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Quantum communication holds promise for absolutely secure transmission of secret messages and the faithful transfer of
unknown quantum states. Photonic channels appear to be very attractive for the physical implementation of quantum
communication. However, owing to losses and decoherence in the channel, the communication ®delity decreases exponentially
with the channel length. Here we describe a scheme that allows the implementation of robust quantum communication over long
lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with
moderate ef®ciencies, and is therefore compatible with current experimental technology. We show that the communication
ef®ciency scales polynomially with the channel length, and hence the scheme should be operable over very long distances.

The goal of quantum communication is to transmit quantum states
between distant sites. Such transmission has potential application in
the secret transfer of classical messages by means of quantum
cryptography1, and is also an essential element in the construction
of quantum networks. The basic problem of quantum communica-
tion is to generate nearly perfect entangled states between distant
sites. Such states can be used, for example, to implement secure
quantum cryptography using the Ekert protocol1, and to faithfully
transfer quantum states via quantum teleportation2. All realistic
schemes for quantum communication are at present based on the
use of photonic channels. However, the degree of entanglement
generated between two distant sites normally decreases exponen-
tially with the length of the connecting channel, because of optical
absorption and other channel noise. To regain a high degree of
entanglement, puri®cation schemes can be used3, but this does not
fully solve the long-distance communication problem. Because of
the exponential decay of the entanglement in the channel, an
exponentially large number of partially entangled states are
needed to obtain one highly entangled state, which means that for
a suf®ciently long distance the task becomes nearly impossible.

To overcome the dif®culty associated with the exponential ®delity
decay, the concept of quantum repeaters can be used4. In principle,
this allows the overall communication ®delity to be made very
close to unity, with the communication time growing only poly-
nomially with transmission distance. In analogy to fault-tolerant
quantum computing5,6, the proposed quantum repeater is a
cascaded entanglement-puri®cation protocol for communication
systems. The basic idea is to divide the transmission channel into
many segments, with the length of each segment comparable to the
channel attenuation length. First, entanglement is generated and
puri®ed for each segment; the puri®ed entanglement is then
extended to a greater length by connecting two adjacent segments
through entanglement swapping2,7. After this swapping, the overall
entanglement is decreased, and has to be puri®ed again. The rounds
of entanglement swapping and puri®cation can be continued until
nearly perfect entangled states are created between two distant sites.

To implement the quantum repeater protocol, we need to gen-
erate entanglement between distant quantum bits (qubits), store
them for a suf®ciently long time and perform local collective
operations on several of these qubits. Quantum memory is essential,
because all puri®cation protocols are probabilistic. When entangle-
ment puri®cation is performed for each segment of the channel,
quantum memory can be used to keep the segment state if
the puri®cation succeeds, and to repeat the puri®cation for the

segments only where the previous attempt fails. This is essential for
ensuring polynomial scaling in the communication ef®ciency,
because if there were no available memory, the puri®cations for
all the segments would need to succeed at the same time; the
probability of such an event decreases exponentially with channel
length. The requirement of quantum memory implies that we need
to store the local qubits in atomic internal states instead of photonic
states, as it is dif®cult to store photons for a reasonably long time.
With atoms as the local information carriers, it seems to be very
hard to implement quantum repeaters: normally, one needs to
achieve the strong coupling between atoms and photons by using
high-®nesse cavities for atomic entanglement generation, puri®ca-
tion, and swapping8,9, which, in spite of recent experimental
advances10±12, remains a very challenging technology.

Here we propose a different scheme, which realizes quantum
repeaters and long-distance quantum communication with simple
physical set-ups. The scheme is a combination of three signi®cant
advances in entanglement generation, connection, and applica-
tions, with each of the steps having built-in entanglement puri®ca-
tion and resilience to realistic noise. The scheme for fault-tolerant
entanglement generation originates from earlier proposals to
entangle single atoms through single-photon interference at
photodetectors13,14. But the present approach involves collective
excitations in atomic ensembles rather than in single particles,
which allows simpler realization and greatly improved generation
ef®ciency. This is due to collectively enhanced coupling to light,
which has been recently investigated both theoretically15±19 and
experimentally20±22. The entanglement connection is achieved
through simple linear optical operations, and is inherently robust
against realistic imperfections. Different schemes with linear optics
have been proposed recently for quantum computation23 and
puri®cation24. Finally, the resulting state of ensembles after the
entanglement connection ®nds direct applications in realizing
entanglement-based quantum communication protocols, such as
quantum teleportation, cryptography, and Bell inequality detection.
In all of these applications, the mixed entanglement is puri®ed
automatically to nearly perfect entanglement. As a combination of
these three advances, our scheme circumvents the realistic noise and
imperfections, and provides a feasible method of long-distance
high-®delity quantum communication. The required overhead in
communication time increases with distance only polynomially.

Entanglement generation
The basic element of our system is a cloud of Na identical atoms with
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the relevant level structure shown in Fig. 1. A pair of metastable
lower states jgi and jsi can correspond toÐfor exampleÐhyper®ne
or Zeeman sublevels of the electronic ground state of alkali-metal
atoms. Long lifetimes for the relevant coherence have been observed
both in a room-temperature dilute atomic gas (see, for example,
ref. 21) and in a sample of cold trapped atoms (see, for example,
refs 20, 22). To facilitate enhanced coupling to light, the atomic
medium is preferably optically thick along one direction. This can
be achieved either by working with a pencil-shaped atomic
sample20±22 or by placing the sample in a low-®nesse ring
cavity17,25 (see Supplementary Information).

All the atoms are initially prepared in the ground state jgi. A
sample is illuminated by a short, off-resonant laser pulse that
induces Raman transitions into the states jsi. We are particularly
interested in the forward-scattered Stokes light that is co-propagat-
ing with the laser. Such scattering events are uniquely correlated
with the excitation of the symmetric collective atomic mode S
(refs 15±22) given by S [ �1=

������
Na

p
�Sijgii hsj, where the summation is

taken over all the atoms. In particular, an emission of the single
Stokes photon in a forward direction results in the state of atomic

ensemble given by S²j0ai, where the ensemble ground state
j0ai [ #i jgii).

We assume that the light±atom interaction time t¢ is short, so
that the mean photon number in the forward-scattered Stokes pulse
is much smaller than 1. We can de®ne an effective single-mode
bosonic operator a for this Stokes pulse with the corresponding
vacuum state denoted by j0pi. The whole state of the atomic
collective mode and the forward-scattering Stokes mode can now
be written in the following form (see Supplementary Information
for details)

jfi � j0ai j0pi �
����
pc

p
S²a²

j0ai j0pi � o�pc� �1�

where pc is the small excitation probability, and o(pc) represents the
terms with more excitations whose probabilities are equal to or
smaller than p2

c . Before proceeding, we note that a fraction of light is
emitted in other directions owing to spontaneous emissions. But
whenever Na is large, the contribution from the spontaneous
emissions to the population in the symmetric collective mode is
small15±22. As a result, we have a large signal-to-noise ratio for the
processes involving the collective mode, which greatly enhances the
ef®ciency of the present scheme (see Box 1 and Supplementary
Information).
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Figure 1 Set-up for entanglement generation. a, The relevant level structure of the atoms

in the ensemble, with jgi, the ground state, jsi, the metastable state for storing a qubit,

and jei, the excited state. The transition jgi ! jei is coupled by the classical laser (the

pumping light) with the Rabi frequency , and the forward-scattered Stokes light comes

from the transition jei ! jsi, which has a different polarization and frequency to the

pumping light. For convenience, we assume off-resonant coupling with a large detuning

¢. b, Schematic set-up for generating entanglement between the two atomic ensembles

L and R. The two ensembles are pencil-shaped, and illuminated by the synchronized

classical pumping pulses. The forward-scattered Stokes pulses are collected and coupled

to optical channels (such as ®bres) after the ®lters, which are polarization- and frequency-

selective to ®lter the pumping light. The pulses after the transmission channels interfere at

a 50%-50% beam splitter BS, with the outputs detected respectively by two single-photon

detectors D1 and D2. If there is a click in D1 or D2, the process is ®nished and we

successfully generate entanglement between the ensembles L and R. Otherwise, we ®rst

apply a repumping pulse (to the transition jsi ! jei) to the ensembles L and R, to set the

state of the ensembles back to the ground state j0a iL # j0a iR, then the same classical

laser pulses as the ®rst round are applied to the transition jgi ! jei and we detect again

the forward-scattered Stokes pulses after the beam splitter. This process is repeated until

®nally we have a click in the D1 or the D2 detector.

Box 1
Collective enhancement

Long-lived excitations in atomic ensembles can be viewed as waves of
excited spins. We are here particularly interested in the symmetric spin
wave mode S. For a simple demonstration of collective enhancement, we
assume that the atoms are placed in a low-®nesse ring cavity25, with a
relevant cavity mode corresponding to forward-scattered Stokes
radiation. The cavity-free case corresponds to the limit where the ®nesse
tends to 1 (ref. 17). The interaction between the forward-scattered light
mode and the atoms is described by the hamiltonian

H � ~
������
Na

p
gc=¢

� �
S²b²

� h:c:

where h.c. is the hermitian conjugation, b² is the creation operator for
cavity photons,  is the laser Rabi frequency, and gc the atom±®eld
coupling constant. In addition to coherent evolution, the photonic ®eld
mode can leak out of the cavity at a rate k, whereas atomic coherence is
dephased by spontaneous photon scattering into random directions that
occurs at a rate g9s � 2

=¢2gs for each atom, with gs being the natural
linewidth of the electronic excited state. We emphasize that in the
absence of superradiant effects, spontaneous emission events are
independent for each atom.

In the bad-cavity limit, we can adiabatically eliminate the cavity mode,
and the resulting dynamics for the collective atomic mode is described by
the Heisenberg±Langevin equation (see Supplementary Information for
details)

S
Ç ²

�
�k9 2 g9s�

2
S² 2

����
k9

p
bin�t� � noise

where k9 � 4jj2g2
cNa=�¢

2k�, bin is a vacuum ®eld leading into the cavity,
and the last term represents the ¯uctuating noise ®eld corresponding to
spontaneous emission. We note that the nature of the dynamics is
determined by the ratio between the build-up of coherence due to
forward-scattered photons k9 and coherence decay due to spontaneous
emission g9s. The signal-to-noise ratio is therefore given by
R � k9=g9s [ 4Nag

2
c=�kgs�, which is large when a many-atom ensemble is

used. In the cavity-free case, this expression corresponds to the optical
depth (density-length product) of the sample. The result should be
compared with the signal-to-noise ratio in the single-atom case Na � 1,
where to obtain R . 1 a high-Q microcavity is required10±12. The collective
enhancement takes place because the coherent forward scattering
involves only one collective atomic mode S, whereas the spontaneous
emissions distribute excitation over all atomic modes. Therefore only a
small fraction of spontaneous emission events in¯uences the symmetric
mode S, which results in a large signal-to-noise ratio.
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We now show how to use this set-up to generate entanglement
between two distant ensembles L (left) and R (right) using the
con®guration shown in Fig. 1. Here two laser pulses excite both
ensembles simultaneously, and the whole system is described by the
state jfiL # jfiR, where jfiL and jfiR are given by equation (1) with
all the operators and states distinguished by the subscript L or R.
The forward-scattered Stokes light from both ensembles is com-
bined at the beam splitter, and a photodetector click in either D1 or
D2 measures the combined radiation from two samples, a²

�a� or
a²

2a2 with a6 � �aL 6 eiJaR�=
���
2

p
. Here, J denotes an unknown

difference of the phase shifts in the left and the right side channels.
We can also assume that J has an imaginary part to account for the
possible asymmetry of the set-up, which will also be corrected
automatically in our scheme. But the set-up asymmetry can be
easily made very small, and for simplicity of expressions we assume
that J is real in the following. Conditional on the detector click, we
should apply a+ or a- to the whole state jfiL # jfiR, and the
projected state of the ensembles L and R is nearly maximally
entangled, with the form (neglecting the high-order terms o(pc)):

jªJi6
LR � �S²

L 6 eiJS²
R�=

���
2

p
j0aiL j0aiR �2�

The probability of getting a click is given by pc for each round, so we
need to repeat the process about 1/pc times for a successful
entanglement preparation, and the average preparation time is
given by T0 < t¢=pc. The states jªJi�LR and jªJi2

LR can be transformed
to each other by a simple local phase shift. Without loss of general-
ity, we assume in the following that we generate the entangled state
jªJi�LR.

As will be shown below, the presence of noise modi®es the
projected state of the ensembles to

rLR�c0;J� �
1

c0 � 1
�c0j0a0aiLRh0a0aj � jªJi�LRhªJj� �3�

where the `vacuum' coef®cient c0 is determined by the dark count
rates of the photon detectors. It will be seen below that any state in
the form of equation (3) will be puri®ed automatically to a
maximally entangled state in the entanglement-based communica-
tion schemes. We therefore call this state an effective maximally
entangled (EME) state, with the vacuum coef®cient c0 determining
the puri®cation ef®ciency.

Entanglement connection through swapping
After the successful generation of entanglement within the

attenuation length, we want to extend the quantum communication
distance. This is done through entanglement swapping with the
con®guration shown in Fig. 2. Suppose that we start with two pairs
of entangled ensembles described by the state rLI1

# rI2R, where rLI1

and rI2R
are given by equation (3). In the ideal case, the set-up shown

in Fig. 2 measures the quantities corresponding to operators S²
6S6

with S6 � �SI1
6 SI2

�=
���
2

p
. If the measurement is successful (that is,

one of the detectors registers one photon), we will prepare the
ensembles L and R into another EME state. The new J-parameter is
given by J1 � J2, where J1 and J2 denote the old J-parameters for
the two segment EME states. As will be seen below, even in the
presence of realistic noise and imperfections, an EME state is still
created after a detector click. The noise only in¯uences the success
probability of getting a click and the new vacuum coef®cient in the
EME state. In general, we can express the success probability p1 and
the new vacuum coef®cient c1 as p1 � f 1�c0� and c1 � f 2�c0�, where
the functions f1 and f2 depend on the particular noise properties.

The above method for connecting entanglement can be cascaded
to arbitrarily extend the communication distance. For the ith
(i � 1; 2;¼; n) entanglement connection, we ®rst prepare in par-
allel two pairs of ensembles in the EME states with the same vacuum
coef®cient ci-1 and the same communication length Li-1, and then
perform entanglement swapping as shown in Fig. 2, which now
succeeds with a probability pi � f 1�ci21�. After a successful detector
click, the communication length is extended to Li � 2Li21, and the
vacuum coef®cient in the connected EME state becomes
ci � f 2�ci21�. As the ith entanglement connection needs to be
repeated on average 1/pi times, the total time needed to establish
an EME state over the distance Ln � 2nL0 is given by
Tn � T0P

n
i�1�1=pi�, where L0 denotes the distance of each segment

in the entanglement generation.

Entanglement-based communication schemes
After an EME state has been established between two distant sites,
we would like to use it in communication protocols, such as
quantum teleportation, cryptography, and Bell inequality detection.
It is not obvious that the EME state of equation (3), which is
entangled in the Fock basis, is useful for these tasks, as in the Fock
basis it is experimentally hard to do certain single-bit operations.
We will now show how the EME states can be used to realize all these
protocols with simple experimental con®gurations.

Quantum cryptography and Bell inequality detection are
achieved with the set-up shown by Fig. 3a. The state of the two
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Figure 2 Set-up for entanglement connection. a, Illustrative set-up for the entanglement

swapping. We have two pairs of ensemblesÐL and I1, and I2 and RÐdistributed at

three sites L, I and R. Each of the ensemble-pairs L and I1, and I2 and R is prepared in an

EME state in the form of equation (3). The stored atomic excitations of two nearby

ensembles I1 and I2 are converted simultaneously into light. This is achieved by applying a

retrieval pulses of suitable polarization that is near-resonant with the atomic transition

jsi ! jei, which causes coherent conversion of atomic excitations into photons that have

a different polarization and frequency to the retrieval pulse18,21,22. The ef®ciency of this

transfer can be very close to unity even at a single quantum level owing to collective

enhancement18,21,22. After the transfer, the stimulated optical excitations interfere at a

50%-50% beam splitter, and then detected by the single-photon detectors D1 and D2. If

either D1 or D2 clicks, the protocol is successful and an EME state in the form of equation

(3) is established between the ensembles L and R with a doubled communication

distance. Otherwise, the process fails, and we need to repeat the previous entanglement

generation and swapping until ®nally we have a click in D1 or D2, that is, until the protocol

®nally succeeds. b, The two intermediate ensembles I1 and I2 can also be replaced by one

ensemble but with two metastable states I1 and I2 to store the two different collective

modes. The 50%-50% beam splitter operation can be simply realized by a p/2 pulse

applied to the two metastable states before the collective atomic excitations are

transferred to the optical excitations.
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pairs of ensembles is expressed as rL1R1
# rL2R2

, where rLiRi
(i � 1; 2)

denote the same EME state with the vacuum coef®cient cn if we
have done entanglement connection n times. The J-parameters
in rL1R1

and rL2R2
are the same, provided that the two states are

established over the same stationary channels. We register only the
coincidences of the two-side detectors, so the protocol is successful
only if there is a click on each side. Under this condition, the
vacuum components in the EME states, together with the state
components S²

L1
S²

L2
jvaci and S²

R1
S²

R2
jvaci, where jvaci denotes the

ensemble state j0a0a0a0aiL1R1L2R2
, have no contributions to the

experimental results. So, for the measurement scheme shown by
Fig. 3, the ensemble state rL1R1

# rL2R2
is effectively equivalent to the

following `polarization' maximally entangled (PME) state (the
terminology of `polarization' comes from an analogy to the optical
case):

jªiPME � �S²
L1

S²
R2
� S²

L2
S²

R1
�=

���
2

p
jvaci �4�

The success probability for the projection from rL1R1
# rL2R2

to
jªiPME (that is, the probability of getting a click on each side) is
given by pa � 1=�2�cn � 1�2�. We can also check that in Fig. 3, the
phase shift JL (L � L or R) together with the corresponding beam-
splitter operation are equivalent to a single-bit rotation in the basis
{j0iL [ S²

L1
j0a0aiL1L2

; j1iL [ S²
L2
j0a0aiL1L2

} with the rotation angle
v � JL=2. Now it is clear how to do quantum cryptography and
Bell inequality detection, as we have the PME state and we can

perform the desired single-bit rotations in the corresponding basis.
For instance, to distribute a quantum key between the two remote
sides, we simply choose JL randomly from the set {0;p=2} with an
equal probability, and keep the measurement results (to be 0 if DL

1

clicks, and 1 if DL
2 clicks) on both sides as the shared secret key if

the two sides become aware that they have chosen the same
phase shift after the public declaration of JL. This is exactly the
Ekert scheme1, and its absolute security follows directly from
the proofs in refs 26 and 27. For the Bell inequality detection,
we infer the correlations E�JL;JR� [ PDL

1
DR

1
� PDL

2
DR

2
2 PDL

1
DR

2
2

PDL
2

DR
1
� cos�JL 2 JR� from the measurement of the coincidences

PDL
1

DR
1

and so on. For the set-up shown in Fig. 3a, we would
have jE�0;p=4� � E�p=2;p=4� � E�p=2; 3p=4� 2 E�0; 3p=4�j � 2

���
2

p
,

whereas for any local hidden variable theories, the CHSH
inequality28 implies that this value should be below 2.

We can also use the established long-distance EME states for
faithful transfer of unknown quantum states through quantum
teleportation, with the set-up shown in Fig. 3b. As described in the
®gure legend, this set-up is used to teleport the polarization state of
the collective atomic excitation in a probabilistic fashion. That is,
even if the protocol succeedsÐthat is, two of the detectors register
the counts on the left-hand sideÐan excitation is not necessarily
present in the right (target) ensembles because the product of the
EME states rL1R1

# rL2R2
contains vacuum components. However, if

a collective excitation appears from the right-hand side, its `polari-
zation' state is exactly the same as the one input from the left side.
So, as in the experiment of ref. 29, such a probabilistic teleportation
needs posterior con®rmation of the presence of the excitation; but if
the presence is con®rmed, the teleportation ®delity of its polariza-
tion state is nearly perfect. The success probability for the tele-
portation is also given by pa � 1=�2�cn � 1�2�, which determines
the average number of repetitions needed for a ®nal successful
teleportation.

Noise and built-in entanglement puri®cation
We now discuss noise and imperfections in our schemes for
entanglement generation, connection, and applications. In par-
ticular, we show that each step contains built-in entanglement
puri®cation, which makes the whole scheme resilient to realistic
noise and imperfections.

In the entanglement generation, the dominant noise is due to
photon loss, which includes contributions from channel attenua-
tion, spontaneous emissions in the atomic ensembles (which result
in the population of the collective atomic mode with the accom-
panying photon going in other directions), coupling inef®ciency of
the Stokes light into and out of the channel, and inef®ciency of the
single-photon detectors. The loss probability is denoted by 1 2 hp

with the overall ef®ciency hp � h9pe2L0 =Latt, where we have separated
the channel attenuation e2L0 =Latt (Latt is the channel attenuation
length) from other noise contributions h9p, with h9p independent of
the communication distance L0. The photon loss decreases the
success probability for getting a detector click from pc to hppc, but
it has no in¯uence on the resulting EME state. Owing to this noise,
the entanglement preparation time should be replaced by
T0 < t¢=�hppc�. The second source of noise comes from the dark
counts of the single-photon detectors. The dark count gives a
detector click, but without population of the collective atomic
mode, so it contributes to the vacuum coef®cient in the EME
state. If the dark count comes up with a probability pdc for the time
interval t¢, the vacuum coef®cient is given by c0 � pdc=�hppc�, which
is typically much smaller than 1 as the Raman transition rate is
much larger than the dark count rate. The ®nal source of noise,
which in¯uences the ®delity of getting the EME state, is caused by
the event in which more than one atom is excited to the collective
mode S whereas there is only one click in D1 or D2. The conditional
probability for that event is given by pc, so we can estimate
the ®delity imperfection DF0 [ 1 2 F0 for the entanglement
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Figure 3 Set-up for entanglement-based communication schemes. a, Schematic set-up

for the realization of quantum cryptography and Bell inequality detection. Two pairs of

ensembles L1, R1 and L2, R2 (or two pairs of metastable states as shown in b) have been

prepared in the EME states. The collective atomic excitations on each side are transferred

to the optical excitations, which, respectively after a relative phase shift JL or JR and a

50%-50% beam splitter, are detected by the single-photon detectors DL
1; D

L
2 and DR

1 ; D
R
2.

We look at the four possible coincidences of DR
1 ; D

R
2 with DL

1; D
L
2, which are functions of the

phase difference JL 2 JR. Depending on the choice of JL and JR, this set-up can realize

both the quantum cryptography and the Bell inequality detection. b, Schematic set-up for

probabilistic quantum teleportation of the atomic `polarization' state. Similarly, two pairs

of ensembles L1, R1 and L2, R2 are prepared in the EME states. We want to teleport an

atomic `polarization' state �d 0S ²
I1
� d 1S ²

I2
�j0a0a iI1 I2

with unknown coef®cients d 0; d 1

from the left to the right side, where S ²
I1
; S ²

I2
denote the collective atomic operators for the

two ensembles I1 and I2 (or two metastable states in the same ensemble). The collective

atomic excitations in the ensembles I1, L1 and I2, L2 are transferred to the optical

excitations, which, after a 50%-50% beam splitter, are detected by the single-photon

detectors DI
1; D

L
1 and DI

2; D
L
2. If, and only if, there is one click in DI

1 DL
1, and one click in DI

2or

DI
2, the protocol is successful. When the protocol succeeds, the collective excitation in the

ensembles R1 and R2, if appearing, would be found in the same `polarization' state

�d 0S ²
R1
� d 1S ²

R2
�j0a0a iR1R2

up to a local p-phase rotation.
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generation by:

DF0 < pc �5�

Note that by decreasing the excitation probability pc, we can make
the ®delity imperfection closer and closer to zeroÐwith the price of
a longer entanglement preparation time T0. This is the basic idea of
the entanglement puri®cation. So, in this scheme, the con®rmation
of the click from the single-photon detector generates and puri®es
entanglement at the same time.

In the entanglement swapping, the dominant noise is still due to
the losses, which include contributions from detector inef®ciency,
the inef®ciency of the excitation transfer from the collective atomic
mode to the optical mode21,22, and the small decay of atomic
excitation during storage20±22. Note that by introducing the detector
inef®ciency, we have automatically taken into account the imper-
fection that the detectors cannot distinguish between one and two
photons. With all these losses, the overall ef®ciency in entanglement
swapping is denoted by hs. The loss in entanglement swapping
gives contributions to the vacuum coef®cient in the connected
EME state, as in the presence of loss a single detector click might
result from two collective excitations in the ensembles I1 and I2,
and in this case, the collective modes in the ensembles L and R have
to be in a vacuum state. After taking into account the realistic noise,
we can specify the success probability and the new vacuum
coef®cient for the ith entanglement connection by the recursion
relations pi [ f 1�ci21� � hs�1 2 {hs=�2�ci21 � 1��}�=�ci21 � 1� and
ci [ f 2�ci21� � 2ci21 � 1 2 hs. The coef®cient c0 for the entangle-
ment preparation is typically much smaller than 1 2 hs, so we have
ci < �2i 2 1��1 2 hs� � �Li=L0 2 1��1 2 hs�, where Li denotes the
communication distance after i times entanglement connection.
With the expression for the ci, we can evaluate the probability pi and
the communication time Tn for establishing an EME state over the
distance Ln � 2nL0. After the entanglement connection, the ®delity
of the EME state also decreases, and after n times connection, the
overall ®delity imperfection DFn < 2nDF0 < �Ln=L0�DF0. We need to
make DFn small by decreasing the excitation probability pc in
equation (5).

We note that our entanglement connection scheme also has a
built-in entanglement-puri®cation function. This can be under-
stood as follows: each time we connect entanglement, the imperfec-
tions of the set-up decrease the entanglement fraction 1=�ci � 1� in
the EME state. However, this fraction decays only linearly with
distance (the number of segments), which is in contrast to the
exponential decay of entanglement for connection schemes without
entanglement puri®cation. The reason for the slow decay is that for
each time of entanglement connection, we need to repeat the
protocol until there is a detector click, and the con®rmation of a
click removes part of the added vacuum noise, as a larger vacuum
component in the EME state results in more repetitions. The built-
in entanglement puri®cation in the connection scheme is essential
for the polynomial scaling law of the communication ef®ciency.

As in the entanglement generation and connection schemes, our
entanglement application schemes also have built-in entanglement
puri®cation, which makes them resilient to realistic noise. First, we
have seen that the vacuum components in the EME states are
removed from the con®rmation of the detector clicks, and thus
have no in¯uence on the ®delity of all the application schemes.
Second, if the single-photon detectors and the atom-to-light excita-
tion transitions in the application schemes are imperfect, with the
overall ef®ciency denoted by ha, we can show that these imperfec-
tions only in¯uence the ef®ciency of getting detector clicksÐwith
the success probability replaced by pa � ha=�2�cn � 1�2�Ðand have
no effect on communication ®delity. Last, we have seen that the
phase shifts in the stationary channels and the small asymmetry of
the stationary set-up are removed automatically when we project
the EME state to the PME state, and thus have no in¯uence on the
communication ®delity.

Noise not correctable by our scheme includes the detector dark
count in the entanglement connection, the non-stationary channel
noise and set-up asymmetries. The ®delity imperfection resulting
from the dark count increases linearly with the number of segments
Ln/L0, and the imperfections from the non-stationary channel noise
and set-up asymmetries increase by the random-walk law

����������
Ln=L0

p
.

For each time of entanglement connection, the dark count prob-
ability is about 1025 if we make a typical choice that the collective
emission rate is about 10 MHz and the dark count rate is 102 Hz. So
this noise is negligible, even if we have communicated over a long
distance (103 times the channel attenuation length Latt, for instance).
The non-stationary channel noise and set-up asymmetries can also
be safely neglected for such a distance. For instance, it is relatively
easy to control the non-stationary asymmetries in local laser
operations to values below 10-4 with the use of accurate polarization
techniques30 for Zeeman sublevels (as in Fig. 2b).

Scaling of the communication ef®ciency
We have shown that each of our entanglement generation, connec-
tion, and application schemes has built-in entanglement puri®ca-
tion, and as a result of this property, we can ®x the communication
®delity to be nearly perfect, and at the same time require the
communication time to increase only polynomially with distance.
Assume that we want to communicate over a distance
L � Ln � 2nL0. By ®xing the overall ®delity imperfection to be a
desired small value DFn, the entanglement preparation time
becomes T0 < tD=�hpDF0� < �Ln=L0�tD=�hpDFn�. For effective genera-
tion of the PME state of equation (4), the total communication
time T tot < Tn=pa with Tn < T0P

n
i�1�1=pi�. So the total communica-

tion time scales with distance by the law

T tot < 2�L=L0�
2=�hppaDFnP

n
i�1pi� �6�

where the success probabilities pi; pa for the ith entanglement
connection and for the entanglement application have been speci-
®ed above.

Equation (6) con®rms that the communication time Ttot

increases with distance L only polynomially. We show this
explicitly by taking two limiting cases. In the ®rst case, the
inef®ciency 1 2 hs for entanglement swapping is assumed to be
negligibly small. We can deduce from equation (6) that in this
case the communication time T tot < Tcon�L=L0�

2eL0 =Latt , with the
constant Tcon [ 2t¢=�h9phaDFn� being independent of the seg-
ment length and the total distance L0 and L. The
communication time Ttot increases with L quadratically. In
the second case, we assume that the inef®ciency 1 ÿ hs is
fairly large. The communication time in this case is approxi-
mated by T tot < Tcon�L=L0�

�log2�L=L0��1�=2�log2�1=hs21��2eL0 =Latt, which
increases with L still polynomially (or, more accurately, sub-expo-
nentially, but this makes no difference in practice as the factor
log2(L/L0) is well bounded from above for any reasonably long
distance). If Ttot increases with L/L0 by the mth power law �L=L0�

m,
there is an optimal choice of segment length (L0 � mLatt) to
minimize the time Ttot. As a simple estimation of the improvement
in communication ef®ciency, we assume that the total distance L is
about 100Latt; for a choice of the parameter hs < 2=3, the commu-
nication time T tot=Tcon < 106 with the optimal segment length
L0 < 5:7Latt. This is a notable improvement over the direct com-
munication case, where the communication time Ttot for getting a
PME state increases with distance L by the exponential law
T tot < TconeL=Latt . For the same distance L < 100Latt, we need
T tot=Tcon < 1043 for direct communication, which means that for
this example the present scheme is 1037 times more ef®cient.

Outlook
We have presented a scheme for implementation of quantum
repeaters and long-distance quantum communication. The pro-
posed technique allows the generation and connection of entangle-
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ment, and its use in quantum teleportation, cryptography, and tests
of Bell inequalities. All of the elements of the present scheme are
within reach of current experimental technology, and all have the
important property of built-in entanglement puri®cationÐwhich
makes them resilient to realistic noise. As a result, the overhead
required to implement the present scheme, such as the commu-
nication time, scales polynomially with the channel length. This is in
marked contrast to direct communication, where an exponential
overhead is required. Such ef®cient scaling, combined with the
relative simplicity of the experimental set-up, opens up realistic
prospects for quantum communication over long distances. M
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