
Program Debugging

David Newman
(from Tom Logan

Slides from Ed Kornkven)

Introduction
• The basic steps in debugging are:

– Recognize that a bug exists -- a consequence of:
• successful testing (including normal use)
• checking results

– Isolate the source of the bug
– Identify the cause of the bug
– Determine a fix for the bug
– Apply the fix and test it

• In this talk, we will focus on
– Measures for avoiding bugs in the first place
– Finding them when they do occur

So Many Kinds of Bugs!
• Incorrect results/output due to:

– Logic / algorithmic errors
• Incorrect loops - for example, infinite loops, off-by-one errors

– Improper memory reads/writes
• Pointer errors, array bounds, uninitialized memory references, alignment

problems, exhausting memory, stack overflow, memory leaks
– Misinterpretation of memory

• Type errors, e.g. when passing parameters
• Scope/naming errors (e.g., shadowing a global name with a local name)

– Illegal numerical operations - Divide by zero, overflow, underflow
– I/O errors
– Build errors

• Including source control, Makefile, preprocessor, compiler, linker
– System errors – libraries, compilers, hardware

• Poor performance

Recognizing Bugs Before They
Get You

Premise: The easiest bug to find is the
one you were already watching for

Establish defensive practices
• For coding, put error checking in your

code, especially to check:
– conditions that will vary depending on inputs
– conditions that should not vary

• e.g. assumptions about function parameter values
– computations with predictably bad possible effects

• e.g. floating point exceptions, buffer overflow

Error Checking Facilities
• E.g. Opening an input file in Fortran (pgf90 compiler)

 open (11, file='input_file')
 read (11,*) x

• Running this program without first creating “input_file”
gives the following error:

 PGFIO-F-217/list-directed read/unit=11/attempt to read past end
of file.

 File name = input_file formatted, sequential access record = 1

 In source file read_err1.f90, at line number 3

• This message is misleading because there is no such file.

• Moreover, running the program creates (an empty) one!

Fixing the OPEN Error

• Let’s tell the OPEN statement that we expect the file to
exist:

 open (11, file='input_file', status='old')
read (11,*) x

• Now running the program without first creating
“input_file” gives this error:

 PGFIO-F-209/OPEN/unit=11/'OLD' specified for file which
does not exist.

 File name = input_file

 In source file read_err2.f90, at line number 2

• Point: We are able to get a more accurate error message
because we gave more information to the program about
the expected state.

Improving the OPEN Error Message

• Many Fortran routines have a status variable that will
return an error code indicating the status of the call.
For example, the OPEN has the IOSTAT option:

open (11, file='input_file', status=’old’, iostat=irc)
if (irc .ne. 0) then

 print*, ‘OPEN failed with IOSTAT=‘, irc, ‘–stopping.’
 stop

endif
read (11,*) x

• We now have control over what happens if the OPEN fails:
OPEN failed with IOSTAT= 209 –stopping.

• PGI Users Guide (2010) reveals that IOSTAT=209 means:
 'OLD' specified for file that does not exist

Recognizing Bugs Before They Get You
Another example - Buffer overrun in C
#include <string.h>

#include <stdio.h>

char name[8] = {'\0'}, password[8] = {'\0'};

int main(int argc, char **argv) {

 strcpy(name, argv[1]);

 printf("name = <%s>, password = <%s>\n", name, password);

}

A couple of runs
./a.out # Bad!

 name = <>, password = <>

 Bus error [Mac with gcc]

 Memory fault(coredump) [Pacman gives no other output]

./a.out 12345678901234567890 # Worse!

 name = <12345678901234567890>, password = <901234567890> [Pacman]

Fixing the Buffer Overrun

• Replace strcpy() with strncpy() to limit the copy
#include <string.h>

#include <stdio.h>

char name[8] = {'\0'}, password[8] = {'\0'};

int main(int argc, char **argv) {

 strncpy(name, argv[1], 8);

 printf("name = <%s>, password = <%s>\n", name, password);

}

• Now execute…
./a.out 12345678901234567890
name = <12345678>, password = <>

• Can you see the error that we introduced?

• What (original) error did we leave?

Recognizing Bugs Before They Get You
• The C Assertion Facility
 #include <assert.h>

 assert(exp);

 where exp is an integer expression

• When this “function” executes…
– If exp evaluates to True (non-zero), do nothing
– If exp evaluates to False however, halt and print the message:

 "assertion \"%s\" failed: file \"%s\", line %d\n", \

 "expression", __FILE__, __LINE__);

Using assert()
• We can use assert() to check for buffer overruns like this:
#include <string.h>

#include <stdio.h>

#include <assert.h>

char name[8] = {'\0'}, password[8] = {'\0'};

int main(int argc, char **argv) {

 assert (strlen(argv[1]) < 8);

 strncpy(name, argv[1], 8);

 printf("name = <%s>, password = <%s>\n", name, password);

}

• Now run it…
pgcc –o buf3 buf3.c
./buf3 12345678901234567890
buf3: buf3.c:10: main: Assertion `strlen(argv[1]) < 8' failed.
Abort(coredump)

Using assert()
• But try our first test

./buf3
Memory fault(coredump)

• Looks like we’re still missing the boat (or bus)
– The assertion is too weak -- it isn’t enough that the input not

be too long; it can’t be too short either
 assert (strlen(argv[1])> 0);

 assert (strlen(argv[1])< 8);

• Try again…
pgcc -o buf4 buf4.c
./buf4

Memory fault(coredump)

• As Charlie Brown would say, “ARRGGGHHHH!!!”
– Looks like we need to add another bug category: the debugging

process itself!
– Why is this still failing?

Using assert()
• What if I want to use assertions only in the

development phase of my project?
– Because there is run-time overhead to be paid
– Easy to disable at compile with #define of NDEBUG symbol

• Continuing the previous example…
pgcc –DNDEBUG –o buf4 buf4.c
./a.out 12345678901234567890

name = <12345678>, password = <>

• NB: assert() may be implemented as a macro
– If so, that may affect how parameters are treated
– See Kate Hedstrom’s article in ARSC Newsletter 326

Recognizing Bugs Before They Get You

• Which brings up another rich source of C bugs -
the preprocessor
– It’s easy to forget what is going on in the

preprocessor: text substitution
• E.g.

#include <stdio.h>
#define max(a,b) (a>b?a:b)

main (int argc, char *argv[]) {
 int x = 20, y = 10, larger;
 larger = max(x++, y++);
 printf("The larger of %d and %d is %d\n", x, y, larger);
}

C Macro Abuse (cont.)
• Code looks good (doesn’t it always?) but output

does not…
gcc -g preproc.c
./a.out

 The larger of 22 and 11 is 21

• We can see what the compiler “sees” (after the
preprocessor has finished with it) using a compiler
flag

 gcc -E preproc.c > preproc.out

C Macro Abuse (cont.)
• Here is the C code produced by the preprocessor:

main (int argc, char *argv[]) {
 int x = 20, y = 10, larger;
 larger = (x++>y++?x++:y++);
 printf("The larger of %d and %d is %d\n", x, y,
larger);

}

• No wonder we got the output we did! How do we
fix it?
– Don’t autoincrement in the macro call

C Macro Abuse (cont.)
• Another trap in this macro, illustrated by another

example:
 #define DBL(a) (a*2)
 x = DBL(y+1)

• Expands to
 x = y+1*2 #Wrong!

• In general, avoid problems with unintended
combinations of macro parameter expansions by
parenthesizing all occurrences of parameters in the
macro definition

 #define DBL(a) ((a)*2)
 #define max(a,b) ((a)>(b)?(a):(b))

Some Final Observations on
Bug Prevention

• Software engineering approaches can help
catch bugs early. One example:
– Extreme Programming (XP)

• 12 “Core Practices”, including:
– programming pairs
– frequent small releases
– continuous testing

» unit tests and acceptance tests
» write tests first

– continuous integration
» integrate changes daily
» all tests must pass before and after integration

• Notice the close connection between testing and
quality (and therefore, to debugging)

Recognizing Bugs Before They Get You

To summarize: “Safety First”
– Assume errors are in your code and data
– Practice defensive programming and check

your data
– Make use of available language and

compiler features

Recognizing Bugs After They Get You
• As we saw earlier, there are lots of ways to get you!

– Compilation errors
• Including Makefile, preprocessor, compiler, linker

– Improper memory reads/writes
• Pointer errors, array bounds, uninitialized memory references, alignment

problems, exhausting memory, memory leaks
– Misinterpretation of memory

• Type errors, e.g. when passing parameters
• Scope/naming errors (e.g., shadowing a global name with a local name)

– Illegal numerical operations
• Divide by zero, overflow, underflow

– Infinite loops
– Stack overflow
– I/O errors
– Logic / algorithmic errors
– Poor performance

Recognizing Bugs After They Get You
Each of these kinds of errors merit an hour of

discussion; we will touch on some here
• Build errors

– Version errors
• E.g., compiling the wrong version of a file; losing the new version;

not remembering why you made a new version
– Makefile

• E.g., assuming a file is being recompiled when it isn’t
– Preprocessor

• Oftentimes these spill into compiler errors
• Suspect these if output is wrong and a macro is involved

– Compiler, linker
• Mostly easy because the computer finds the errors for you
• A common version is “name-mangling” errors, esp. when mixing

Fortran and C and/or libraries

Improper memory reads/writes

• Run-time memory errors in Unix cause two broad
kinds of errors
– Bus error -- the memory hardware was unable to

perform a memory address request
• detected by hardware
• accessing a memory address that doesn’t exist; or,
• accessing memory starting at an address that isn’t on a

boundary appropriate to the data type
• E.g., this will cause a bus error on some machines
 double *xp;
 char *cp;
 cp = malloc(sizeof(char)*40);
 xp = (double *) (cp+1);

Improper memory reads/writes (cont.)

– Segmentation fault
• detected by the operating system

– the program attempted to access memory that is outside the user’s
(virtual) data area

– access to memory in an illegal way -- e.g., write to read-only

 scanf("%d", number); /* should be &number */

Improper memory reads/writes (cont.)
• Pointer errors, invalid free(), uninitialized

references and memory leaks can be reliably
caught by memory reference monitoring packages

• Examples:

– Valgrind (http://valgrind.org/)
• Six production-quality tools: a memory error detector, two

thread error detectors, a cache and branch-prediction profiler,
a call-graph generating cache and branch-prediction profiler,
and a heap profiler

– http://en.wikipedia.org/wiki/Memory_debugger gives a nice list of
alternative packages

http://valgrind.org/
http://valgrind.org/
http://en.wikipedia.org/wiki/Memory_debugger
http://en.wikipedia.org/wiki/Memory_debugger

Improper memory reads/writes (cont.)
• Exhausting memory

– Check the result of malloc()
– malloc() returns NULL if there is an error
 if ((ptr = malloc(n_objects * sizeof(object)) == NULL)
 { /* error handling here */ }

– True? Linux does lazy allocation – no error until used!

• Memory leaks
– Not freeing (and forgetting about) memory that is no longer used
– Like a water leak, a little bit over a long time can do lots of damage

• Array bounds errors
– Compiler-inserted run-time checks -- e.g.,

pg90 -C …

Illegal Instruction

• Coming “back in style”
– Mixture of processors on a machine (e.g. Copper)
– ! mixture of instruction sets

• How to get an illegal instruction error
– Compile for Interlagos processor
– Execute on Istanbul

• How to prevent an illegal instruction error
– Load the xtpe-istanbul module before compiling

Recognizing Bugs After They Get You
• Tried-and-true generic bug-hunting: binary search

– Can use a variant to find difficult compile-time bugs -- delete code
instead of inserting print statements

– Downside: you have to modify the program (inserting prints), then
you must remove those prints

• For general-purpose bug finding in a crashing program,
a debugger is often helpful
– Start the program in the debugger and let it run until it crashes
– What this buys you

• The program stops at the crash site
• You can then browse the program’s state at the time of the crash
• Especially effective if the program’s symbols are included with the

executable program (by compiling with the -g option)
– Downside: you might be modifying the program (by changing

compiler options!)

Debuggers
• gdb, dbx

– Comes with Unix
– May not work for parallel codes
– Example and discussion:

• http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Debug.html

• TotalView, DDT (commercial)
– The major vendors of debuggers for parallel codes
– GUI front end

• pgdbg
– Portland Group debugger – on Pacman

http://www.roguewave.com/products/totalview-family/totalview/
resources/videos.aspx

Debugging Applications

November 20, 2012
Ed Kornkven

kornkven@arsc.edu

Segmentation Fault
_pmiu_daemon(SIGCHLD): [NID 00067] [c0-0c2s1n1] [Mon Nov 19
17:19:01 2012] PE RANK 13 exit signal Segmentation fault

_pmiu_daemon(SIGCHLD): [NID 00066] [c0-0c2s1n0] [Mon Nov 19
17:19:01 2012] PE RANK 9 exit signal Segmentation fault

[NID 00067] 2012-11-19 17:19:01 Apid 24645: initiated application
termination

Application 24645 exit codes: 139

Application 24645 resources: utime ~0s, stime ~0s

•To locate the source of this error, use a core file

For Core Files: ulimit -c
fish1> ulimit -a

core file size (blocks, -c) 1

data seg size (kbytes, -d) unlimited

scheduling priority (-e) 0

file size (blocks, -f) unlimited

…

stack size (kbytes, -s) 8192

cpu time (seconds, -t) unlimited

max user processes (-u) 129125

virtual memory (kbytes, -v) 13228800

file locks (-x) unlimited

•fish1> ulimit -c unlimited

gdb ./dcprog_c core.nid00066.dcprog_c.3872

fish1> gdb ./dcprog_c core.nid00066.dcprog_c.3872

GNU gdb (GDB) SUSE (7.3-0.6.1)

Reading symbols from /import/c/w/kornkven/Phys693/
DCPROG/code/dcprog_c...done.

[New LWP 3872]

Cannot access memory at address 0x9507c0258

(gdb) where

#0 0x0000000000400cb4 in main (argc=1,
argv=0x7fffffffa3d8) at ./dcprog_c.c:198

(gdb) print i

$1 = 4087944

(gdb) print msg_size

$2 = 4960144

totalview ./dcprog_c core.nid00066.dcprog_c.3872

TotalView Overview

• Provides debugging capabilities for
parallel and multithreaded codes

• Runs on most HPC platforms
– Available on Pacman and Fish

• Has both GUI and command-line
interfaces

• Supports C/C++, Fortran and mixed
languages

• Debugs MPI, OpenMP and mixed

Compiling for TotalView

• Compile with -g for symbol table
support

• If possible, turn off optimization
for more accurate source mapping

TotalView GUI on Fish
• % ssh -X -Y username@fish1.arsc.edu

• fish1 % qsub -q standard -l nodes=2:ppn=12 -X –I

• fish-compute % cd $PBS_O_WORKDIR

• fish-compute % module load xt-totalview

• fish-compute % totalview aprun -a -n 24 ./dcprog_c

Basic TotalView Functions

• View source code and program counter
– For any process or thread

• Set breakpoints
– A place in the code at which execution pauses

• Examine variable contents
– Including “diving” into complex data structures

• Execute in increments of lines or
functions

• Change variable values
• “Watch” variables for changes in value

References and Further
Information

• ARSC web pages
– http://www.arsc.edu/support

• TotalView videos from RogueWave
– http://www.roguewave.com/products/totalview/resources/videos.aspx

• A general debugging tutorial
– http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Debug.html

• LLNL TotalView tutorial
– https://computing.llnl.gov/tutorials/totalview/

http://www.arsc.edu/support/howtos/usingsun.html
http://www.arsc.edu/support/howtos/usingsun.html
http://www.arsc.edu/support/howtos/usingsun.html
http://www.arsc.edu/support/howtos/usingsun.html
http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Debug.html
http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Debug.html
http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Debug.html
http://heather.cs.ucdavis.edu/~matloff/UnixAndC/CLanguage/Debug.html
https://computing.llnl.gov/tutorials/totalview/
https://computing.llnl.gov/tutorials/totalview/

