Shell Scripting

David Newman

(From slides by Tom Logan)
(from Slides from Kate Hedstrom & Don Bahls)

Arctic Region Supercomputing Center UAF

Tuesday, September 15, 15

Overview

 Variables

e Scripting Basics

e Bash Shell Scripts

e Other Scripting

e Advanced Command Line
e Appendix (C-Shell Scripts)

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

Shells

e There are a number of different shells
available.

e Shell family tree.

— ¢sh -> tcsh
— sh -> ksh -> bash

e This lecture focuses on bash
— user friendliness of tcsh
— scripting capabilities of ksh

e Most if not all syntax shown here works
with ksh as well.

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

Bash

* bash is the bourne-again shell.

e Similar syntax to sh and ksh.

— Includes new features that are not in sh or older
versions of ksh

— Flexible syntax allow most expressions to be done
on a single line (if you want).
— Supports functions.

e Default shell on most Linux systems.

* Verbose mode (useful for debugging)
#!/bin/bash -v

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

Command Line

e Consider the following:
sort -n file > file.sorted &
e sort is a command in your SPATH

o “.n file” is passed to the sort
command as arguments

e > and & are special

e & puts the job in the background -
DON’T do this in batch scripts

Arctic Region Supercomputing Center

Tuesday, September 15, 15

Environment Variables

e csh/tcsh:
setenv PAGER more

e sh:

PAGER=more
export PAGER

e ksh:
export PAGER=less

e Standard practice is to use
uppercase names

Arctic Region Supercomputing Center

FAIRBANKS

Tuesday, September 15, 15

Variables

e Bash (and other shelis) allow
users to instantiate local or
environment variables.

e Environment variables are
accessible to child shells.

#local variable

num=20

fenvironment variable

export LD LIBRARY PATH=“/usr/local/bin”

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

Environment Variables

e The environment variable PATH defines
a colon delimited list of directories
where the shell (and other processes)
should look for executables.

e At ARSC we use environment variables
to define storage areas:

e.g.
cd SARCHIVE
ls SCENTER

Arctic Region Supercomputing Center W

Tuesday, September 15, 15

The $PATH

e Environment variable containing a list of
directories to search for commands

e Order is important - takes first one

e Some commands are built into the shell,
for instance echo is built into csh. There is
also a /usr/bin/echo for shells which don’t
have echo built in.

e Can give the full path of commands to get
a specific one: /usr/local/bin/patch or /usr/
bin/patch

e Putting “.” (current directory) in your path
is controversial - put it at the end if you do
Arctic Region Supercomputing Center W

Tuesday, September 15, 15

Setting the Environment

e We often want the same

environment variables to be set
every time we log Iin

e For sh/ksh, set in .profile
— Can reload it with “. .profile”

* For csh/tcsh, set in .cshrc
— Can reload it with “source .cshrc”

Arctic Region Supercomputing Center

Tuesday, September 15, 15

More Environment Variables

e Some have standard names, such as
HOME, PATH, PRINTER, EDITOR

e Some programs are expecting
environment variables to be set, for
instance graphics programs:
NCARG_ROOT, GMTHOME, QTDIR,
MATLABPATH

* Programs can read the environment

Arctic I!eglon Sugrcompu!méqen!er UAF

Tuesday, September 15, 15

Shell Variables

e Can be lowercase (case sensitive):

name=Harry
echo Sname

e Quote for embedded spaces:

longname=‘'Harry Smith’

* No spaces on either side of equals

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

(Arsc

Scripting Basics

e Scripts
— Usually executable
e.g.
chmod 700 myscript

but don't necessarily need to be.
ksh myscript

— Should have the shell on the first line.

e.g.
#!/bin/ksh

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

(Arsc

Basics (continued)

— Be aware that following may work
sometimes but are not portable! Don't
write your scripts this way.

 not specify a shell at the beginning of an
executable script. (BAD!)

» spaces between the “#!” and the shell.
#! /bin/sh (BAD?)

« Skipping the PATH to the script

* #!csh (BAD!)

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

More on “#!”

 When you run a script
interactively the program (i.e.
shell) listed in the “#!” statement
is started as child process of your
login shell. It gets a copy of all of
the environment variables set for
the parent shell.

* aliases and functions are NOT
inherited from the parent shell!

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

Integer Math

e There are a few different ways to do
math operations.

e var = $((expression))
e.g.
x=S((Sy * 2 + 1))

e let var = (expression)
e.g.

let x=(Sy * 2 + 1)

Arctic Region Supercomputing Center

FAIRBANKS

Tuesday, September 15, 15

If Statements (sh/ksh)

o “if” has several flavors, including optional else
and elif parts:
if [“$1” = south]
then
echo Going south
elif [“$1” = north]
then
echo Going north
else
echo Going east-west
fi

Arctic Region Supercomputing Center

IIIIIIIII

Tuesday, September 15, 15

More on “if”

e The example
if [-d /usr]
e Can be written
if test -d /usr

e test (or[]) is testing the resulit of
something

e An executable will return an error code
and not need the test
if hostname

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

& logical and

Logical Operators

| | logical or

-a logical and (only within [])
-o logical or (only within [])

! logical negation

& & only performs second operation if the
first succeeds (returns 0)

| | only performs the second operation if
the first operation failes (returns a non-
zero value).

Arctic Region Supercomputing Center W

Tuesday, September 15, 15

File Tests

* -d val valis a directory

* —e val val exists

* —-f val valis a regular file (not a link or
directory)

* —-r val val is readable by user

* -w val
* -x val
* f1 -nt
* f1 -ot

val is writeable by user
val is executable by user
£f2 1 is newer than f2 *.
£f2 1 is older than 2 *.

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

(Arsc

File Tests

e Example - checking for writable file:
1if [-w myfile]

then
ls >> myfile
fi
Arctic Region Supercomputing Center UAF

Tuesday, September 15, 15

(Arsc

Logic Examples

if [-d Sf] && [-w Sf]; then

if [-d Sf -a -w Sf]; then

if [-d Sf -a \(-w $f -o -x Sf \)]
then

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

Other Operators

* -z val string is zero length
* strA = strB are strings the same
* strA != strB are strings different

e Arithmetic Operators
-eqg (equal), -ne (not equal)
-1t (less than), —gt (greater than)

Arctic Region Supercomputing Center

FAIRBANKS

Tuesday, September 15, 15

Warning about [... |

e If you have a variable that might
not be set, put it in double quotes:
if [-z “Sf”]; then

f1
e oruse “[[“and “] 1%
if [[-z $£]]; then

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

IARSC Example of bad
behavior from |

show that f is not defined.
mg56 % echo S$f

this is bad! The directory “$f” doesn’t exist.
mg56 % if [-d $f]; then echo Hello; fi

Hello

this is OK.

mg56 % if [-d "Sf"]; then echo Hello; fi
so 1is this.
mgb56 % if [[-d $f]]; then echo Hello; fi
if “$f” is defined we don’t have this problem:
mgb6 % f=.
mgb56 % if [[-d $Sf]]; then echo Hello; fi
Hello
mgb56 % if [-d "S$Sf"]; then echo Hello; fi
Hello
Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

(Arsc

Loops

 sh/ksh
for num in 42 66 210 13
do
echo S$num

done

e csh/tcsh
foreach 1lib (1lib*)
nm $lib | grep rand
echo $S1lib done

end

Arctic Region Supercomputing Center

Tuesday, September 15, 15

(arsc
for

for name 1n list; do
#do something
done

for £ in /usr/bin/*; do

if [! -L $f -o ! -d S$f]; then
echo S$f
fi
done

Arctic Region Supercomputing Center UAF

IIIIIIII

Tuesday, September 15, 15

(Arsc |

while

while [logical-expression |;
do
#do something

done

Arctic Region Supercomputing Center

Tuesday, September 15, 15

select

e Simple command line parsing code

blurb.
case $Sarg in
—a)
#do something ;;
b)
#do something else ;;
*)
fmatch everything else ;;
esac

Arctic Region Supercomputing Center UAF

Tuesday, September 15, 15

Command Line Arguments

e The variable 50 has the name of
the executable being run. $1-59
have the 1st thru 9th command
line arguments.

* $# has the number of args

* $* can access all args (beyond 10)

* shift allows you to move an

rcic R ArgYmMeEnt forward in the list.

Tuesday, September 15, 15

getopts

 If you want to have a script accept
command line arguments (e.g. “f”), use
getopts.

while getopts “fg:” opt; do
case Sopt in
f) echo "-f is SOPTARG" ;;
g) echo "-g is S$OPTARG" ;;
\?) echo "Usage: ..."
exit 1

esac
done
this allows “cmd -f -g arg” or “cmd -fg arg”
shift $((SOPTIND - 1))

Arctic Region Supercomputing Center

Tuesday, September 15, 15

getopts continued

* The string “fg:” tells the script to
look for “-f” and/or “*-g val”

e The “:” tells getopts that the
preceding value must have an
option.

* OPTARG and OPTIND are set by

Arctic Remgﬁwuﬁng Center W

Tuesday, September 15, 15

Functions and Aliases

e Simplify repeated tasks.

e However, aliases and functions are not
inherited by child shells.

e You can source a file from within a
script to get the functions and aliases
from that file

. e.g.
. ~/.mystuff

ArcticReamn is-sowree in bash and ksh UAF

Tuesday, September 15, 15

SC Example Functions and

Aliases
alias 11=%1s -1"

function foo

{

for 1 in $*; do echo S1; done

}

e You can ignore an alias, function or

built-in command by escaping the
name.

® elgl

O \ 1l o

0 \ Lo
Arctic Region Supercomputing Center

FAIRBANKS

Tuesday, September 15, 15

Error Handling

e As previously mentioned normal
convention is that programs exit with a
non-zero value if they exit in error.

e We can use this to our advantage:

. e.g.
mv myfile SARCHIVE || exit 1

e The exit value of the last command is
stored in the variable 35?7,

 We can give a more meaningful error

Arctic Relin@ssagebuting Center

Tuesday, September 15, 15

More Error Handling

e A function can improve this alot.

function printError

{

$1 (optional) is an error message to print.

exitval=S$">

if [Sexitval -ne 0]; then
if [! -z “$1” 1; then
echo “Error: $1”
fi

exit Sexitval

£1
}
mv—myfite—SARCHEVE—|H—printkError—mv—myfilefaited’
Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

Quoting

e The shell interprets these characters in a special
way:
#x2 N1 {y O<>"""]"8&;$
e Double quotes protect some, but allow $variable
substitution:
echo SPATH

echo “SPATH”
echo ‘SPATH'’
echo \$PATH

Arctic Region Supercomputing Center

IIIIIIIII

Tuesday, September 15, 15

Quoting Continued

e Be aware of quoting.

— Variables are not expanded when within single
quotes ", but are in double quotes .

% echo "SPATH"
/usr/local/bin:/bin:/usr/bin:/sbin:/usr/sbin:/usr/X11R6/bin

% echo 'S$SPATH'
SPATH

— Variables can also be escaped with “V’

% echo ”\SPATH"
SPATH

Arctic Region Supercomputing Center

FAIRBANKS

Tuesday, September 15, 15

Subshells

e Back ticks start a subshell and
return the value

% 1ls -1 "which cat’
—r—XIr—-Xr—-X 1 root wheel 14380 Mar 20 2005 /bin/cat

e The $(...) operation works the
same.

% 1ls -1 S (which cat)
—r—-XIr—-Xr—-X 1 root wheel 14380 Mar 20 2005 /bin/cat

Arctic Region Supercomputing Center UAF

IIIIIIIII

Tuesday, September 15, 15

Back Quotes

e Can save the results of commands

into a variable:
pwd="pwd
lines="cat /etc/passwd | wc -I'
echo $pwd
echo $lines

Arctic Region Supercomputing Center

IIIIIIIII

Tuesday, September 15, 15

Shell Special Characters

* * matches anything
* ? matches on single character

* [a-z] matches a range of
characters

* ["a-z]negation of the previous.

* {strl,str2} matches strl or str2

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

Pipes and Redirection

Pipes allow you to send the “stdout”
from one command to the “stdin” of

another command.

ls | more

Redirection allows you to send output

to a file or input from a file.

look for the work fred in the file friends

grep -1 fred < friends

redirect the output of 1s to a file called ls.out

ls > 1ls.out
concatenate the output of 1s to the file ls.out

Arctic Reglen Suipkscomputing Center UAF

Tuesday, September 15, 15

Tieing Output /
Redirecting Stderr
e Stdout can tied to stderr.

echo “Error: “ 1>&2

e Stderr can tied to stdout.
somecmd 2>&1

* Redirecting Stderr.
find . —-name *.out 2> /dev/null

Arctic Region Supercomputing Center

FAIRBANKS

Tuesday, September 15, 15

Other Scripting Languages

e If you end up needing to do more
complicated operations. Consider
a more powerful scripting
language.

— python
— perl

— tcl/tk
— ruby

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

Advantages

e Languages like python have a large
number of modules which come with
the package.

e Python also have:
— Good integration with C/C++ and Fortran

— Scientific Packages (numpy / scipy) give matlab
like functionality.

— Regular expressions for parsing files.

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

References

e Linux in a Nutshell - O’Reilly (bash
and tcsh)

e UNIX in a Nutshell - O’Reilly (csh,
sh and ksh)

 Learning the bash shell - O’Reilly

Arctic Region Supercomputing Center

FAIRBANKS

Tuesday, September 15, 15

(ARsc

Appendix

Arctic Region Supercomputing Center

lllllllll

Tuesday, September 15, 15

C-Shell

e based on C programming language
syntax.

e tcsh has a bit more functionality if
you want it.

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

Setting variables

e Local variables (not available to child
processes)
- set v=0

e Environment variables available to child
processes
- setenv NCARG ROOT /usr/local/pkg/ncl/ncl-4.2.0-a33/

e Arrays (Warning to C programmers first
element of the array is 1 not 0!)

_ Set arr:(\\a// //b// \\C//)
- echo S{arr[l]}

- #echos a

Arctic Region Supercomputing Center

Tuesday, September 15, 15

(ARSC
Arithmetic Operations

set value of v to O

set v=0

set v to v + 1 (be careful about spacing!)

@ v=(Sv + 1)

#x X X here’s where the spaces need to be.

value of v is 1

@ v=(Sv * 2)
#x X X here’s where the spaces need to be.

value of v is 2

Arctic Region Supercomputing Center

FAIRBANKS

Tuesday, September 15, 15

(ARsc
If

if (! —-e SARCHIVE/myresults) then
mkdir SARCHIVE/myresults

endif

if (-f ~/.myaliases) then
source ~/.myaliases
else
echo “Warning ~/.myaliases not found”

endif

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

Tests

* —-d foo (is foo is a directory?)

* —e foo (does foo exist?)

* —-f foo (is foo a regular file?)

* -1 foo (is foo a symbolic link?)

* -0 foo (is foo owned me?)

e tcsh has some additional tests which could be
useful (groups -G foo, access time -2 foo,
permissions -P foo and more!)

Arctic Region Supercomputing Center

FAIRBANKS

Tuesday, September 15, 15

Logical Operators

* ¢& logical and, performs second
operation only if the first

succeeds.
mv foo SARCHIVE && 1s —-la SARCHIVE/foo

* | | logical or, performs the second
operation only if the first fails.

~_mv_foo SARCHIVE || echo Sstatus

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

Error Checking

e Programs exiting in error return a
non-zero value.

* Programs that complete
successfully return 0.

e This lets us test for errors.

e The variable sstatus (csh/tcsh)
has the value of the last command

Arctic Regimmén@r

FAIRBANKS

Tuesday, September 15, 15

ARSC Another look at Error
Checking

e You can use alias to improve error
checking:

#pErr prints a message if an error occurs.

alias pErr ‘set ev=S$status && echo Error: “ Sev && exit Sev’

mv foo $ARCHIVE || pErr

Arctic Region Supercomputing Center UAF

IIIIIIIII

Tuesday, September 15, 15

Seeing if a variable is set

if (S?ARCHIVE) then
echo \SARCHIVE 1is not set!

endif

Here \ S ensures the “s” is not used
to dereference ARCHIVE.

You could also use ‘SARCHIVE ...’

Arctic Region Supercomputing Center UAF

FAIRBANKS

Tuesday, September 15, 15

(Arsc

foreach

Foreach iterates on an array.

foreach f (/usr/bin/¥*)
if (-f Sf && ! -1 S$Sf) then
echo $f
endif

end

set arr=(a b c)
foreach v (Sarr)
echo Sv

end

Arctic Region Supercomputing Center

Tuesday, September 15, 15

(Arsc |

while

#handle commandline arguments (default is 10 with array

#syntax)
while (S#argv)
if (-d S$S{argv[1l]}) then
echo ${argv[l]} is a directory!
endif
shift

end
simulate a regular C for loop.
set 11=0
while ($ii < 10)
echo $ii
@ ii=($ii + 1)

V\/‘J
CllIUu

Arctic Region Supercomputing Center

UAF

FAIRBANKS

Tuesday, September 15, 15

String Operators

C-Shell has a group of operators that can act
on strings.

E.g. get the root and extension of a file.
% set f="/ul/uaf/username/bath.nc"

% echo $f

/ul/uaf/username/bath.nc

% echo S$f:r

/ul/uaf/username/bath

% echo Sf:e

nc

True csh this does not work for environment
variables (tcsh does).

Arctic Region Supercomputing Center UAF

Tuesday, September 15, 15

String Operators

e Other operators

* :r (root, part of string before last dot)

* :e (extension, part of string after last
dot)

* :h (part of the string before last “/”)
* :t (part of string after last /%)

* :gry :gey :gh, :gt (perform operations
above on an array of files g=global)

Arctic Region Supercomputing Center

Tuesday, September 15, 15

