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Shells

e There are a number of different shells
available.

e Shell family tree.

— ¢sh -> tcsh
— sh -> ksh -> bash

e This lecture focuses on bash
— user friendliness of tcsh
— scripting capabilities of ksh

e Most if not all syntax shown here works
with ksh as well.
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Bash

* bash is the bourne-again shell.

e Similar syntax to sh and ksh.

— Includes new features that are not in sh or older
versions of ksh

— Flexible syntax allow most expressions to be done
on a single line (if you want).
— Supports functions.

e Default shell on most Linux systems.

* Verbose mode (useful for debugging)
#!/bin/bash -v
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Command Line

e Consider the following:
sort -n file > file.sorted &
e sort is a command in your SPATH

o “.n file” is passed to the sort
command as arguments

e > and & are special

e & puts the job in the background -
DON’T do this in batch scripts
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Environment Variables

e csh/tcsh:
setenv PAGER more

e sh:

PAGER=more
export PAGER

e ksh:
export PAGER=less

e Standard practice is to use
uppercase names
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Variables

e Bash (and other shelis) allow
users to instantiate local or
environment variables.

e Environment variables are
accessible to child shells.

#local variable

num=20

fenvironment variable

export LD LIBRARY PATH=“/usr/local/bin”
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Environment Variables

e The environment variable PATH defines
a colon delimited list of directories
where the shell (and other processes)
should look for executables.

e At ARSC we use environment variables
to define storage areas:

e.g.
cd SARCHIVE
ls SCENTER
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The $PATH

e Environment variable containing a list of
directories to search for commands

e Order is important - takes first one

e Some commands are built into the shell,
for instance echo is built into csh. There is
also a /usr/bin/echo for shells which don’t
have echo built in.

e Can give the full path of commands to get
a specific one: /usr/local/bin/patch or /usr/
bin/patch

e Putting “.” (current directory) in your path
is controversial - put it at the end if you do
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Setting the Environment

e We often want the same

environment variables to be set
every time we log Iin

e For sh/ksh, set in .profile
— Can reload it with “. .profile”

* For csh/tcsh, set in .cshrc
— Can reload it with “source .cshrc”
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More Environment Variables

e Some have standard names, such as
HOME, PATH, PRINTER, EDITOR

e Some programs are expecting
environment variables to be set, for
instance graphics programs:
NCARG_ROOT, GMTHOME, QTDIR,
MATLABPATH

* Programs can read the environment
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Shell Variables

e Can be lowercase (case sensitive):

name=Harry
echo Sname

e Quote for embedded spaces:

longname=‘'Harry Smith’

* No spaces on either side of equals
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(Arsc

Scripting Basics

e Scripts
— Usually executable
e.g.
chmod 700 myscript

but don't necessarily need to be.
ksh myscript

— Should have the shell on the first line.

e.g.
#!/bin/ksh
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Basics (continued)

— Be aware that following may work
sometimes but are not portable! Don't
write your scripts this way.

 not specify a shell at the beginning of an
executable script. (BAD!)

» spaces between the “#!” and the shell.
#! /bin/sh (BAD?)

« Skipping the PATH to the script

* #!csh (BAD!)
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More on “#!”

 When you run a script
interactively the program (i.e.
shell) listed in the “#!” statement
is started as child process of your
login shell. It gets a copy of all of
the environment variables set for
the parent shell.

* aliases and functions are NOT
inherited from the parent shell!
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Integer Math

e There are a few different ways to do
math operations.

e var = $(( expression ))
e.g.
x=S(( Sy * 2 + 1))

e let var = ( expression )
e.g.

let x=( Sy * 2 + 1)
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If Statements (sh/ksh)

o “if” has several flavors, including optional else
and elif parts:
if [ “$1” = south ]
then
echo Going south
elif [ “$1” = north ]
then
echo Going north
else
echo Going east-west
fi
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More on “if”

e The example
if [ -d /usr ]
e Can be written
if test -d /usr

e test (or[]) is testing the resulit of
something

e An executable will return an error code
and not need the test
if hostname
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& logical and

Logical Operators

| | logical or

-a logical and (only within [])
-o logical or (only within [])

! logical negation

& & only performs second operation if the
first succeeds (returns 0)

| | only performs the second operation if
the first operation failes (returns a non-
zero value).
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File Tests

* -d val valis a directory

* —e val val exists

* —-f val valis a regular file (not a link or
directory)

* —-r val val is readable by user

* -w val
* -x val
* f1 -nt
* f1 -ot

val is writeable by user
val is executable by user
£f2 1 is newer than f2 *.
£f2 1 is older than 2 *.
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(Arsc

File Tests

e Example - checking for writable file:
1if [ -w myfile ]

then
ls >> myfile
fi
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Logic Examples

if [ -d Sf ] && [ -w Sf ]; then

if [ -d Sf -a -w Sf ]; then

if [ -d Sf -a \( -w $f -o -x Sf \) ]
then
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Other Operators

* -z val string is zero length
* strA = strB are strings the same
* strA != strB are strings different

e Arithmetic Operators
-eqg (equal), -ne (not equal)
-1t (less than), —gt (greater than)
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Warning about [... |

e If you have a variable that might
not be set, put it in double quotes:
if [ -z “Sf” ]; then

f1
e oruse “[ [“and “] 1%
if [[ -z $£ ]]; then
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IARSC Example of bad
behavior from |

# show that f is not defined.
mg56 % echo S$f

# this is bad! The directory “$f” doesn’t exist.
mg56 % if [ -d $f ]; then echo Hello; fi

Hello

# this is OK.

mg56 % if [ -d "Sf" ]; then echo Hello; fi
# so 1is this.
mgb56 % if [[ -d $f ]]; then echo Hello; fi
# if “$f” is defined we don’t have this problem:
mgb6 % f=.
mgb56 % if [[ -d $Sf ]]; then echo Hello; fi
Hello
mgb56 % if [ -d "S$Sf" ]; then echo Hello; fi
Hello
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Loops

 sh/ksh
for num in 42 66 210 13
do
echo S$num

done

e csh/tcsh
foreach 1lib (1lib*)
nm $lib | grep rand
echo $S1lib done

end
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(arsc
for

for name 1n list; do
#do something
done

for £ in /usr/bin/*; do

if [ ! -L $f -o ! -d S$f ]; then
echo S$f
fi
done
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(Arsc |

while

while [ logical-expression |;
do
#do something

done
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select

e Simple command line parsing code

blurb.
case $Sarg in
—a )
#do something ;;
b )
#do something else ;;
* )
fmatch everything else ;;
esac
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Command Line Arguments

e The variable 50 has the name of
the executable being run. $1-59
have the 1st thru 9th command
line arguments.

* $# has the number of args

* $* can access all args (beyond 10)

* shift allows you to move an

rcic R ArgYmMeEnt forward in the list.
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getopts

 If you want to have a script accept
command line arguments (e.g. “f”), use
getopts.

while getopts “fg:” opt; do
case Sopt in
f ) echo "-f is SOPTARG" ;;
g ) echo "-g is S$OPTARG" ;;
\? ) echo "Usage: ..."
exit 1

esac
done
# this allows “cmd -f -g arg” or “cmd -fg arg”
shift $((SOPTIND - 1 ))
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getopts continued

* The string “fg:” tells the script to
look for “-f” and/or “*-g val”

e The “:” tells getopts that the
preceding value must have an
option.

* OPTARG and OPTIND are set by
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Functions and Aliases

e Simplify repeated tasks.

e However, aliases and functions are not
inherited by child shells.

e You can source a file from within a
script to get the functions and aliases
from that file

. e.g.
. ~/.mystuff
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SC Example Functions and

Aliases
alias 11=%1s -1"

function foo

{

for 1 in $*; do echo S1; done

}

e You can ignore an alias, function or

built-in command by escaping the
name.

® elgl

O \ 1l o

0 \ Lo
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Error Handling

e As previously mentioned normal
convention is that programs exit with a
non-zero value if they exit in error.

e We can use this to our advantage:

. e.g.
mv myfile SARCHIVE || exit 1

e The exit value of the last command is
stored in the variable 35?7,

 We can give a more meaningful error
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More Error Handling

e A function can improve this alot.

function printError

{

# $1 (optional) is an error message to print.

exitval=S$">

if [ Sexitval -ne 0 ]; then
if [ ! -z “$1” 1; then
echo “Error: $1”
fi

exit Sexitval

£1
}
mv—myfite—SARCHEVE—|H—printkError—mv—myfilefaited’
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Quoting

e The shell interprets these characters in a special
way:
#x2 N1 {y O<>"""]"8&;$
e Double quotes protect some, but allow $variable
substitution:
echo SPATH

echo “SPATH”
echo ‘SPATH'’
echo \$PATH
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Quoting Continued

e Be aware of quoting.

— Variables are not expanded when within single
quotes ", but are in double quotes .

% echo "SPATH"
/usr/local/bin:/bin:/usr/bin:/sbin:/usr/sbin:/usr/X11R6/bin

% echo 'S$SPATH'
SPATH

— Variables can also be escaped with “V’

% echo ”\SPATH"
SPATH
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Subshells

e Back ticks start a subshell and
return the value

% 1ls -1 "which cat’
—r—XIr—-Xr—-X 1 root wheel 14380 Mar 20 2005 /bin/cat

e The $( ... ) operation works the
same.

% 1ls -1 S (which cat)
—r—-XIr—-Xr—-X 1 root wheel 14380 Mar 20 2005 /bin/cat
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Back Quotes

e Can save the results of commands

into a variable:
pwd="pwd
lines="cat /etc/passwd | wc -I'
echo $pwd
echo $lines
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Shell Special Characters

* * matches anything
* ? matches on single character

* [a-z] matches a range of
characters

* ["a-z]negation of the previous.

* {strl,str2} matches strl or str2
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Pipes and Redirection

Pipes allow you to send the “stdout”
from one command to the “stdin” of

another command.

ls | more

Redirection allows you to send output

to a file or input from a file.

# look for the work fred in the file friends

grep -1 fred < friends

# redirect the output of 1s to a file called ls.out

ls > 1ls.out
# concatenate the output of 1s to the file ls.out
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Tieing Output /
Redirecting Stderr
e Stdout can tied to stderr.

echo “Error: “ 1>&2

e Stderr can tied to stdout.
somecmd 2>&1

* Redirecting Stderr.
find . —-name \*.out 2> /dev/null

Arctic Region Supercomputing Center

FAIRBANKS

Tuesday, September 15, 15



Other Scripting Languages

e If you end up needing to do more
complicated operations. Consider
a more powerful scripting
language.

— python
— perl

— tcl/tk
— ruby
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Advantages

e Languages like python have a large
number of modules which come with
the package.

e Python also have:
— Good integration with C/C++ and Fortran

— Scientific Packages (numpy / scipy ) give matlab
like functionality.

— Regular expressions for parsing files.
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References

e Linux in a Nutshell - O’Reilly (bash
and tcsh)

e UNIX in a Nutshell - O’Reilly (csh,
sh and ksh)

 Learning the bash shell - O’Reilly
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(ARsc

Appendix
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C-Shell

e based on C programming language
syntax.

e tcsh has a bit more functionality if
you want it.
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Setting variables

e Local variables (not available to child
processes)
- set v=0

e Environment variables available to child
processes
- setenv NCARG ROOT /usr/local/pkg/ncl/ncl-4.2.0-a33/

e Arrays (Warning to C programmers first
element of the array is 1 not 0!)

_ Set arr:(\\a// //b// \\C//)
- echo S{arr[l]}

- #echos a
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(ARSC
Arithmetic Operations

# set value of v to O

set v=0

# set v to v + 1 (be careful about spacing!)

@ v=(Sv + 1)

#x X X here’s where the spaces need to be.

# value of v is 1

@ v=(Sv * 2)
#x X X here’s where the spaces need to be.

# value of v is 2
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(ARsc
If

if (! —-e SARCHIVE/myresults ) then
mkdir SARCHIVE/myresults

endif

if ( -f ~/.myaliases ) then
source ~/.myaliases
else
echo “Warning ~/.myaliases not found”

endif
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Tests

* —-d foo (is foo is a directory?)

* —e foo (does foo exist?)

* —-f foo (is foo a regular file?)

* -1 foo (is foo a symbolic link?)

* -0 foo (is foo owned me?)

e tcsh has some additional tests which could be
useful (groups -G foo, access time -2 foo,
permissions -P foo and more!)
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Logical Operators

* ¢& logical and, performs second
operation only if the first

succeeds.
mv foo SARCHIVE && 1s —-la SARCHIVE/foo

* | | logical or, performs the second
operation only if the first fails.

~_mv_foo SARCHIVE || echo Sstatus
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Error Checking

e Programs exiting in error return a
non-zero value.

* Programs that complete
successfully return 0.

e This lets us test for errors.

e The variable sstatus (csh/tcsh)
has the value of the last command
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ARSC Another look at Error
Checking

e You can use alias to improve error
checking:

#pErr prints a message if an error occurs.

alias pErr ‘set ev=S$status && echo Error: “ Sev && exit Sev’

mv foo $ARCHIVE || pErr
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Seeing if a variable is set

if ( S?ARCHIVE ) then
echo \SARCHIVE 1is not set!

endif

Here \ S ensures the “s” is not used
to dereference ARCHIVE.

You could also use ‘SARCHIVE ...’
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(Arsc

foreach

Foreach iterates on an array.

foreach f (/usr/bin/¥*)
if ( -f Sf && ! -1 S$Sf ) then
echo $f
endif

end

set arr=(a b c)
foreach v (Sarr)
echo Sv

end
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while

#handle commandline arguments (default is 10 with array

#syntax)
while ( S#argv )
if ( -d S$S{argv[1l]}) then
echo ${argv[l]} is a directory!
endif
shift

end
# simulate a regular C for loop.
set 11=0
while ( $ii < 10 )
echo $ii
@ ii=($ii + 1)

V\/‘J
CllIUu
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String Operators

C-Shell has a group of operators that can act
on strings.

E.g. get the root and extension of a file.
% set f="/ul/uaf/username/bath.nc"

% echo $f

/ul/uaf/username/bath.nc

% echo S$f:r

/ul/uaf/username/bath

% echo Sf:e

nc

True csh this does not work for environment
variables (tcsh does).
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String Operators

e Other operators

* :r (root, part of string before last dot)

* :e (extension, part of string after last
dot)

* :h (part of the string before last “/”)
* :t (part of string after last /%)

* :gry :gey :gh, :gt (perform operations
above on an array of files g=global)
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