

• barrier 200-500
• Dynamic Do/For 1000-2000
• Ordered statement 5000-10000

OpenMP Usage Suggestions
•  Know your application
•  Use a profiler whenever possible, this will

point out bottle necks and other problems

Common OpenMP Problems
•  Too fine grain parallelism
•  Overly synchronized
•  Load Imbalance
•  True Sharing (ping-ponging in cache)
•  False Sharing (another cache problem)
•  Data Race Conditions
•  Deadlocks

Gotchas!
•  Declaring a shared pointer makes the

pointer shared, not memory it points to
•  Declaring a private pointer makes the

pointer private, not memory it points to
•  Remember that reduction clauses need a

barrier - make sure not to use ‘nowait’
when a reduction is being computed

Gotchas!
•  Don’t assume order of execution for loops

• Access to shared variables can occur anytime and,
thus, in any order

•  If you suspect a race condition, run the
loops in reverse order and see if you get
the same result

To use OpenMP
•  C/C++ use #include <omp.h>
•  Setting number of threads

• Environment variable OMP_NUM_THREADS
• Run-time library omp_set_num_threads()

Restrictions on Parallel Loops
•  Must be possible to compute the trip-count

without having to execute the loop
•  Must complete all iterations of the loop

•  cannot use constructs that exit the loop early
•  single top entry point and single bottom exit point

•  exception - execution can be terminated within the loop using
usual mechanisms (stop in Fortran, exit in C/C++)

Loop Restrictions: Fortran
•  parallel do directive must be immediately

followed by do loop statement of the form:
DO index = lowerbound, upperbound [,stride]
•  do-while loops are not allowed
•  do loops that lack iteration control are not allowed
•  array assignment statements are not allowed
•  can not use exit or goto to branch out of loop
•  can use cycle to complete current iteration
•  can use goto to jump from one statement in loop to another

Loop Restrictions: C
•  parallel for pragma must be immediately followed

by a for loop of the form:
 for (index = start; index < end; incr_exp)

•  index must be an integer
•  comparison operator may be <,<=, >, or >=
•  start and end are any numeric expression whose value does

not change during execution of loop
•  incr_exp must change value of index by same amount each

iteration

Loop Restrictions: C
•  incr_exp may use only following operators and forms:

Operator Form
++ index++ or ++index
-- index-- or --index
+= index += incr
-= index –= incr
= index = index + incr or

 index = incr + index or
 index = index – incr

 (where incr is a numeric expression that does not change during
the loop)

Loop Restrictions: C/C++
•  can not use a break or goto to leave the loop
•  can use continue to complete current iteration
•  can use goto to jump from one statement inside the loop to

another
•  C++

•  can not throw an exception caught outside loop

•  can use throw if it is caught by try block in loop body

Simplified ‘for’ Loop (c2p)
> for (j=0,cP=cpx,aP=amp,pP=phase; j<i ; j++,cP++,aP++,pP++)

< #pragma omp parallel for
< for (j=0; j < i; j++)
< {
< FComplex *cP = &cpx[j];
< float *aP = &[j];
< float *pP = &phase[j];
137,140d127
< cP++;
< aP++;
< pP++;
< }

Convert ‘while’ into ‘for’ (fico)
> while (getNextPoint(&x1,&y1,&x2,&y2))
…

> } /* end while(getNextPoint) */

< #pragma omp parallel for reduction(+:attemptedPoints,goodPoints)

< for (pointNo=0;pointNo<gridResolution*gridResolution;pointNo++)
…
< } /* end for pointNo */

Section VI: Conclusions
•  OpenMP is DEFINITELY the simplest parallel

programming language I have ever seen
•  Effective for small-scale parallelism

•  For 4 to 16 processors, gets decent performance
•  Can not be beat for ease of programming

•  Not very useful for large-scale parallelism
•  Difficult to get good parallel efficiency for any significant

number of processors

Conclusions
•  OpenMP is designed for "flat address

space" that doesn't exist in modern
computer systems

•  This is probably the biggest impediment to
obtaining scalable parallel performance

eleverr

amp2img

fico

remap

deramp

fftMatch ml

p2c

c2p

escher

icoh

phase_filter

aisp

0

100

200

300

400

500

600

700

800

900

Se
co

nd
s

serial
OMP(4)

serial 11 12 16 20 28 29 36 61 84 88 172 642 793

OMP(4) 5 11 5 8 16 35 20 33 35 81 79 480 533

eleverr amp2img fico remap deramp fftMatch ml p2c c2p escher icoh
phase_filt

er
aisp

Example OpenMP Results

Example 2 - Fortran Answers
Variable Scope Safe? Reason for Scope

a Shared Yes Declared outside construct
n Shared Yes Declared outside construct
i Private Yes Parallel loop index
j Private Yes Fortran sequential loop index in parallel region

m Shared Yes Declared outside construct
x Shared Yes Actual parameter is a, which is shared
y Shared Yes Actual parameter is m, which is shared
z Private Yes Actual parameter is j, which is private
c Shared Yes In a common block
ii Private Yes Local stack-allocated variable of subroutine

cnt Shared No Local variable of subroutine with save attribute

Example 2 - C Answers
Variable Scope Safe? Reason for Scope

a Shared Yes Declared outside parallel construct
n Shared Yes Declared outside parallel construct
i Private Yes Parallel loop index
j Shared No Declared outside parallel construct

m Shared Yes Declared outside parallel construct
k Private Yes Declared inside parallel construct
x Private Yes Value parameter

*x Shared Yes Actual parameter is a, which is shared
y Private Yes Value parameter

*y Private Yes Actual parameter is k, which is private
z Shared Yes Value parameter
c Shared Yes Declared as extern
ii Private Yes Local stack-allocated variable

cnt Shared No Declared as static

